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First-principles calculations of multi-component alloys have been studied in detail. Herein, the first-principles 
calculations of Mg-5Zn-0.5Al-xSn alloys were performed by using the virtual crystal approximation (VCA) 
method. By calculating the lattice constants and elastic constants of the Mg-5Zn-0.5Al-xSn doping models, it 
was found that the mechanical properties and micro-hardness were related with the content of Sn. With the 
increase of Sn content, and the best ductility and the smallest micro-hardness were achieved at Sn = 2 wt.%. 
To verify the calculation results, the Mg-5Zn-0.5Al-xSn alloys were prepared and micro-hardness and tensile 
tests were conducted. The experiments demonstrate that the trends in mechanical properties obtained from the 
experiments are in agreement with the VCA computational results. These findings indicate that the VCA method 
has guiding significance in industries for rapid screening of high-performance Mg alloys.
1. Introduction

As “the green engineering materials in the 21st century” [1], Mg al-
loys have many advantages, such as rich reserves, light weight and high 
strength [2, 3], but the comprehensive mechanical properties of pure 
Mg are poor [4, 5]. At present, alloying is usually used to improve the 
mechanical properties of Mg alloys, and common alloy elements include 
Zn, Al, Sn, Ca, Mn, etc [4, 6]. Among them, Zn and Al have good solid 
solution strengthening effect on Mg alloys [7], and Sn can effectively 
improve ductility when used with Al and improve the compressive 
strength of the alloys [8], therefore Mg-Zn-Al-Sn alloy has become a 
hot research topic [9, 10].

At present, the research on Mg-Zn-Al-Sn alloy mostly adopts the tra-
ditional trial and error research based on experience [9, 10, 11, 12], 
Zhou et al. [11] studied the tensile properties of Mg-6Zn-4Al-xSn al-
loys through experiments, and Ding et al. [12] studied the corrosion 
behavior of Mg-5Zn-4Al-xSn alloys through experiments. However, the 
traditional experimental method is time-consuming and laborious to 
study the Mg-Zn-Al-Sn alloys. Therefore, the first-principles calculation 
is considered to guide the experimental design, so as to quickly analyze 
the influence of the content of Sn on the mechanical properties of the 
alloy.

However, a multi-component system has a large volume, and its su-
percell model is difficult to converge when first-principles calculations 
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are employed. The virtual crystal approximation (VCA) is a computa-
tional method for calculating mixed systems in first-principles calcula-
tions, which is an effective method to study the effect of micro change of 
components on properties [13, 14]. For the properties of Mg alloys, Cui 
et al. [15] used the VCA method to study binary Mg alloys Mg1-xZnx, 
and the calculated results are in good agreement with those of other 
experimental works. Al Hagan et al. [16] calculated Zn1-xMgxSe using 
VCA, and the calculated elastic constants are consistent with the ex-
periments. However, VCA method have not been used in Mg-Zn-Al-Sn 
alloys yet.

Herein, the VCA method based on first-principles calculations was 
used for Mg-5Zn-0.5Al-xSn. The effect of Sn addition on the mechanical 
properties of the alloy was studied by constructing models of Mg al-
loys with different contents of Sn. Micro-hardness and tensile tests were 
conducted on the prepared samples to verify the calculation results and 
evaluate the reliability and guiding significance of first-principles calcu-
lations in the estimation of mechanical properties of multi-component 
Mg alloy.

2. Materials and methods

The first-principles calculations were based on the density func-
tional theory (DFT) with the plane-wave cutoff energy of 540 eV and 
24 × 24 × 24 Monkhorst–Pack k-point grid. Ultra-soft pseudo potentials 
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Fig. 1. VCA model crystal structure diagram.

(USPPs) were used to represent the interactions between ionic cores 
and valence electrons. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
method was employed to optimize the crystal structure until the total 
energy changes converged to 5.0 × 10−7 eV/atom. For the exchange-
correlation energy calculations, Generalized gradient approximation 
(GGA) was used with Perdew, Burke, and Ernzerh of approach. The 
VCA method was used to approximate the doping of Mg-5Zn-0.5Al-xSn 
alloys. The total pseudopotential was calculated as the different ele-
ments of Mg alloys in proportion. The VCA model was constructed as a 
Hexagonal Close Packed (HCP) structure, as shown in the Fig. 1.

As Mg has a hexagonal close-packed structure (HCP), the lattice con-
stant is 𝑎 = 𝑏; and when 𝑐∕𝑎 = 1.633, the crystal has the closest stacking 
structure [17, 18]. Therefore, in this paper, 𝑎, 𝑐 and 𝑐∕𝑎 were mainly 
studied.

According to Hooke’s law, the elastic stiffness constant, 𝐶𝑖𝑗 (GPa) 
and elastic compliance constant 𝑆𝑖𝑗 (GPa−1), as Eq. (1), (2).

𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗 , 𝑖, 𝑗 = 1,2,3,4,5,6 (1)

𝜀𝑖 = 𝑆𝑖𝑗𝜎𝑗 , 𝑖, 𝑗 = 1,2,3,4,5,6 (2)

where 𝜎𝑖 is the stress and 𝜀𝑖 is the strain.
The hexagonal crystal system has five independent elastic stiffness 

tensors, namely, 𝐶11, 𝐶33, C44, 𝐶12 and 𝐶13. According to the symme-
try proposed by Voigt [19], other elastic stiffnesses are calculated as 
Eq. (3).

𝐶21 = 𝐶12, 𝐶31 = 𝐶13 = 𝐶32, 𝐶22 = 𝐶11, 𝐶55 = 𝐶44, 𝐶66 =
1
2
(𝐶11 −𝐶12) (3)

For the hexagonal crystal system, the system stability needs to meet 
the following conditions [20]:

𝐶44 > 0, 𝐶11 > |𝐶12|, 𝐶2 = (𝐶11 + 2𝐶12)𝐶33 − 2𝐶2
13 > 0 (4)

The bulk modulus, 𝐾𝑉 , and shear modulus, 𝐺𝑉 , were calculated 
using Voigt model [19], as follows:
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The bulk modulus, 𝐾𝑅, and shear modulus, 𝐺𝑅, were calculated us-
ing the elastic compliance constant, 𝑆𝑖𝑗 , as per the Reuss model [21], 
as follows:

𝐾𝑅 =
[(
𝑆11 + 𝑆22 + 𝑆33

)
+ 2

(
𝑆12 +𝑆23 +𝑆31

)]−1
= 𝐶2 (7)
𝐶11 +𝐶22 + 2𝐶33 − 4𝐶13
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The bulk modulus, 𝐾𝐻 , shear modulus, 𝐺𝐻 , Young’s modulus, 𝐸, 
and Poisson’s ratio, 𝜐 were calculated using the Hill model [22], as 
follows:

𝐾𝐻 = 1
2
(
𝐾𝑉 +𝐾𝑅

)
(9)

𝐺𝐻 = 1
2
(
𝐺𝑉 +𝐺𝑅

)
(10)

𝐸 =
9𝐾𝐻𝐺𝐻

3𝐾𝐻 +𝐺𝐻

(11)

𝜐 =
3𝐾𝐻 − 2𝐺𝐻

2
(
3𝐾𝐻 +𝐺𝐻

) (12)

The Mg-5Zn-0.5Al-xSn (x = 0, 0.5, 1, 2, 3) alloy ingots were pre-
pared from pure Mg (99.95%), Zn (99.99%), Al (99.95%), Sn (99.95%) 
in a resistance furnace 740∼760 ◦C. The mixed atmosphere of CO2 and 
SF6 (CO2: SF6 = 6:1) was used as protective gas. The preheated Mg 
ingots were added in batches. The power was turned off to start the al-
loying procedure and pure Zn, Al, and Sn were added while the melt 
was stirred to achieve a uniform composition. After refining, the power 
was cut off to allow the system to cool naturally to 740 ◦C. The slag cast-
ing was performed and several Φ 80 mm ingots were obtained. These 
ingots were extruded through an XJ-800t horizontal extruder at the ex-
trusion temperature of 300 ◦C, extrusion ratio of 25:1, and extrusion 
speed of 1 m/min to obtain Φ 16 mm bars.

The composition of alloys was characterized using the inductively 
coupled plasma optical emission spectrometer (ICP-OES, Optima 8300) 
and Scanning Electron Microscope (SEM, Quanta 250 FEG). The micro-
hardness was tested with a microhardness tester (TH 765) with upload-
ing of 50 g and dwell time of 15 s. Each sample was repeated fifteen 
times and average was calculated. The tensile tests of alloys were per-
formed using an electronic universal testing machine (CMT-5105) at the 
strain rate of 10−3⋅s−1 at room temperature. In the tensile tests, each 
sample was repeated three times to ensure accuracy. The samples used 
for tensile tests had the gage length of 25 mm and gage cross-sectional 
diameter of Φ 5 mm.

3. Results and discussion

3.1. First-principles calculation results

The modeling and structure optimization of Mg were conducted, and 
the calculated lattice constants and elastic constants of Mg are listed in 
Table 1.

Comparing the crystal model of Mg developed in this work (see Ta-
ble 1) with the experimental values as Ref. [23, 24], the errors in 𝑎, 𝑐, 
and 𝑐∕𝑎 were all within 0.19%, and compared with the calculation re-
sults as Ref. [15], the errors in 𝑎, 𝑐, and 𝑐∕𝑎 were all within 0.95%, indi-
cating that the calculation result is relatively accurate. Comparing with 
the experimental values of Ref. [25], the errors of this work in 𝐶11, 𝐶33, 
C44, 𝐶12 and 𝐶13 were 5.54%, 0.01%, 1.88%, 14.90%, and 1.28%, re-
spectively, while Ref. [26] reported respective values as 8.63%, 0.68%, 
8.58%, 15.65%, 1.38%, respectively, indicating the calculated results of 
this work are more consistent with the experimental results. Therefore, 
the optimized Mg model demonstrates that the parameters, methods, 
and results used in the calculations were reliable, and the model can be 
used to develop the VCA model.

The VCA method was used to construct the doping models of Mg-
5Zn-0.5Al-xSn (x = 0, 0.25, 0.5, 1, 2, and 3). The structure was opti-
mized, the elastic constants were calculated, and the mechanical prop-
erties of each model were obtained as per Eq. (1)–(12). The results are 
listed in Table 2.
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Table 1. Lattice parameters and elastic constants of Mg.
Reference 𝑎/Å 𝑐/Å 𝑐∕𝑎 𝐶11/GPa 𝐶33/GPa 𝐶44/GPa 𝐶12/GPa 𝐶13/GPa Method
This work 3.198 5.19 1.623 66.995 66.442 18.073 22.074 21.977 GGA+PBE
Ref. [23] 3.209 5.211 1.624 - - - - - Experiment at 25 ◦C
Ref. [24] 3.203 5.200 1.624 - - - - - Experiment at 25 ◦C
Ref. [15] 3.210 5.240 1.632 - - - - - Abinit
Ref. [25] - - - 63.48 66.45 18.42 25.94 21.70 Experiment at 0K
Ref. [26] - - - 58 66 20 30 22 GGA+PBE

Table 2. Calculated results of ZAT50.5x.
ZAT50.50 ZAT50.50.25 ZAT50.50.5 ZAT50.51 ZAT50.52 ZAT50.53

𝑎/Å 3.184 3.183 3.184 3.182 3.186 3.186

𝑐/Å 5.207 5.207 5.210 5.203 5.191 5.173
𝑐∕𝑎 1.635 1.636 1.636 1.635 1.630 1.624
𝐶11/GPa 72.167 71.925 68.924 64.938 61.090 66.814
𝐶33/GPa 71.641 72.150 72.219 70.933 71.862 75.859
𝐶44/GPa 17.633 17.450 15.956 14.571 18.239 19.180
𝐶12/GPa 22.404 23.497 26.745 31.587 37.155 33.768
𝐶13/GPa 20.761 20.278 19.703 21.127 21.581 22.683
𝐾𝑉 /GPa 38.314 38.234 38.041 38.721 39.408 40.862
𝐺𝑉 /GPa 22.233 21.953 20.195 17.628 17.271 19.667
𝐾𝑅/GPa 38.312 38.221 38.022 38.692 39.376 40.856
𝐺𝑅/GPa 21.545 21.272 19.425 16.880 15.855 19.050
𝐾𝐻/GPa 38.313 38.228 38.031 38.706 39.392 40.859
𝐺𝐻/GPa 21.889 21.612 19.810 17.254 16.563 19.359
𝐸/GPa 55.162 54.556 50.638 45.066 43.581 50.155
𝜐 0.260 0.262 0.278 0.306 0.316 0.295
𝐾𝐻∕𝐺𝐻 1.750 1.769 1.920 2.243 2.378 2.111
𝐺3

𝐻
∕𝐾2

𝐻
7.145 6.908 5.375 3.428 2.928 4.345

Table 3. Chemical composition of Mg-5Zn-0.5Al-xSn alloys (wt.%).
Alloy Zn (wt.%) Al (wt.%) Sn (wt.%) Mg (wt.%)
Mg-5Zn-0.5Al-0Sn(ZAT50.50) 5.41 0.53 0.00 Bal.
Mg-5Zn-0.5Al-0.5Sn (ZAT50.50.5) 5.00 0.51 0.51 Bal.
Mg-5Zn-0.5Al-1Sn (ZAT50.51) 4.99 0.50 1.01 Bal.
Mg-5Zn-0.5Al-2Sn (ZAT50.52) 4.98 0.50 2.05 Bal.
Mg-5Zn-0.5Al-3Sn (ZAT50.53) 4.99 0.50 3.03 Bal.
All the elastic constants of doping models satisfy Eq. (4), 𝐶44 >

0, 𝐶11 > |𝐶12|, 𝐶2 = (𝐶11 + 2𝐶12)𝐶33 − 2𝐶2
13 > 0, (see Table 2), implying 

that the doping models had good mechanical stability. Since the 𝑐∕𝑎 of 
the ideal HCP crystal is (8∕3)1∕2 ≈ 1.633, the closer the 𝑐∕𝑎 is to 1.633, 
the tighter the structure [17, 18]. With the rise in Sn, the 𝑐∕𝑎 tended 
to decrease and the difference with 1.633 tended to increase, indicat-
ing that the tightness of the doping models decreased gradually. With 
the increase in Sn, 𝐸 first decreased and reached the minimum at Sn 
= 2 wt.%. As 𝐾𝐻∕𝐺𝐻 is a common parameter reflecting the brittleness 
and ductility of materials, when 𝐾𝐻∕𝐺𝐻 > 1.75, the materials displayed 
ductility, otherwise displayed brittleness [27, 28]. In this work, 𝜐 and 
𝐾𝐻∕𝐺𝐻 increased with the rise in Sn, and 𝐾𝐻∕𝐺𝐻 > 1.75, signifying 
that the Mg alloys displayed ductility. With the increase in Sn, ductil-
ity enhanced and reached the maximum at Sn = 2 wt.%. Therefore, 
with the increase in Sn, the comprehensive mechanical properties of 
Mg-5Zn-0.5Al-xSn gradually improved and became optimal at Sn = 2 
wt.%. As reported by Chen [3], micro-hardness is 𝐻𝑉 ∝ 𝐺3∕𝐾2; with 
the increase in Sn content, 𝐻𝑉 decreased first and then increased. 
The micro-hardness was the lowest at Sn = 2 wt.%. As per VCA, the 
comprehensive mechanical properties of Mg-5Zn-0.5Al-xSn gradually 
enhanced with the rise in Sn content and reached the best at Sn = 2 
wt.%. Therefore, the calculation shows that the content of Sn is related 
to the mechanical properties of Mg-Zn-Al-Sn alloy, and the research of 
Ref. [29, 30] also proves this.

3.2. Experimental results

In order to further explain the influence of Sn content on the micro-
hardness and mechanical properties of Mg alloys, Mg-5Zn-0.5Al-xSn are 
prepared to verify. Table 3 displays that the composition of the designed 
3

alloys was consistent with the actual composition of the alloys after 
smelting, indicating that the amount of burning loss was small and the 
prepared alloys can validate the impact of Sn on the mechanical prop-
erties of Mg-5Zn-0.5Al-xSn (x = 0, 0.5, 1, 2, and 3) alloys.

Fig. 2(a) presents the SEM-EDS result of Mg-5Zn-0.5Al-0Sn. The fig-
ure shows the solid solution state of the material as a whole, and the 
composition contained all the four elements, namely Mg, Zn, Al, and Sn. 
Therefore, the mechanical properties were tested excluding the effect of 
precipitated phases. Fig. 2(b) displays the micro-hardness test results, 
and the results illustrate that the overall micro-hardness decreased and 
then increased, with the lowest micro-hardness of 67.07 HV at Sn = 2 
wt.%. The stress-strain tensile curve is shown in Fig. 2(c). To quantify 
the experimental results, the specific experimental data is presented in 
Fig. 2(d).

As per Fig. 2(d), with the increase in Sn, the ultimate tensile strength 
(UTS), yield strength (YS), and elongation (EL) demonstrated an upward 
trend. As per the above results, the comprehensive properties were the 
best with UTS = 287.91 MPa, YS = 183.13 MPa, and EL = 21.07% at Sn 
= 2 wt.%. Comparing the calculation results of VCA and the experimen-
tal results of micro-hardness, UTS, YS, and EL were consistent with the 
simulation results, signifying that the VCA method can guide the design 
of multi-component Mg alloys.

4. Conclusion

VCA calculation was applied to calculate the trend in mechanical 
properties of Mg-5Zn-0.5Al-xSn alloys. Mg-5Zn-0.5Al-xSn alloys were 
prepared to validate the simulation results. The calculated results of 
VCA were consistent with the experimental results. Micro-hardness of 
Mg-5Zn-0.5Al-xSn alloys decreased first and then increased as the ad-
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Fig. 2. Experimental results of ZAT50.5x alloys.
dition of Sn decreased, and reached the minimum as the addition of 
Sn was 2 wt.%. The mechanical properties gradually increased as the 
addition of Sn decreased. Mg-5Zn-0.5Al-xSn alloy showed the best me-
chanical properties when the addition of Sn was 2 wt.%, and UTS, YS, 
EL were, 287.91 MPa, 183.13 MPa, 21.07%, respectively. Therefore, 
the VCA method can be effectively employed for the design of Mg al-
loys, which can aid to achieve a significant reduction in the calculation 
and experimental period.
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