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Cdc2-like kinase 4 (CLK4)
inhibitors via pharmacophore exploration
combined with flexible docking-based ligand/
receptor contact fingerprints and machine
learning†

Mai Fayiz Al-Tawil,a Safa Daoud,b Ma'mon M. Hatmalc and Mutasem Omar Taha *a

Cdc2-like kinase 4 (CLK4) inhibitors are of potential therapeutic value in many diseases particularly cancer.

In this study, we combined extensive ligand-based pharmacophore exploration, ligand–receptor contact

fingerprints generated by flexible docking, physicochemical descriptors and machine learning-

quantitative structure–activity relationship (ML-QSAR) analysis to investigate the pharmacophoric/binding

requirements for potent CLK4 antagonists. Several ML methods were attempted to tie these properties

with anti-CLK4 bioactivities including multiple linear regression (MLR), random forests (RF), extreme

gradient boosting (XGBoost), probabilistic neural network (PNN), and support vector regression (SVR). A

genetic function algorithm (GFA) was combined with each method for feature selection. Eventually,

GFA-SVR was found to produce the best self-consistent and predictive model. The model selected three

pharmacophores, three ligand–receptor contacts and two physicochemical descriptors. The GFA-SVR

model and associated pharmacophore models were used to screen the National Cancer Institute (NCI)

structural database for novel CLK4 antagonists. Three potent hits were identified with the best one

showing an anti-CLK4 IC50 value of 57 nM.
1. Introduction

Alternative splicing is a deviation from the normal preferred
sequence where certain exons are skipped resulting in multiple
forms of mature mRNA. This improper splicing contributes to
the pathogenesis of many human diseases.1 Cyclin dependent-
like family kinases (Cdc2-like protein kinases) are dual
specic kinases that have been shown to regulate mRNA
splicing by phosphorylation of serine and arginine rich
proteins.2 The Cdc2-like kinases family (CLK) consists of four
isoforms CLK1–4 exhibiting the typical protein kinase folds and
possessing different lengths of amino acids and they are
involved in alternative splicing and RNA processing in
Duchenne muscular dystrophy, Alzheimer's disease, HIV-1,
inuenza virus and cancer.3 CLK4 inhibition has recently
raised interest as a potential treatment for different CLK4-over
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expressing cancer types, i.e., renal cancer, breast cancer, mela-
noma and other cancers. Accordingly, several potent CLK4
inhibitors are currently investigated as potential clinical
candidates (Fig. 1),4 these include (i) TG003 which is one of the
rst CLK4 inhibitors published in 2004 with a Kd value of
30 nM. (ii) ML106 which is a quanzoline-based inhibitor of
CLK4 and was published in 2009 with a Kd value of 50 nM. (iii)
CX-4954 which was reported, marketed and used as highly
selective and potent inhibitor of casein kinase 2 (CK2).
However, CX-4954 also inhibits CLK4 with an IC50 of 23 nM. (iv)
Leucettine 4 which was developed by modication of natural
product leucettamine B found in marine sponge Leucetta
microraphis. Leucettine 4 inhibits CLK4 with IC50 ¼ 64 nM. (v)
SRI-29329 which is a CLK4 inhibitor published in 2016 with IC50

of 86 nM. (vi) KuWal151 which is a potent CLK inhibitor pub-
lished in 2018 with IC50 of 28 nM against CLK4. (vii) SM08502
which is an isoquinoline based compound, but the exact
structure has not been disclosed yet, it is the rst CLK inhibitor
that entered clinical trials and has an activity against solid
tumors with an IC50 of 1 nM against CLK4.

Despite the signicance of CLK-4 in neurodegenerative
disease and cancer-related drug discovery research, it appears
that only limited number of earlier computer-aided molecular
design and discovery efforts dealing with CLK4 inhibitors were
reported. The most prominent was published in 2013 and it
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Potent CLK4 inhibitors currently investigated as potential clinical candidates.
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involved three-dimensional quantitative structure–activity rela-
tionship (3D-QSAR) and pharmacophore modeling to identify
ligand structural features required for CLK4 binding.5 Never-
theless, the authors failed to validate their models experimen-
tally by in vitro bioassays of captured hits. Additionally, their
structure-based 3D QSARs were based on homology model of
CLK4 rather than the actual crystallographic structural. In
another study, bisphenol A was found to act as a ligand for
CLK4 among other targets through molecular docking studies.6

Moreover, docking studies were performed to optimize several
potent CLK4 inhibitors.7–9

A pharmacophore is dened as abstract three-dimensional
description of binding interactions envisaged to anchor
certain ligand within corresponding binding pocket.10–20,42,43

The concept of Ligand–Receptor Contacts Fingerprints (LRCFs)
is well established.25 It proceeds by either mapping out all
binding site atoms that contact a list of docked potent ligands
and evade inactive ones,24–26,57 or identify binding site atoms
that frequently contact certain bound ligand during molecular
dynamics or related simulations.47–49 Machine learning (ML) is
the implementation of statistical approaches for learning and
predicting properties.27,28 Supervised ML attempts to build
predictive model(s) based on data collected from input and
output sources.29 Numerous ML methods have been developed
and implemented in the eld of drug design and discovery.39–41

In the current project, ligand-based pharmacophore
modeling was combined with molecular docking to identify
novel CLK4 inhibitors. Ligand-based modeling10–20,42,43 efforts
© 2022 The Author(s). Published by the Royal Society of Chemistry
commenced by extensively exploring the pharmacophoric space
of a list of published CLK4 inhibitors (91 molecules) using
Discovery Studio (version 4.5, BIOVIA, USA). On other hand,
exible docking21–23 was used to dock different inhibitors into
the crystallographic structure of CLK4. Then, the docked poses
and their corresponding protein conformations were used to
generate Ligand–Receptor Contacts Figureprints
(LRCFs).24–26,47–49,57 Subsequently, LRCFs, ligand-based pharma-
cophores and numerous other calculatable physicochemical
properties were allowed to compete within the context of
genetic algorithm coupled to variety of machine learning27–30

methods to search for optimal QSAR model(s) that can explain
bioactivity variations within training compounds. Thereaer,
QSAR-selected pharmacophores were validated by receiver-
operating characteristic (ROC) curve analysis and were used
as 3D search queries to screen the National Cancer Institute's
(NCI) list of compounds for new CLK-4 inhibitors. Fig. 2
summarizes the overall workow implemented in this study.
2. Materials and methods
2.1 Molecular modeling of CLK4

2.1.1 Data set collection and conformational analysis. The
training compounds were collected from The European Bio-
informatics Institute database (ChEMBL) (https://
www.ebi.ac.uk/chembl/). However, only compounds of known
stereochemistries, published in peer reviewed journal articles
with inhibitory bioactivities measured by consistent bioassay
RSC Adv., 2022, 12, 10686–10700 | 10687



Fig. 2 The workflow implemented in the current project.
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procedure in IC50 format were selected. Hence, 91 CLK4
inhibitors from published literature were included in the
present modelling (1–91 Table S1 under ESI†).7–9 The confor-
mations of collected compounds were explored using the
“CAESAR conformation generation” option in Discovery Studio
(version 4.5, BIOVIA, USA) to represent their conformational
exibilities. CAESAR (Conformer Algorithm based on Energy
Screening and Recursive Buildup) has been found to be signif-
icantly faster than alternative methods for all data sets
10688 | RSC Adv., 2022, 12, 10686–10700
investigated.58 Conformational ensembles were generated for
each molecule with a maximum energy threshold of
20 kcal mol�1 from the local minimized structure and
a maximum limit of 250 conformers per molecule based on the
generalized CHARMm force eld implemented within
Discovery Studio 4.5.

2.1.2 Ligand-based pharmacophore exploration of CLK4
inhibitors. This step was performed as described earlier.10–20,42,43

Briey, the collected list of compounds (1–91, Table S1 under
© 2022 The Author(s). Published by the Royal Society of Chemistry
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ESI†) was broken down into training subsets of bioactivity
ranges extending over 2 to 2.5 logarithmic cycles. Eight struc-
turally diverse training subsets were carefully selected as in
Table S2 under ESI.† The training subsets were selected such
that bioactivity differences among their member compounds
are related to the presence or absence of pharmacophoric
features (e.g., hydrogen bond acceptor (HBA), hydrogen bond
donor (HBD), hydrophobic (Hbic), or ring aromatic (Ring-
Arom)). Each training subset was selected in such a way to
evaluate certain binding hypothesis.10–20,42,43 The training
subsets were used to explore the pharmacophoric space of CLK4
inhibitors over 64 automatic Discovery Studio CATALYST-
HYPOGEN modeling runs.10–20,42,43 Different pharmacophores
were produced by changing the counts and types of permissible
pharmacophoric features and their inter-feature distances in
the resulting models (Table S3 under ESI†). Pharmacophore
exploration yielded 607 models of variable qualities.

Successful models were clustered into 60 groups (i.e., at ratio
of 10 to 1) using the hierarchical average linkage method
implemented in CATALYST-HYPOGEN. Subsequently, the
highest-ranking representatives, based on their F-values
(calculated from the correlation of t values against the bioac-
tivities for the total list of collected CLK4 inhibitors), were
selected as representatives in subsequent QSAR
modeling.10–20,42,43 This was done to minimize collinearity
among pharmacophoric descriptors so as to improve noise-to-
signal ratio in subsequent ML modeling.31,32 However, in case
if a particular cluster included more than 10 pharmacophores,
then it was represented by additional pharmacophores to
maintain the same group-to-representative ratio (i.e., 10-to-1).
Table S4 under ESI† shows information about representative
pharmacophores including their features, success criteria,
differences from corresponding null hypothesis and Cat.-
Scramble condence levels (Y-scrambling method that chal-
lenges CATALYST-HYPOGEN to generate pharmacophore
models of superior qualities from scrambled bioactivity data
compared to the original unscrambled training sets).10–20,42,43

2.1.3 Flexible docking and ligand–receptor contacts
ngerprints

Preparation of CLK4 crystal structure. Searching the protein
databank yielded a single crystallographic structure for CLK4
(25-November-2020, PDB code: 6FYV, resolution ¼ 2.46 �A).
Hydrogen atoms were added to the protein utilizing Discovery
Studio 4.5 templates for protein residues. The protein structure
was utilized in subsequent docking experiments without energy
minimization. Explicit water molecules were kept.

Ligand docking and scoring. Docking experiments were con-
ducted employing exible docking as implemented within
Discovery Studio 4.5. A binding site sphere of 7.9 �A radius
surrounding the center of the co-crystallized ligand (silmita-
sertib, PDB code: 3NG)33 was used to dene the binding site.
Docking was performed with ligands in their unionized states
(only two training compounds are ionizable, namely, 88 and 91
in Table S1 under ESI,† however they were docked unionized).
The implemented docking procedure combines features from
LibDock21,22 and CDOCKER34 docking engines. Flexible docking
simulates protein exibility and docks ligands with an induced
© 2022 The Author(s). Published by the Royal Society of Chemistry
t receptor optimization procedure. The following steps are
performed: (i) calculate receptor side-chain conformations;
initially, the protocol creates protein side-chain conformations
using the ChiFlex algorithm. This algorithm generates
ensemble of low energy protein conformations with varied side-
chain rotamers35 (ii) create ligand conformations (similar to the
method in Section 2.1.1) (iii) perform initial placement of the
ligand conformations into the active site of each receptor side-
chain conformation using LibDock docking engine (iv) clus-
tering to remove similar ligand poses (ligand poses are clus-
tered regardless of the protein conformation since the protein
conformations are rebuilt during the next step) (v) rene
selected protein side-chains in the presence of the rigid ligand
using ChiRotor algorithm. This algorithm proceeds by
removing side-chain atoms, then perform side-chain confor-
mation sampling, followed by assembling each side chain
based on lowest energy conformation followed by nal mini-
mization35 (vi) perform a nal ligand renement using
CDOCKER docking engine. In the current project, amino acids
within 7 �A from the bound crystallographic ligand (silmita-
sertib, PDB code: 3NG) were allowed to be exible during
docking, namely, Leu167, Gly168, Phe172, Val175, Ala189,
Lys191, Val225, Phe241, Leu244, Gly245, Ser247, Glu292,
Asn293, Leu295, Val324, and Asp325. These should be directly
involved in binding interactions with binding ligands, and
therefore, susceptible to conformational exibility (i.e., induced
t).

LibDock docking engine. The site-feature docking algorithm
(LibDock) docks ligands, aer removing their hydrogen atoms,
into a putative active site guided by binding hotspots. The
ligands' conformations are aligned to polar and apolar receptor
interactions sites (i.e., hotspots).21,22 The following LibDock
parameters were implemented in the current study: the number
of binding site hotspots (polar and apolar) was set to 100. The
ligand-to-hotspots matching RMSD tolerance value was set to
0.25 �A. The maximum number of poses saved for each ligand
during hotspots matching before nal pose minimization ¼
100. Maximum number of poses to be saved for each ligand in
the binding pocket ¼ 100. Minimum LibDock score (poses
below this score are not reported) ¼ 100. Maximum number of
rigid body minimization steps during the nal pose optimiza-
tion (using BFGS method) ¼ 50. Maximum number of steric
clashes allowed before the pose-hotspot alignment is termi-
nated (specied as a fraction of the heavy atom count) ¼ 0.1.
Maximum value for nonpolar solvent accessible surface area for
a particular pose to be reported as successful ¼ 15.0 �A2.
Maximum value for polar solvent accessible solvent area for
a particular pose to be reported as successful ¼ 5.0�A2. No nal
ligand minimization was implemented.

CDOCKER docking engine. CDOCKER is a CHARMm-based
simulated annealing/molecular dynamics method for docking
ligands into potential receptors.34 The following CDOCKER
parameters were implemented in the presented project: starting
ligands' conformers were energy-minimized then heated to
1000 K over 1000 molecular dynamics steps to generate 10
starting random conformations for each ligand. Each random
conformer was rotated 10 times within the binding pocket for
RSC Adv., 2022, 12, 10686–10700 | 10689
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subsequent energy renement. The van der Waals energies of
the resulting conformers/poses were evaluated and those of
$300 kcal mol�1 were discarded. Surviving conformers/poses
were exposed to a cycle of simulated annealing over 2000
heating steps to targeted temperature of 700 K followed by 5000
cooling steps to targeted temperature of 300 K. The docked
poses were energy minimized to a nal minimization gradient
tolerance zero kcal mol�1 �A�1. Top 10 poses were arbitrary
selected and saved for subsequent scoring.

Docking-based ligand–receptor contacts ngerprints (LRCFs).
High ranking docked conformers/poses generated by the ex-
ible docking procedure were scored using two scoring func-
tions: LibDock score21,22 and CDocker interactions energy.34

Taking into account each scoring function in turn, the highest
scoring docked ligand–protein complex was chosen for each
inhibitor (1–91, Table S1 under ESI†) for subsequent elucida-
tion of LRCFs. This resulted in two sets of docked ligand–CLK4
virtual complexes corresponding to each scoring function
(LibDock score and CDocker interactions energy) for each
docked ligand (unless the two scoring functions converged on
the same docked pose in which case a single pose is used for
generating LRCFs). Each virtual complex in each set was eval-
uated to identify close binding site atoms to docked ligand, i.e.,
of distance # 2.5 �A. Atomic neighbors that lie closer than this
predened distance threshold are allocated an intermolecular
contact value of “one”, otherwise they are given a contact value
of “zero”. Distance evaluations were automatically performed
employing a tailored-made Fortran-based soware.24–26,47–49

Accordingly, each docking–scoring conguration is used to
build a 2D matrix, such that each matrix is composed of row
labels corresponding to docked ligands and column labels
corresponding to different binding site atoms. The matrix is
lled with binary code, whereby “zeros” correspond to inter-
atomic distances that exceed the predetermined threshold (of
2.5�A) and “ones” for distances below (or equal) the predened
2.5 �A threshold cutoff. Each row represents the docking-based
Ligand–Receptor Contacts Fingerprint (LRCF) of the corre-
sponding docked compound.

2.1.4 ML-QSAR model building
Data preparation. The list of collected CLK4 inhibitors was

tted against representative cluster centers pharmacophores
(94 models) and their t values were used as descriptors in
QSAR-ML modeling. Fit values are determined by the following
equation:

Fit ¼ fitted pharmacophore features � W [1 � S(disp/tol)2] (1)

where, tted pharmacophore features represent the number of
pharmacophore features that superimpose (i.e., overlap or map
with) respective chemical functions within the tted
compound. W is the weight of the corresponding pharmaco-
phore feature spheres. This value is xed to 1.0 in HYPOGEN-
generated models. “disp” is the distance between the center
of certain pharmacophoric sphere (feature centroid), and the
center of the respective superimposed chemical moiety of the
tted compound. Tol, known as tolerance, is the radius of the
pharmacophoric feature sphere. S(disp/tol)2 is the summation
10690 | RSC Adv., 2022, 12, 10686–10700
of (disp/tol)2 values for all pharmacophoric features that
successfully map corresponding chemical functionalities in the
tted compound.10–20,42,43

Additional 166 physicochemical descriptors that included
numerous physicochemical, topological and ngerprint
descriptors55,56 were also calculated employing the “Calculate
Molecular Properties” protocol implemented within Discovery
Studio (version 4.5, BIOVIA, USA). Moreover, the LRCFs of the
molecules were added as additional binary descriptors to the
ML-QSAR list of compounds. Two sets of LRCFs were used for
each compound, namely, those based on LibDock-score scoring
function and CDocker interaction energy scoring function.
Accordingly, the ML-QSAR matrix included 91 rows corre-
sponding to 91 collected compounds and 361 columns corre-
sponding to the t values against 94 pharmacophore models,
101 LRCFs and 166 physicochemical descriptors.

A subset of 72 compounds from the total list of modeled
inhibitors (1–91, Table S1 under ESI†) was utilized as training
list for ML-QSAR modeling. The remaining 19 compounds (ca.
20% of the dataset) were employed as external testing subset for
validating ML-QSAR models. The test molecules were selected
as follows: the collected compounds were ranked according to
their IC50 values, and then every h compound was selected
for the test set starting from the high potency end. The selected
test molecules are marked with asterisks in Table S1 under ESI.†

ML-QSAR modelling. Genetic function algorithm (GFA) was
used to select combinations of pharmacophore t values,
LRCFs and physicochemical descriptors and feed them into the
particular machine learner (ML) under evaluation to assess how
successful the combination, i.e., descriptors and ML, is in
explaining the observed variation in bioactivity (log(1/
IC50)).10–20,42,43 In the current project we implemented the feature
selection node within KNIME Analytics Platform (Version 4.1.0)
for GFA with the following GFA settings: (i) population size was
set to 200 (ii) max number of generations was set to 1000 (iii)
fraction of survivors was set to 40% (iv) selection strategy
method was “tournament”, where the winner of each tourna-
ment is selected to perform crossover (v) elitism rate, which
indicates the fraction of the best individuals within a generation
that are transferred to the next generation without alternation,
was set to 10% (vi) uniform crossover strategy in which each bit
(gene) is chosen from either parent with equal probability (vii)
crossover rate was set to 60%, accordingly, top 60% of survivors
are allowed to mate (viii) mutation rate was set to 1%, accord-
ingly, 1% of the surviving chromosomes in each generation is
exposed to mutation, and this is done to escape being captured
in a local minimum.

Several ML methods were evaluated to tie these properties
with anti-CLK4 bioactivities, namely, multiple linear regression
(MLR),36 random forests (RF),37 extreme gradient boosting
(XGBoost),37,38 probabilistic neural network (PNN),39 and
support vector regression (SVR).40,41

The best ML method was found to be SVR. This method is
a supervised machine learning method that uses the principle
‘kernel trick’ to nd number of boundary instances, also called
“support vectors”, to create discriminatory function that sepa-
rates training observations into distinct classes with widest
© 2022 The Author(s). Published by the Royal Society of Chemistry
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possible boundaries. This function can be used to classify new
observations or to predict continuous functions (regression).40,41

The following SVR settings were implemented in this project: an
upper bound on the fraction of training errors and a lower
bound of the fraction of support vectors (i.e., the nu parameter)
¼ 0.664. This value was optimized in this project to minimize
the error on training data and reduce the computational
complexity of models to avoid over tting. Other parameters
were set to their default values in the Weka-Knime (version
4.1.3) LibSVM node, these include: kernel cache (cache size ¼
40.0), kernel coefficients epsilon ¼ 0.001 and gamma ¼ 0.00,
kernel type is radial basis function: exp(�gamma � ju � vj^2),
and loss function is 0.1.

2.1.5 ML model evaluation
Statistical validation of ML-QSAR models. Each ML-QSAR

generated model was validated internally, i.e., using the
training compounds, and externally, i.e., using the testing list
(testing inhibitors are marked with asterisks in Table S1 under
ESI†). Internal validation was performed by employing leave
one-out cross-validation (rLOO

2) and leave-20%-out cross-
validation (rL20

2%).42 Additionally, the models were also vali-
dated against the external testing set. Predicted bioactivities of
testing compounds (log(1/IC50)) values (determined by eachML-
QSAR model under evaluation) and their experimental coun-
terparts were used to calculate the predictive r2 (rPRESS

2) dened
as:

rPRESS
2 ¼ (SD � PRESS)/SD2

where SD is the sum of the squared deviations between the
biological activities of the test set and the mean activity of the
training set molecules, PRESS is the squared deviations
between predicted and actual activity values for every molecule
in the test set.

Validation of generated pharmacophore models using receiver-
operating characteristic (ROC) curve analysis and goodness of hit
score. ML-QSAR selected pharmacophores were validated using
ROC curve analysis and goodness of hit list (GH scoring).59–63

The testing set is composed of experimentally validated active
and inactive CLK4 inhibitors extracted from ChEMBL database
(https://www.ebi.ac.uk/chembl/) and not included in the
modelling list (91 compounds in ESI Table S1†). The ROC set
includes 383 active compounds (anti-CLK4 IC50 # 400 nM) and
270 inactive compounds (anti-CLK4 IC50 > 3000 nM). Table S5
under ESI† shows the chemical structures of the testing set
compounds in simplied molecular-input line-entry system
(SMILES) format, together with their corresponding
bioactivities.

ROC analysis evaluates the capability of a particular phar-
macophore model(s) to correctly classify a group of compounds
into actives and inactives. It affords several success criteria for
evaluation:10–20,24–26,42–44 (i) area under the ROC curve (AUC) of
the corresponding ROC curve, (ii) accuracy, (iii) true negative
rate, and (iv) true positive rate. True positive rate (or sensitivity,
SEN) is calculated by dividing truly active captured hits (true
positives) by the sum of true positives and false negatives. True
negative rate (or specicity, SPC) is truly inactive compounds
© 2022 The Author(s). Published by the Royal Society of Chemistry
being discarded aer proper identication. True negative rate is
calculated by dividing the true negatives by the sum of true
negatives and false positives. Accuracy describes the percentage
of correctly classied molecules (active and inactive) by the
screening protocol.

GH scoring is calculated as in eqn (2).59–63

GH ¼ (0.75 Ya + 0.25 SEN)SPC (2)

where, Ya is the percentage yield of actives calculated as the
ratio of actives found in the hit list to the total number of
compounds in the hit list (Ya ¼ TP/(TP + FP) � 100).
2.2 In silico screening of the NCI database for new CLK4
antagonists

Pharmacophore hypotheses selected by the best GFA-SVR
model, were employed as 3D search queries to screen the
National Cancer Institute (NCI) list of compounds. The t
values of captured hits against capturing pharmacophore
models and relevant physicochemical molecular descriptors
(i.e., that emerged in the optimal GFA-SVR model) were calcu-
lated. Additionally, captured hits were docked into the CLK4
binding site (PDB code: 6FYV, resolution¼ 2.46�A) using exible
docking with same docking settings employed for modeled
compounds to determine their LRCFs. All descriptors were then
fed into the optimal GFA-SVR model to determine the predicted
bioactivities for the captured hits. The highest-ranking hits
were acquired for subsequent in vitro testing.
2.3 Biological evaluation of captured hits

The bioassay was conducted using LanthaScreen Eu kinase
binding assay (Invitrogen-Life Technologies, USA).45 This assay
is based on the ability of the potential kinase inhibitor under
evaluation to bind and displace a proprietary “tracer” molecule
(known as Alexa Fluor 674 conjugate) from the catalytic site of
the targeted kinase. In case the tested molecule is of low affinity
to the targeted kinase, and thus fails to displace the “tracer”
molecule, then the tracer remains within the kinase binding
site and maintains effective orescent interaction with certain
Eu-labeled anti-tag antibody attached at the kinase surface, thus
emitting signicant uorescence (time-resolved uorescence
energy transfer, TR-FRET). On the other hand, if the potential
inhibitor binds tightly to the kinase, then it will displace the
“tracer” molecule from the binding site causing loss of the TR-
FRET interaction, i.e., resulting from tracer/Eu interaction, with
concomitant loss of uorescence. Stock solutions of hit mole-
cules were prepared in DMSO, and then serially diluted in assay
buffer 50 mM HEPES pH 7.5, 0.01% BRIJ-35, 10 mM MgCl2,
1 mM EGTA to yield nal hit concentrations of 10 mM. The
reaction of the test compound solution, kinase antibody
mixture and tracer were mixed and incubated over 1 hour at
room temperature, and then the uorescence was read at ls 665
and 615 nm.46 DMSO did not exceed 1% in the nal kinase
reaction. Hits that inhibited CLK4 more than 75% at 10 mM
were further tested at 1.0, 0.10 and 0.01 mM to determine their
IC50 values. Staurosporine was used as standard (positive
RSC Adv., 2022, 12, 10686–10700 | 10691
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control) with IC50 value ¼ 7.45 nM. IC50 values were calculated
using nonlinear regression of the log(concentration) vs. inhi-
bition percentage values using GraphPad Prism 5.0.
3. Results and discussion
3.1 Molecular modeling of CLK4 inhibitors

A total of 91 CLK4 kinase inhibitors were used to generate 94
unique binding pharmacophores as described earlier.10–20,42,43

The fact that the pharmacophore exploration phase led to
numerous possible CLK4 binding models meant it is hard to
decide what is (are) the pharmacophore(s) that best explain the
observed anti-CLK4 bioactivities among collected inhibitors.
Additionally, exclusive reliance on pharmacophore models
generally fails to account for the steric constrains of the binding
pocket and bioactivity enhancing/detrimental effects associated
with electron-donating and/or withdrawing chemical
groups.10–20,42,43 These pitfalls cause pharmacophore model(s) to
erroneously capture many inactive molecules, which despite
Table 1 Correlation coefficient values of best ML-QSAR regression mod

ML method Selected model descriptorsa,b,c

GFA-SVR Hypo(5-R2-08), Hypo(6-R2-07), Hypo(8-
R3-08), LEU244HNLD, VAL324HBLD,
ASP325HALD, CHI_2, Num_Rings6

GFA-RF Hypo(5-R2-08), Hypo(6-R2-03), Hypo(8-
R3-08), Hypo(2-R5-05), VAL324HBLD,
ASP325HALD, CHI_2

GFA-PNN Hypo(3-R6-08), Hypo(1-R6-02),
LEU210HD12CD, Num_Rings5, Kappa_3

GFA-XGBoost Hypo(5-R2-07), Hypo(6-R2-08), Hypo(8-
R2-04), Hypo(2-R5-05), Kappa_3,
Dipole_Y

GFA-MLR log(1/IC50)¼ + 0.12Hypo(5-R6-08) + 0.129
Hypo(1-R2-08) � 0.276 LYS191HZ2CD �
0.22 VAL324 HBLD + 0.433 Num_Rings5 �
0.002 PMI_x � 2.65 Shadow_XYfrac �
1.667

a Hypo(5-R2-08) is the 8th pharmacophore model generated using training
S3 under ESI), Hypo(6-R2-07): is the7th pharmacophore model generated
(Table S3), Hypo(8-R3-08) is the 8th pharmacophore model generated u
(Table S3), Hypo(6-R2-03) is the 3rd pharmacophore model generated u
(Table S3), Hypo(2-R5-05) is the 5th pharmacophore model generated u
(Table S3), Hypo(3-R6-08) is the 8th pharmacophore model generated u
(Table S3), Hypo(1-R6-02) is the 2nd pharmacophore model generated u
(Table S3), Hypo(5-R2-07) is the 7th pharmacophore model generated u
(Table S3), Hypo(6-R2-08) is the 8th pharmacophore model generated u
(Table S3), Hypo(8-R2-04) is the 4th pharmacophore model generated u
(Table S3), Hypo(5-R6-08) is the 8th pharmacophore model generated u
(Table S3), Hypo(1-R2-08) is the 8th pharmacophore model generated u
(Table S3). Table 2 shows the X, Y, Z coordinates of pharmacophores H
hydrogen atom attached to peptidic N of Leu244 selected by LibDock sco
carbon of Val324 selected by LibDock score scoring function, ASP325HALD

LibDock score scoring function. Fig. 3 shows the position of these three
attached to delta carbon of Leu210 selected by CDocker interaction ener
terminal amine on the side chain of Lys191 selected by CDocker intera
rings. CHI_2: second order connectivity index, positively correlated with
third order kappa shape index, related to molecular exibility, Dipole_
molecular dipole moment in debyes as estimated from the partial atom
PMI_x: principle moment of inertia in the X-dimension, Shadow_XYfra
correlation coefficient: the model is trained on the training list and use
correlation coefficient. f Leave-one-out correlation coefficient. g Predictive
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their abilities to project their chemical binding groups appro-
priately into the pharmacophoric features, they either fail to
electronically complement the binding site moieties or (and)
sterically clash with some binding site features.10–20,42,43

Accordingly, additional physicochemical descriptors and
LRCFs, determined based on exible docking, were enrolled as
additional descriptors in ML-QSAR modeling. Flexible docking
should cover ligands/receptor electronic and steric match/
mismatch factors not accounted for by pharmacophore
models.47–49 GFA analysis was used as to select optimal combi-
nation of pharmacophore(s), physicochemical descriptors and
LRCFs capable of explaining bioactivity variation among
training compounds within the context of the evaluated ML
methods.
3.2 Supervised ML-QSAR modeling of CLK4 inhibitors

The current project involves supervised ML, whereby elaborate
search was performed to identify the best ML method that
yields optimal self-consistent and predictive regression model
els

r2d rL20%
2e rLOO

2f rPRESS
2g

0.91 0.65 0.66 0.76

0.94 0.63 0.57 0.77

0.96 0.07 0.01 0.71

0.96 0.47 0.46 0.75

0.65 0.46 0.50 0.53

subset 5 (Table S2 under ESI) with the 2nd HYPOGEN run settings (Table
using training subset 6 (Table S2) with the 2nd HYPOGEN run settings
sing training subset 8 (Table S2) with the 3rd HYPOGEN run settings
sing training subset 6 (Table S2) with the 2nd HYPOGEN run settings
sing training subset 2 (Table S2) with the 5th HYPOGEN run settings
sing training subset 3 (Table S2) with the 6th HYPOGEN run settings
sing training subset 1 (Table S2) with the 6th HYPOGEN run settings
sing training subset 5 (Table S2) with the 2nd HYPOGEN run settings
sing training subset 6 (Table S2) with the 2nd HYPOGEN run settings
sing training subset 8 (Table S2) with the 2nd HYPOGEN run settings
sing training subset 5 (Table S2) with the 6th HYPOGEN run settings
sing training subset 1 (Table S2) with the 2nd HYPOGEN run settings
ypo(5-R2-08), Hypo(6-R2-07), and Hypo(8-R3-08). b LEU244HNLD is the
re scoring function, VAL324HBLD is the hydrogen atom attached to beta
is the hydrogen atom attached to alpha carbon of Asp325 selected by

atoms within the binding pocket, LEU210HD12CD is the hydrogen atom
gy scoring function, LYS191HZ2CD is one of the hydrogen atoms at the
ction energy scoring function. c Num_Rings6: number of 6-membered
molecular size, Num_Rings5: number of 5-membered rings. Kappa_3:
Y: 3D the calculated magnitude and the X-vector component of the
ic charges (calculated by Gasteiger method) and atomic coordinates.
c area of the molecular shadow in the XY plane.54,55 d Resubstitution
d to predict the bioactivities of the same training set. e Leave-20%-out
correlation coefficient on the external testing set.

© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 2 X, Y, Z coordinates, weights and tolerances of binding features of pharmacophore models selected by implemented ML methods

Pharmacophore Denition

Chemical features

HBA Hbic Hbic RingArom

Hypo(5-R2-08)a Weights 2.26 2.26 2.26 2.26
Tolerances 1.60 2.20 1.60 1.60 1.60 1.60
Coordinates X 5.60 7.80 2.93 �0.72 �3.62 �3.80

Y �0.30 1.78 �1.08 �0.82 �0.86 1.75
Z �0.002 �0.04 4.00 6.46 0.39 1.86

HBA HBD Hbic RingArom
Hypo(6-R2-07)b Weights 1.97 1.97 1.97 1.97

Tolerances 1.60 2.20 1.60 2.20 1.60 1.60 1.60
Coordinates X �1.37 �0.27 �2.84 �4.35 �0.56 2.23 2.82

Y �1.58 �2.36 �1.35 �3.68 0.70 �1.44 1.38
Z �1.25 �3.93 �2.47 �3.62 �4.49 0.53 �0.31

HBA HBD Hbic RingArom
Hypo(8-R3-08) Weights 2.18 2.18 2.18 2.18

Tolerances 1.60 2.20 1.60 2.20 1.60 1.60 1.60
Coordinates X 4.51 3.65 �2.13 0.73 �3.08 �1.42 �1.42

Y �2.27 �5.16 �1.90 �2.75 �3.82 0.01 2.60
Z 0.06 �0.07 2.84 3.13 6.66 �0.01 1.50

a This pharmacophore includes 3 exclusion spheres of 1.2 �A diameters and at the following X, Y, Z coordinates: (�1.73, �0.05, 9.32), (4.58, 0.33,
2.75), and (3.06, 3.54, �2.21). Exclusion spheres represent regions forbidden for occupancy by ligand groups. b This pharmacophore includes 4
exclusion spheres of 1.2 �A diameters and at the following X, Y, Z coordinates: (�1.81, 2.02, �7.37), (2.94, 1.12, 2.95), (�3.64, �0.13, 4.64), and
(3.49, �5.94, 0.08).
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connecting combination of pharmacophore models, LRCFs and
physicochemical descriptors with anti-CLK4 bioactivities.
However, the fundamental problem in ML regressors is their
failure to infer information about the exact descriptors that
control variation in the response (bioactivity) of the training
observations (training compounds).50 Still, MLR and RF are
noticeable exceptions as it is possible to identify signicant
contributors (i.e., descriptors) by either numerical contribution
of individual descriptors in the regression model of MLR or by
repetitive emergence of certain descriptor(s) as decision criterion
in decision trees within RF.51Nevertheless, to solve this issue with
other ML methods, it was decided to combine evaluated ML
methods with GFA for feature-selection51 to identify the most
successful combination of pharmacophore(s), physicochemical
descriptors and LRCFs that control the bioactivity variation
within the training compounds. Several ML modeling
approaches were attempted, namely, MLR, SVR, XGBoost, RF,
and PNN. All GFA-ML models were validated by leave-20%-out
and leave-one-out cross-validation, and against external testing
set.52,53,57 Table 1 shows the results. Clearly, GFA-SVR40,41 and GFA-
RF51 were most consistent in explaining training and testing
bioactivity variations. However, the GFA-SVR model scored better
leave-one-out crossvalidation r2 prompting us to select thismodel
for hit identication and bioactivity prediction.

Interestingly, the top ML-QSAR models (GFA-SVR and GFA-
RF) converged on several descriptors, namely, Hypo(5-R2-08),
Hypo(8-R3-08), VAL324HBLD, ASP325HALD and CHI_2 indicating
their signicance in the prediction of anti-CLK4 bioactivity.

Table 2 shows the X, Y and Z coordinates of the three phar-
macophores that emerged in the GFA-SVR model, while Fig. 3
shows the three pharmacophores and how they map a crystal-
lographic bound ligand within CLK4.
© 2022 The Author(s). Published by the Royal Society of Chemistry
Clearly from Fig. 3, the GFA-SVR pharmacophores, i.e.,
Hypo(5-R2-08), Hypo(6-R2-07), and Hypo(8-R3-08), emphasize
certain ligand–receptor binding interactions seen in the crys-
tallographic complex: all three pharmacophores highlight
a hydrophobic interaction tying the chlorobenzene of the bound
ligand with the aromatic side chain of Phe172. However,
Hypo(5-R2-08) and Hypo(6-R2-07) emphasize hydrophobic and
p-stacking interactions, respectively, connecting the benzoic
acid fragment of the bound ligand and the aromatic side chain
of phe241 (Fig. 3A and C). Similarly, Hypo(5-R2-08) and Hypo(8-
R3-08) highlight hydrogen bonding interaction connecting the
carboxylic acid of the bound ligand with the side chain
ammonium of Lys191 (Fig. 3A and B). The same pharmaco-
phores, i.e., Hypo(5-R2-08) and Hypo(8-R3-08), highlight p-
stacking interactions involving the pyridine side-ring of the
bound ligand against the peptidic amide connecting Leu244
and Gly245 (Fig. 3A and B). However, Hypo(8-R3-08) and
Hypo(6-R2-07) underscore hydrogen bonding interaction
involving the central aniline NH of the bound ligand with
a network of water molecules connected to Asp250 and Gly245
(Fig. 3B and C). It is noteworthy to mention that the apparent
less-than-optimal mapping of the hydrogen bond donor feature
of Hypo(8-R3-08) against the central aniline NH of the crystal-
lographic bound ligand (Fig. 3B) is not unexpected since
Hypo(8-R3-08) (and other pharmacophores in the optimal GFA-
SVR model) was totally generated through ligand-based process
without considering the binding site. Moreover, despite the
reliably of crystallographic structures in drug design, they suffer
from some serious problems such as inadequate resolution and
crystallization-related artifacts of the ligand–protein complex.
Furthermore, crystallographic structures generally ignore
structural heterogeneity related to protein anisotropic motion
RSC Adv., 2022, 12, 10686–10700 | 10693



Fig. 3 Comparison between pharmacophore models in the best GFA-SVR QSAR model and binding interactions observed within the CLK4
crystallographic complex 6FYV. (A)–(C) Pharmacophore models, Hypo(5-R2-08), Hypo(8-R3-08) and Hypo(6-R2-07), respectively, and how
they map the crystallographic bound ligand. Hydrogen bond donor features (HBDs) are shown as pink vectored spheres, hydrogen bond
acceptor features (HBA) are shown as green vectored spheres, Aromatic ring features (RingArom) are shown as orange vectored spheres,
hydrophobic features (Hbic) are shown as blue spheres, exclusion areas (spheres) are shown as grey spheres.
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and discrete conformational substates.64 These factors warrant
the use of ligand-based methods as adjuvants to complement
information derived from bound ligand poses derived from
crystallographic complexes.

Interestingly, Hypo(6-R2-07) uniquely highlights hydrogen
bonding interaction involving the central pyridine nitrogen of the
bound ligandwith a network of hydrogen-bondedwatermolecules
connected to the carboxylic acid side chain of Asp325 (Fig. 3C).

To evaluate the ability of pharmacophore models in the GFA-
SVR QSAR to effectively and selectively capture active hits, the
three pharmacophores were validated against an external ROC
testing set extracted from ChEMBL database. The results are
shown in Table 3.

Clearly from Table 3, the three pharmacophores exhibit
mediocre performances in discriminating actives from inactive
CLK4 inhibitors, as their receiver operating characteristic areas
under the curves (ROC-AUCs) ranged from 53% to 57%. More-
over, they exhibited moderate goodness of hit (GH) values.59–63

This explains the need for additional descriptors including
LRCFs to achieve satisfactory machine learning models.
Therefore, unsurprisingly, the GFA-SVR model in Table 1
highlights three signicant ligand receptor contacts that
emerged from the exible docking via LibDock-score scoring
function, namely, LEU244HNLD, VAL324HBLD, ASP325HALD
Table 3 Receiver operating characteristic (ROC) information of
ligand-based pharmacophores

Pharmacophore AUC%a ACC%b TNR%c TPR%d GH score

Hypo(5-R2-08) 56% 54% 47% 66% 0.43
Hypo(6-R2-07) 57% 57% 49% 64% 0.39
Hypo(8-R3-08) 53% 50% 44% 62% 0.40

a Area under the curve. b Overall accuracy. c Overall true negative rate
(also known as specicity). d Overall true positive rate (also known as
sensitivity).

Fig. 4 Significant ligand–receptor contacts selected by the GFA-SVR
model, Table 1. Significant contacts are shown as spheres. The image
represents the crystallographic structure of silmisertib bound to CLK4
(PDB code: 6FYV).

© 2022 The Author(s). Published by the Royal Society of Chemistry
shown in Fig. 4. Interestingly, LEU244HNLD corresponds to
hydrogen-bonding interaction connecting potent ligands to
Leu244 (Fig. 4) that is not represented in any of the pharma-
cophores within the best GFA-SVR model (Fig. 3).
3.3 In silico screening of the NCI database for new CLK4
antagonists

The fundamental utility of pharmacophores and associated ML
models is in the discovery of new chemical scaffolds of similar or
Fig. 5 Dose–response curves of hits (A) 96, (B) 107 and (C) 109. The
figures also show the corresponding IC50 values, Hill slopes and
correlation r2 values.

RSC Adv., 2022, 12, 10686–10700 | 10695



Fig. 6 The chemical structures of captured hits (left column) and their mappings against pharmacophores Hypo(5-R2-08), Hypo(8-R3-08) and
Hypo(6-R2-07) (respectively, left to right).

RSC Advances Paper
even better biological proles compared to starting training
compounds, i.e., scaffold hopping. Therefore, pharmacophores
Hypo(5-R2-08), Hypo(8-R3-08) and Hypo(6-R2-07), Fig. 3A–C,
respectively, were employed as 3D search queries to screen the
National Cancer Institute list of compounds (NCI list, 268 667
compounds) for new CLK4 inhibitors. They captured 777, 626,
and 798 hits, respectively. Duplicate hits were removed to yield
1153 unique compounds. These hits were tted against the three
pharmacophores, exibly-docked into CLK4, and their pharma-
cophore t values together with their LRCFs and other relevant
physicochemical descriptors were substituted in GFA-SVR model
in Table 1 to predict the corresponding bioactivities. Hits of
predicted IC50 values # 0.5 mM were retained (92 hits), out of
which only 24 compounds were available from the NCI and were
therefore acquired and tested in vitro against CLK4 at 10 mM.

Bioassay was performed using LanthaScreen Eu kinase assay
kit (Invitrogen, USA). Staurosporine was used as standard CLK4
10696 | RSC Adv., 2022, 12, 10686–10700
inhibitor (positive control, IC50 value ¼ 7.45 nM).46 ESI Table S6†
lists the tested compounds, their descriptors relevant to GFA-SVR
model in Table 1 including t values against Hypo(5-R2-08),
Hypo(8-R3-08) and Hypo(6-R2-07) together with their predicted
bioactivities and experimental anti-CLK4 inhibition at 10 mM.
Hits that illustrated inhibitory percentages exceeding 75% at 10
mM were further evaluated at 1.0, 0.1, 0.01 and 0.001 mM to
determine their IC50 values. Hits 96, 107 and 109 (Table S6 under
ESI†) exceeded 75% CLK4 inhibition at 10 mMwarranting further
evaluation to determine their anti-CLK4 IC50 values.

Fig. 5 shows the dose–response curves of the three hits, while
Fig. 6 shows how the molecules map pharmacophore models
Hypo(5-R2-08), Hypo(8-R3-08) and Hypo(6-R2-07). Interestingly
the three hits illustrated potent anti-CLK4 inhibitory proles
with the best one, hit 96, illustrating IC50 value of 57 nM. The
Hill slopes of the three active hits are #1.0 suggesting they are
authentic (non-promiscuous) inhibitors.56
© 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 and 7 show how active hits t their respective
capturing pharmacophores and how they dock into CLK4,
respectively. Mapping the active hits against three pharmaco-
phores seems to emphasize similar binding interactions,
namely, hydrogen bonding with a network of water molecules
connected to Asp325, hydrophobic interactions with the
aromatic side chain of Phe172 and Phe241, as well as p-stacking
Fig. 7 Docked poses of active hits 96, 107 and 109 as generated by suc

© 2022 The Author(s). Published by the Royal Society of Chemistry
interactions against the peptidic amide connecting Leu244 and
Gly245.

Interestingly, captured hits exhibit signicantly distinct
chemical scaffolds compared to the modelled list of compounds
(1–91, Table S1 under ESI†) and even to all known CLK4
inhibitors, as in Fig. 8 and 9. This conclusion is based on
principal component analysis (PCA) (Fig. 8) showing the relative
cessful flexible docking settings.

RSC Adv., 2022, 12, 10686–10700 | 10697



Fig. 8 Principal component analysis showing the relative distribution
of captured hits (92–115, Table S6;† red spheres ) compared to
modeled compounds (1–91, Table S1;† blue spheres ). The top three
principal components calculated for modeled compounds and
captured hits are based on eight descriptors (i.e., log P, molecular
weight, hydrogen bond donors and acceptors, rotatable bonds,
number of rings, number of aromatic rings, fractional polar surface
area surface area). The active hits 96, 107 and 109 are indicated in the
figure with arrows.

RSC Advances Paper
physicochemical distribution and diversity of captured hits (92–
115, Table S6 under ESI†) compared to the modeled compounds
(1–91, ESI Table S1†), as in Fig. 8, or even to all known CLK4
Fig. 9 Principal component analysis showing the relative distribution
of captured hits (red spheres, ) including active hits (yellow spheres, )
among all reported 3643 CLK4 inhibitors extracted from ChEMBL
database (blue spheres, ). The top three principal components were
calculated based on eight descriptors (i.e., log P, molecular weight,
hydrogen bond donors and acceptors, rotatable bonds, number of
rings, number of aromatic rings, fractional polar surface area surface
area).

10698 | RSC Adv., 2022, 12, 10686–10700
inhibitors within ChEMBL database, as in Fig. 9. In fact hits 96
and 109 represent the rst in class nanomolar CLK4 inhibitors,
as this the rst time to report potent triazine-based CLK4
inhibitors.
4. Conclusions

In conclusion, the combination of pharmacophore modeling
of CLK4-antagonists and LRCFs generated by exible docking
followed by GFA-driven ML-based modeling yielded self-
consistent and predictive SVR-QSAR model. The resulting
pharmacophores were validated by receiver operating char-
acteristic (ROC) curve analysis and used as virtual search
queries to screen the National Cancer Institute (NCI) data-
base for promising CLK4 hits of novel chemo-types. Three
hits (96, 107 and 109) showed nanomolar and low micromolar
IC50 values. The three hits represent novel CLK4 inhibitors
scaffold.
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61 O. F. Güner and D. R. Henry, Pharmacophore perception,

development, and use in drug design, IUL Biotechnology
Series, Metric for analyzing hit lists and pharmacophores, ed.
RSC Adv., 2022, 12, 10686–10700 | 10699



RSC Advances Paper
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