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Abstract
The COVID-19 pandemic has led to unprecedented efforts to identify drugs that can reduce its associated morbidity/mor-
tality rate. Computational chemistry approaches hold the potential for triaging potential candidates far more quickly than 
their experimental counterparts. These methods have been widely used to search for small molecules that can inhibit critical 
proteins involved in the SARS-CoV-2 replication cycle. An important target is the SARS-CoV-2 main protease Mpro, an 
enzyme that cleaves the viral polyproteins into individual proteins required for viral replication and transcription. Unfortu-
nately, standard computational screening methods face difficulties in ranking diverse ligands to a receptor due to disparate 
ligand scaffolds and varying charge states. Here, we describe full density functional quantum mechanical (DFT) simulations 
of Mpro in complex with various ligands to obtain absolute ligand binding energies. Our calculations are enabled by a new 
cloud-native parallel DFT implementation running on computational resources from Amazon Web Services (AWS). The 
results we obtain are promising: the approach is quite capable of scoring a very diverse set of existing drug compounds for 
their affinities to M pro and suggest the DFT approach is potentially more broadly applicable to repurpose screening against 
this target. In addition, each DFT simulation required only ~ 1 h (wall clock time) per ligand. The fast turnaround time raises 
the practical possibility of a broad application of large-scale quantum mechanics in the drug discovery pipeline at stages 
where ligand diversity is essential.
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Introduction

Computational chemistry has made significant progress in 
the past several decades, addressing bottlenecks in the drug 
discovery process. The improvement is particularly visible 
in the ligand triage step during the initial virtual screening 
phases (e.g., via molecular docking). The increased use of 
computational chemistry techniques is also seen in binary 
decision making near the end of a drug discovery project 
when the molecular scaffold has been established, and one 
seeks only to compare congeneric compounds (e.g., via 
free energy calculations). However, there is a significant 
computational gap in the middle of the discovery process, 
where more diverse compounds are encountered. There is 
an urgent need for computational approaches that can rank 

order dozens, or hundreds, of unrelated compounds, with 
sufficiently high accuracy [1].

The technical requirements of such an approach are that it 
should be able to (1) score ligands with diverse scaffolds; (2) 
deal with variances in formal charge and polarization; (3) be 
applicable to realistic models of ligand/protein interactions; 
and (4) perform these calculations sufficiently quickly to be 
compatible with modern drug discovery—all while retaining 
good accuracy. Existing, widely-used methods, such as those 
based on free energy perturbation and classical force fields 
[2, 3], usually satisfy criteria 3–4 but fail 1–2. In principle, 
high-level quantum mechanical calculations, at the level 
of modern density functional theory (DFT), can address 
both 1–2, but, until recently, could not be performed on 
large enough systems with sufficient throughput to address 
points 3–4 [4, 5]. In a recent publication [6], we described 
an implementation of a new algorithm for quantum calcu-
lations (“high-efficiency distributed QM” (hedQM)). This 
implementation allows quantum determinations at the DFT 
level to be performed with reasonable throughput (~ 1 h) on 
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systems much larger than ever before possible—for exam-
ple, full proteins—enabled by easily accessible commercial 
cloud compute resources, such as those offered by Amazon 
Web Services (AWS).

Here, we apply this method to a data set germane to 
identifying new drugs that might help battle the COVID-
19 virus. The dataset originates from a recent publication 
[7], and we briefly describe its construction here. A set of 
more than 2500 drug molecules previously reported for 
various applications were subjected to a computational 
screen against Mpro, the SARS-CoV-2 main protease [8]. 
This enzyme cleaves viral polyproteins into individual pro-
teins required for viral replications and transcription, and 
it is hypothesized that inhibiting this protein would inhibit 
replication of the COVID-19 virus [9]. From this computa-
tional screen, 100 molecules were identified as having the 
potential to bind to Mpro using a combination of molecular 
docking and absolute binding free energy calculations. Sub-
sequently, this set of ligands was screened experimentally, 
leading to a set of 16 molecules with measurable binding 
to the Mpro receptor. With experimentally determined bind-
ing affinity values for Mpro, this set of ligands serves as the 
validation set for this study. The chemical structures of these 
drug molecules (except for a covalent ligand, disulfram) are 
shown in Fig. 1.

Two observations can immediately be made about this set 
of molecules. First, they are extremely diverse and reflect a 
highly divergent set of scaffold classes. Second, they also 
reflect a diversity of charge states across the potential iso-
mers. These challenges are precisely those raised in points 
1–2 above. In particular, the diversity of charge states makes 
it an extremely challenging data set to model by standard 
force-fields and associated molecular mechanics methods 
[10]. The multiple scaffold classes render the set difficult or 
impossible to address with relative difference methods like 
FEP, which typically require that the ligands being studied 
be fairly similar to one another [11]. For these reasons, this 
is a data set that has the potential to demonstrate the value 
that a high-level quantum approach—capable of determin-
ing absolute energies of binding—can bring to such an 
investigation.

Methods

The set of 16 drug compounds with experimentally meas-
ured binding to Mpro is taken from a recent study [7], as are 
the experimental ligand binding free energies. One com-
pound (disulfiram) reported in that publication is omitted 
because it is believed to be covalently bound [12]. For the 
remaining 15 compounds, we applied our cloud-native par-
allel hedQM approach to determine the absolute energy of 
binding at the DFT level. We used the revPBE functional 

[13] with the D3(BJ) dispersion correction [14]—as has 
been demonstrated to perform well for calculating non-
covalent interactions [15]. The def2-SVP basis [16] was used 
within a 9.1 Ǻ sphere around the ligand within the bind-
ing site, while a minimal basis (MINAO) [17] was used for 
atoms outside this sphere. Details of the DFT calculations 
are provided in the supplemental information.

Since experimental structures of the bound ligand/protein 
complexes were not available, it was necessary to gener-
ate them using structure-based docking. A crystallographic 
structure of the Mpro protein (Mpro- x 3080) was obtained 
from the Diamond Light Source (UK) synchrotron facility’s 
Fragalysis web application [18]. This crystal structure of 
Mpro was determined as part of the COVID Moonshot pro-
ject [19]. AutoDock Bias method [20] was then used for 
docking. The Mpro protein structure consists of a domain 
including the binding site and a second alpha-helical domain 
located far from the binding site. In solution, the protein 
forms a homodimer. To optimize computational cost, we 
truncated the beginning of the unstructured N-terminal 
region (SER1 to LYS5) and the alpha-helical domain (resi-
due ASP197 to THR304). The new terminal residues (MET6 
and THR196) were capped with ACE and NME terminal 
groups, respectively. The protein structure is shown in Fig. 2. 
The truncated protein, which retains the active site, contains 
2900 atoms. The atoms shown in grey are those truncated 
for the calculations.

For each ligand, we included several isomers reason-
able for physiological pH, and each isomer was processed 
independently during the docking process. Next, all poses 
for the same parent molecule were aggregated for the sub-
sequent scoring process. A total of 100 docked complexes 
were generated for each ligand. To rank the docked poses, 
we first evaluated the total energies of the docked structures 
at the molecular mechanics (MM) level. Then we selected 
the top-50 docked poses and tightly minimized the structures 
using molecular mechanics (see supplemental information). 
From the resulting set of 50 MM-minimized docked struc-
tures, the ten lowest energy ligand/protein poses were further 
optimized using the semi-empirical GFN1-xTB method with 
Generalized Born/solvent accessible surface area (GBSA) 
implicit solvent [21]. The two lowest-energy GFN1-xTB 
ligand/protein poses for each ligand were then selected 
for full DFT calculations with the C-PCM implicit solvent 
model [22]. The post-docking classical mechanics calcula-
tions were carried out using AmberTools20 [23], using the 
Generalized Born implicit solvent model [24] (igb = 5), the 
Amber 14 force field [25] for the protein, and the GAFF 
force field [26] for ligands assigned using Antechamber from 
AmberTools.

To determine the lowest energy conformation of the 
unbound ligand, we used a combination of conformers gen-
erated from the classical mechanics search method RDKit 
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[28] and the semi-empirical conformational search protocol 
in CREST [29]. From the set of resultant conformers, the 
energies of the ten lowest energy structures were recalcu-
lated using DFT using the C-PCM implicit solvent model 
[22].

The net energy of binding is determined from the 
relationship:

where E (P·L) is the energy of the complex, E(Pcomplex) is 
the energy of the protein alone, in the same conformation as 
the complex, and E(Lmin) is the minimum energy of unbound 
ligand conformer, determined using the search approach 
described above. To reflect conformational sampling, we 
used Boltzmann averaging for the binding energies of the 

(1)
ΔE (P + L → P ⋅ L) = E(P ⋅ L) − E

(

Pcomplex

)

−E
(

Lmin

)

Fig. 1   Drug molecules examined in this study. Each has been experimentally determined [7] to bind with measurable affinity to SARS-CoV-2 
Mpro. For each ligand, several isomers were considered, leading to a range of charge states
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two most favorable docked poses for each ligand isomer. To 
calculate the ranking score, we performed linear averaging 
for the Boltzmann-averaged binding energies of all isomers 
for each ligand (this avoids difficulties in reweighting ener-
gies of isomers with different numbers of atoms).

Results

The net binding energies calculated using full DFT are pre-
sented in Fig. 3. We use this as a ranking score and plot it 
against the experimental binding free energies in a correla-
tion plot. For comparison, the same plot is presented for the 
semi-empirical GFN1-xTB quantum method in Fig. 4, and 
for MM/GBSA in Figure S1.

As can be seen, the correlation obtained using DFT cal-
culations of the Mpro binding domain is significant, with an 
R2 value of 0.58 and a Predictive Index [30] (a weighted 

Fig. 2   Mpro protein with a ligand (dipyridamole) bound to its active 
site. The region in gray was excluded from all calculations. The 
ligand is shown in a  licorice representation (image generated using 
PyMOL [27])

Fig. 3   Binding energies pre-
dicted using DFT. The trend 
line is calculated excluding the 
outlier indinavir. The overall R2 
value for all points (including 
indinavir) is 0.58. The R2 value 
excluding indinavir is 0.75. The 
Predictive Indices with and 
without indinavir are 0.71 and 
0.86, respectively

Fig. 4   Binding energies pre-
dicted using GFN1-xTB. The 
plotted trend line is calculated 
excluding the outlier indinavir. 
The overall R2 value for all 
points (including indinavir) is 
0.09. The R2 value excluding 
indinavir is 0.13. The Predic-
tive Indices with and without 
indinavir are 0.22 and 0.26, 
respectively
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measure of the ability of a predictor to properly rank order) 
of 0.71. Only one poorly-binding ligand (indinavir) falls 
far off the correlation line for reasons that are not clear. It 
is particularly satisfying to observe that DFT very clearly 
differentiates the two ligands that bind best experimentally 
(dipyridamole and candesartan cilexetil) from the remain-
ing ligands. Looking at correlation just among the weaker 
binders, by removing dipyridamole and candesartan cilexetil 
(and the outlier indinavir) from the set, retains an R2 of 0.54. 
In contrast, the simpler semi-empirical QM approximation 
fails to capture the correlation for this ligand set, with an R2 
of 0.09 and a Predictive Index of 0.22. MM/GBSA showed 
better performance than GFN1-xTB, but appreciably worse 
than DFT, with an R2 of 0.30 and a Predictive Index of 0.61.

Evaluation of the DFT results using ROC analysis [31] 
further corroborates this analysis. If we take the best half of 
the binders (top 7) and designate them as the “hits” (equiva-
lent to designating all binders that bind better than 800 nM 
as hits), we get the curves shown in Fig. 5. The area under 
the curve for DFT is 0.89, reflecting an excellent ability to 
differentiate the better binders from the remaining ligands 
in this set.

In addition to the QM-based approaches we have applied, 
the publication that identified this data set [7] described the 
application of a classical mechanics FEP-based approach to 
the determination of absolute binding free energies for this 
set. They obtained some signal with their approach, with 
an R2 of 0.29 and a Predictive Index of 0.57, although the 
results we obtained with DFT significantly improve on this 
(0.58 and 0.71, respectively). Given the diversity in formal 
charges among the ligands, which is better addressed with 
QM, this is not entirely surprising.

To further understand the origins of the differing pre-
dictions using semi-empirical GFN1-xTB and full DFT, 

in Fig. 6, we plot the binding energies computed using the 
two methods against each other. We color code the ligands 
by their charges, and we plot the energies of the differ-
ent isomers considered for each ligand separately (as they 
may have different charges). Points in the plot are colored 
black for neutral, orange for positively charged, and green 
for negatively charged. As can be seen from the plot, the 
correlation between the semi-empirical and DFT ranking 
scores is acceptable when limited to positively charged 
ligands (R2 = 0.74), but is considerably poorer for neutral 
(R2 = 0.38) or negatively (R2 = 0.40) charged ligands. Com-
pared to our previous study of the Mcl-1 system where all 
ligands bore the same net charge [6], the poor performance 
of GFN1-xTB is most likely due to the inherent limitation 
of this semi-empirical method for handling a set of mixed 
ligands of various net charges. Charged systems, especially 
anions, are more challenging for semi-empirical methods 
because the corresponding wavefunctions and charge densi-
ties are parametrized by minimal atomic bases that cannot 
fully respond to large polarization effects.

As noted earlier, comparing multiple ligands with varying 
net charges is well-known to be challenging in comparative 
analysis. It is thus reassuring to observe that the charge of 
the ligand does not bias the DFT-based binding affinity pre-
dictions. This is, of course, a fundamental advantage of QM 
when compared to force-fields, and of full DFT calculations 
that use realistic bases when compared to semi-empirical 
quantum approximations. The predictive power of DFT on 
this set is particularly noteworthy because of the uncertain-
ties associated with the conformations for both the bound 
ligand/complex and the unbound ligand and because the 
energy determinations are single-point energies, effectively 
at 0º K with no entropic contribution.

Fig. 5   The computed ROC curves for the GFN1-xTB and DFT data are shown here, with seven ligands that experimentally best bind 
(Ki < 800 nM) designated as true positives. The AUC for GFN1-xTB (left) is 0.77, while the AUC for DFT (right) is 0.89
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Given the agreement between prediction and experi-
ment for this dataset, we can analyse the predicted binding 
poses for the ligands to gain insights into the importance 
of protein residues that line the binding site. Looking at 
all the predicted bound ligand poses (including multiple 
poses in the case where multiple isomers/protomers were 
used for a particular ligand), we enumerated the propensity 
to make hydrogen bonds with residues of the protein. This 
leads to a simplistic pharmacophore map that may help 
identify critical interactions that should be maintained in 
a discovery campaign. Figure 7 presents the results of this 

analysis. For simplicity, we have chosen to only present 
data for the five protein residues observed to have the high-
est probability of interacting with the ligands included in 
this study (all ligands in the binding site were included 
in the analysis). These residues are GLU166, ASN142, 
GLN189, SER46, and GLY143. In some cases (e.g., 
atazanavir), the pharmacophore residues can form multi-
ple hydrogen bonds with the ligands via side-chain and/or 
backbone hydrogen bond donors/acceptors (Fig. 7 right). 
Also, the strength of hydrogen bonds and the presence of 
other factors (e.g., hydrophobic effects) means the number 

Fig. 6   A comparison of the 
scores calculated using the 
semi-empirical approach 
(GFN1-xTB) and DFT. Many of 
the 15 ligands are represented 
by multiple data points, cor-
responding to multiple isomers 
of that ligand. Black: neutral 
ligand isomers. Orange: posi-
tively charged ligand isomers. 
Green: negatively charged 
ligand isomers

Fig. 7   (Left) The number of hydrogen bonds between a ligand and 
various Mpro residues that line the binding site. Only the five resi-
dues found most likely to form hydrogen bonds with the ligands 
are shown. Each number represents the average number of hydro-
gen bonds formed between a ligand-residue pair. The averaging was 
done first by averaging over different binding poses of the same iso-
mer weighted by a Boltzmann factor, exp

(

−Ei∕(RT)
)

∕Z , where Ei is 

the DFT binding affinity, T is the temperature (298 K), R is the gas 
constant, and Z is 

∑2

i=1
exp(−Ei∕(RT)) . Then, a linear averaging was 

calculated over different isomers of the same ligand. The number of 
hydrogen bonds for each residue averaged over all ligands is shown 
in the bottom row (“mean”). (Right) A snapshot showing hydrogen 
bonds (h1 and h2) formed between atazanavir and geometry-opti-
mized Mpro
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of hydrogen bonds alone is not a good indicator of binding 
affinity, as shown in Fig. 7 (left). For example, oxytetracy-
cline makes the largest number of hydrogen bonds, but it 
is one of the weaker binders as determined experimentally 
(and as predicted).

Discussion

We have demonstrated that high-level quantum mechanics 
(density functional theory with dispersion corrections, using 
a realistic basis) can be successfully applied to rank order a 
scaffold-diverse set of ligands to a realistic protein receptor 
model—focusing on a set of existing drugs that are known to 
bind to the COVID-19 relevant protein Mpro. The full density 
functional treatment provides results that are substantially 
better than those obtained using a semi-empirical quantum 
approximation (which show almost no correlation for this 
dataset). Despite a quantum mechanical domain of nearly 
3000 atoms, these calculations were carried out with real-
istic turnaround times and modest, accessible cloud-based 
computational resources using our recently described paral-
lel implementation of DFT quantum mechanics. Each ligand 
isomer calculation required ~ 1 h in wall clock time with 14 
AWS r5.24xlarge instances, with a compute cost of less than 
$90 (On-Demand instances) or $15 (Spot Instances).

It is worth noting that the first-principle physics-based 
nature of quantum mechanical calculations means that no 
target-dependent parameter fitting is required when applying 
this method to a specific molecular system. Methods that 
can be applied to a diverse ligand set like the one we have 
evaluated herein often incorporate system-specific learning 
or fitting. In such a case, the possibility of overfitting for 
a moderately-sized data set can be called into question. In 
contrast, the QM approach we have used is entirely prospec-
tive and the non-QM elements of the workflow (ligand con-
former generation and molecular docking) have been applied 
agnostically and identically for all the ligands.

The focus of this study is a diverse set of experimentally 
determined binders to Mpro that appeared in the literature in 
the early stages of COVID-19-related research. While these 
experimental measurements were performed in a single lab, 
and are therefore expected to be consistent and useful for 
validation of scoring approaches, experimental determina-
tions of their bound conformations have not been reported. 
Our work, therefore, incorporates both molecular docking 
for bound pose generation, and an assumption that these 
ligands all bind to the same site on the Mpro protein. We have 
striven to be systematic in how we applied both docking and 
QM-based scoring to avoid bias. The clear signal we obtain 
suggests our methods and assumptions are good ones, but 
the unresolved uncertainty in how/where these drugs actu-
ally bind means that the correlation we obtained may well 

be a lower bound on how well this approach could do in a 
case where the binding conformations were experimentally 
validated.

In light of the performance, scope of applicability, and 
throughput we have detailed, one could envision running 
a fully quantum-based screening campaign on hundreds, 
or even thousands, of compounds, with diverse scaffolds, 
charges, and chemical structures—an endeavour that would 
be extremely difficult or impossible using current meth-
ods based on force-fields. The flexibility of the quantum 
mechanical approach thus offers potentially new ways to 
use computation to advance drug discovery.

The idea that QM can be applied to drug discovery is not 
a new one. But earlier efforts have had to make a variety 
of compromises, e.g., via semi-empirical energy functions, 
fragment or linear-scaling approximations that introduce 
substantial cutoffs [32] or else have restricted QM to a small 
nucleus in QM/MM treatments [5]. In addition, the observed 
turnaround time using these approaches has typically been 
unrealistically long, on the timescale of days or weeks. 
These compromises have been an obstacle to realizing the 
predictive potential of QM in the context of drug discovery. 
For example, we see that semi-empirical parameterizations, 
even in their modern incarnations such as GFN1-xTB, lead 
to substantial errors in evaluating interactions such as charge 
transfer that are required to suitably assess diverse ligands. 
Similarly, QM/MM or fragmentation methods introduce 
errors caused by artificial boundaries and inaccurate treat-
ment of long-range charge polarization [32–34]. What we 
have now demonstrated is that it is practical to treat a sub-
stantial region of a ligand/protein system – several thousand 
atoms—with full DFT. This can be accomplished without 
introducing compromises and on a realistic computational 
timescale, a significant practical advance over previous 
applications of QM to drug discovery.

It is also important to note that although the DFT calcula-
tions described herein performed quite well, these calcula-
tions only predict the enthalpy of binding at 0º K. Entropic 
contributions, including desolvation of the binding pocket, 
as well as the entropic changes arising from conformational 
variability of the ligand and protein, have not been included. 
The quality of results for this set suggests that these contri-
butions may be of minor importance for this protein target 
and ligand set. However, looking more broadly, there will 
assuredly be systems where that is not the case. To address 
these issues, we are currently working on integrating cor-
rections to the approach we have used to account for the 
desolvation entropy and the entropic contributions of the 
ligand and protein. We will report on these improvements 
in a future publication.
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