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Simple Summary: Prostate cancer is the most diagnosed cancer among men in the United States.
African American men are diagnosed with and succumb to prostate cancer at higher rates than other
demographic groups. Previously published works described the biological differences in prostate
tumors that may contribute to poorer outcomes in African American men compared to European
American men. This study was designed to explore the DNA lesion profiles found in prostate tissues.
Using tissue microarrays, we found that prostate tumors from African American patients have more
uracil and pyrimidine damage, elevated UNG levels, and reduced XRCC1 levels than European
American tumors, which may indicate defects in the base excision repair pathway. In addition, these
men had higher UMP and lower expression of folate cycle metabolites, suggesting that metabolic
rewiring may also contribute to the dysregulation of base excision repair.

Abstract: African Americans (AA) are two times more likely to be diagnosed with and succumb
to prostate cancer (PCa) compared to European Americans (EA). There is mounting evidence that
biological differences in these tumors contribute to disparities in patient outcomes. Our goal was to
examine the differences in DNA damage in AA and EA prostate tissues. Tissue microarrays with
matched tumor-benign adjacent pairs from 77 AA and EA PCa patients were analyzed for abasic
sites, oxidative lesions, crosslinks, and uracil content using the Repair Assisted Damage Detection
(RADD) assay. Our analysis revealed that AA PCa, overall, have more DNA damage than EA PCa.
Increased uracil and pyrimidine lesions occurred in AA tumors, while EA tumors had more oxidative
lesions. AA PCa have higher levels of UMP and folate cycle metabolites than their EA counterparts.
AA PCa showed higher levels of UNG, the uracil-specific glycosylase, than EA, despite uracil lesions
being retained within the genome. AA patients also had lower levels of the base excision repair
protein XRCC1. These results indicate dysfunction in the base excision repair pathway in AA tumors.
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Further, these findings reveal how metabolic rewiring in AA PCa drives biological disparities and
identifies a targetable axis for cancer therapeutics.

Keywords: prostate cancer; cancer disparities; DNA damage; metabolism

1. Introduction

Prostate cancer (PCa) is the most diagnosed cancer among men in the United States [1].
African American (AA) men are two times more likely to be diagnosed with and succumb to
prostate cancer than European Americans (EA) [1]. AA men often are diagnosed at an earlier
age and present at an advanced grade and stage of disease than their EA counterparts [2].
While many socioeconomic and environmental factors contribute to these disparities, there
is evidence of biological differences in the tumors of AA and EA PCa patients, particularly
in tumor metabolism and genomic instability [3–12]. Our lab previously identified DNA
repair as a top gene signature enriched in AA compared to EA across a pan-cancer gene set
enrichment analysis (GSEA) of TCGA data [13]. We found this signature enriched in 22 out
of 28 cancer gene sets, including PCa [13]. Therefore, this study explored DNA repair and
genomic instability differences between AA and EA PCa patients.

One difficulty in understanding genomic instability is that gene mutations and expres-
sion changes do not directly correlate to changes in DNA repair capacity. Additionally,
tissue is not compatible with functional DNA repair assays. Therefore, to understand the
DNA repair landscape within tumors, a measurement of DNA lesion content is needed to
identify where lesion removal and repair processes have failed. We developed the Repair
Assisted Damage Detection (RADD) assay to measure total DNA damage and identify
specific classes of DNA lesions within tissues [14–18]. RADD harnesses the specificity
of DNA repair enzymes to detect and excise DNA damage then tags those sites with a
fluorescent dye to quantify damage within a single nucleus [14,15,19]. RADD can measure
DNA repair defects or indicate highly functional DNA repair in tissues [15,16]. Measuring
proficiency or deficiency in the DNA repair pathways is a significant enhancement over
gene expression signatures and somatic mutation analysis. Current methods only infer
the impact of mutations or gene expression changes and cannot be correlated with DNA
damage left within the genome. RADD directly measures DNA damage, which can then
be correlated with gene or protein expression changes to more accurately recapitulate
drivers of genomic instability within tumors. We have demonstrated the ability of RADD
to reflect DNA repair defects and examined the relationship between DNA damage levels,
DNA repair protein expression, and DNA repair capacity previously using triple negative
breast cancer cell lines [19,20]. We have also demonstrated that RADD specifically detects
DNA lesions induced by oxidative stress, ultraviolet radiation, and X-ray irradiation across
isolated DNA, cell lines, and tissue models [14,15,17,18].

DNA-damaging chemotherapies are common neoadjuvant and adjuvant therapies for
prostate cancer, and dysregulation of DNA damage response and repair machinery is often
correlated with chemoresistance and poor survival outcomes [21]. Here, we examine DNA
damage and DNA lesion class differences between AA and EA PCa tumors to understand
potential biological determinants responsible for the disparities in PCa outcomes for AA.

2. Materials and Methods
2.1. RADD Analysis

Tissue microarrays (TMAs) were obtained from the Baylor College of Medicine Human
Tissue and Pathology Core. RADD was performed as previously described in [15].

Slides were placed on a heat block set at 65 ◦C and incubated for 8 min to melt the
paraffin. Slides were then placed directly in 100% xylene (Fisher Scientific, Waltham,
MA, USA, X3P) and incubated twice for 10 min each. Slides were rehydrated to water
through sequential incubations in ethanol and water mixtures. Specifically, slides were
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incubated for 5 min each in sequential order of 100% ethanol (VWR, 89125-170)-0% water;
70% ethanol-30% water; 50% ethanol-50% water; 30% ethanol-70% water; 0% ethanol-100%
water. Rehydrated slides were then placed in glass Coplin jars with 200 mL of 10 mM
sodium citrate (VWR, JT3646-1) in water and microwaved twice for 55 sec, with a 25 s rest
between each, at 120 watts until the solution reached 47 ◦C for antigen retrieval. Slides
were cooled with five changes of water. Slides were briefly dried, and the entire block of
tissue cores was outlined with a PAP pen.

For broad-spectrum DNA damage detection (Full RADD), all the enzymes in Table 1,
UDG, FPG, T4PDG, AAG, and EndoIV, were added to the TMA and incubated for 1 h at
37 ◦C. For oxidative lesions only (oxRADD, Table 2), FPG, EndoIV, and EndoVIII were
added to the TMA. For crosslinks (T4PDG, Table 2), T4PDG and EndoVI were only added to
the TMAs. For uracil detection (UDG, Table 2), UDG and EndoIV were added to the TMAs.
The gap-filling solution (Table 1) was added directly to the lesion removal solution and
incubated for 1 h at 37 ◦C. Slides were then washed three times in phosphate-buffered saline
(PBS, Hyclone, Logan, UT, USA, SH30028FS) for 5 min each and blocked in 2% BSA (Jackson
Immuno, West Grove, PA, USA, 001-000-162) in PBS for 30 min at room temperature (RT,
~24 ◦C). Anti-digoxigenin (Dig) antibody (Abcam, Cambridge, UK, #ab420 clone 21H8)
was incubated at a dilution of 1:250 in 2% BSA in PBS at 4 ◦C overnight. For multiplexed
experiments, the antibody for the protein of interest was also incubated with the anti-Dig
primary. Anti-UNG (1:200, Genetex, Irvine, CA, USA, GTX113860) and anti-XRCC1 (1:100,
Abcam, Cambridge, UK, ab134056).

Table 1. RADD reaction conditions. RADD is performed in two sequential reactions without
aspirating reagents between reactions. The lesion processing mix (left) is placed on prepared tissues
and placed in a humidified incubator. The gap-filling mix (right) is added directly to the lesion
processing mix and incubated for an additional hour. The reagents are then aspirated, and the cells
are washed and incubated with anti-digoxigenin antibody.

Full RADD Lesion Processing Mix Per 100 µL Reaction Volume Gap-Filling Mix Per 100 µL Reaction Volume

UDG (NEB M0280) 2.5 U Klenow exo- (Thermo Fisher,
Waltham, MA, USA, EP0422) 1

FPG (NEB M0240) 4 U
Digoxigenin dUTP (Sigma

Aldrich, St. Louis, MO, USA,
11093088910)

0.1

T4 PDG (NEB M0308) 5 U
Thermo Pol Buffer 10 µL(NEB B9004)

EndoIV (NEB M0304) 5 U
AAG (NEB M0313) 5 U

NAD+ (100x, NEB B9007) 500 µM
BSA (Sigma Aldrich, St. Louis, MO, USA) 200 µg/mL

Thermo Pol Buffer 10 µL(NEB B9004)

Table 2. RADD lesion-specific cocktails. For detecting specific lesion classes, the lesion processing
mix is modified with only the specific DNA repair enzymes of interest for that lesion class.

Cocktails Lesion Processing Mix Lesions

oxRADD FPG + EndoIV + EndoVIII

Removes various types of oxidized purines, urea, 5,
6-dihydroxythymine, thymine glycol,

5-hydroxy-5-methylhydanton, 6-hydroxy-5,6-dihydrothymine and
methyltartronylurea, abasic sites, and strand breaks.

T4PDG T4 PDG + EndoIV Removes cyclobutane pyrimidine dimers and 6-4 photoproducts
along with abasic sites.

UDG UDG + EndoIV Removes uracil lesions and abasic sites.

Full RADD AAG + FPG + T4 PDG + UDG + EndoIV
All of the above lesions plus the removal of various alkylated and

oxidative DNA damaged sites, including 3-methyladenine,
7-methylguanine, 1, N6-ethenoadenine, and hypoxanthine.
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The next day slides were washed three times in PBS for 5 min each, and Alexa Fluor 546 goat
anti-mouse secondary (Life technologies, Carlsbad, CA, USA, A11003) was incubated at
a dilution of 1:400 in 2% BSA in PBS for 1 h at RT. If a multiplexed protein marker was
used, Alexa Fluor 647 goat anti-rabbit secondary (Life Technologies, Carlsbad, CA, USA,
A21235) was also incubated at a dilution of 1:400 in 2% BSA in PBS for 1 h at RT. Hoechst
33342 (Life Technologies, Carlsbad, CA, USA, PI62249) was added at a final dilution of
1:1000 for 15 min at RT to stain the nuclei. Slides were washed three times in PBS for 5 min
each, briefly dried, and mounted with coverslips using ProLong Gold Antifade reagent
(Life Technologies, Carlsbad, CA, USA, P36930). Slides were allowed to dry overnight in
the dark at RT and visualized using a Nikon A1R confocal microscope or stored at 4 ◦C
until analysis.

Images were acquired using a Nikon A1r scanning confocal microscope with a Plan-
Apochromat 10x/0.5 objective. Image acquisition settings were obtained for the full RADD
samples. Reference kidney and liver samples on both TMAs were then used to normal-
ize settings for comparison between AA and EA slides (Supplemental Figure S1). This
normalization of the signal allowed the slides to be compared and controls differences in
staining. These imaging conditions were then used for all tissue imaging allowing for direct
comparisons and analysis between tissues on each slide. Each core was imaged at 10x with
1024 × 1024 resolution. Intensity for each core is then recorded for each condition. The
values for replicate cores were averaged when available, and the final mean fluorescent
intensity for each patient’s tumor and benign-adjacent tissue core is reported in arbitrary
units ± standard error of mean (SEM). All cores were verified for tumor or benign adjacent
tissue content using H&E analysis by a prostate pathologist prior to inclusion of the data
analysis. Raw data are available in Supplemental Tables S1 and S2. Representative images
for the patients are also provided in Figure S2.

2.2. Tissue Metabolite Profiling

Metabolic data were examined using a metabolomics dataset that was published by
our group previously [3].

2.3. Statistics

Data were plotted using GraphPad Prism software and analyzed for significance
using Student’s t-test with a Mann–Whitney post-hoc analysis for mean comparisons.
Metabolomics data were analyzed using a Wilcoxon matched pairs signed rank test.

3. Results and Discussion

To examine differences in DNA damage and lesion content in PCa, we used formalin-
fixed, paraffin-embedded (FFPE) tissue microarrays containing 77 matched tumor-benign
adjacent tissue pairs from AA and EA PCa patients with primary localized prostate cancer
and resected at prostatectomy (n = 34 AA, 43 EA). We applied the full RADD assay to
these arrays to measure abasic sites, alkylation and oxidative lesions, pyrimidine crosslinks,
uracils, and strand breaks [15]. The Full RADD cocktail is composed of the bacterial repair
enzymes Uracil DNA glycosylase (UDG), recognizing uracil lesions; Fapy-DNA glyco-
sylase (FPG), oxidative lesions; T4 pyrimidine dimer glycosylase (T4 PDG), pyrimidine
crosslinks; 3-alkyladenine DNA glycosylase (AAG), alkylating lesions; and Endonuclease
IV (Endo IV), abasic sites (Table 1). Once these glycosylase enzymes removed the lesion,
Klenow polymerase without proofreading activity is used to tag the DNA damage sites and
strand breaks with a modified dUTP base for fluorescent detection (see [14,15] for more
details). Each TMA slide featured matched kidney and liver sections from the same patient
(Supplemental Figure S1), which were used to normalize the fluorescent signal between
each slide for analysis. Using this method, AA PCa had significantly more DNA damage
than EA PCa (Figure 1A, and Supplemental Figure S2, p < 0.001, two-tailed t-test).



Cancers 2022, 14, 1012 5 of 11

We then used lesion-specific cocktails to measure only oxidative lesions (oxRADD,
FPG + EndoVIII + EndoIV), crosslinks (T4PDG, T4PDG + EndoIV), or uracils (UDG,
UDG + EndoIV) within the tissue microarrays (Table 2). This lesion class-specific anal-
ysis showed AA tumors have significantly less oxidative lesions than EA tumors (Figure 1B,
p < 0.001, two-tailed t-test). AA PCa also had elevated pyrimidine crosslinks than EA PCa
(Figure 1C, p < 0.0001, two-tailed t-test). Finally, AA tumors also had elevated uracil lesion
content over EA tumors (Figure 1D, p < 0.05, two-tailed t-test). Overall, these data reveal
that AA PCa have a more diverse set of DNA lesions associated with their disease than EA
PCa, which largely have oxidative DNA lesions.
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Figure 1. DNA damage detected by RADD demonstrates biological differences in DNA lesion types
between African American and European American prostate cancer patients. Quantitative graphs
measuring immunofluorescence for (A) Full RADD, (B) oxRADD, (C) T4PDG RADD, and (D) UDG
RADD in AA and EA PCa patients (n = 34 AA and 43 EA PCa patients). Data represented are the
mean ± the standard error of the mean. The Mann–Whitney test was used to calculate statistical
significance between groups. Images for each patient are provided in Supplemental Figure S2.

The uracil lesion content within AA tumors is particularly interesting because the de
novo pyrimidine biosynthesis pathway is a large source of uracil production. Genomic
uracil content can result from an accumulation of dUMP that is not metabolized to de-
oxythymidine monophosphate (dTMP), known as thymidylate stress (Figure 2A) [22,23].
Thymidylate stress is caused by a defective folate cycle that cannot metabolize tetrahydrofo-
late (THF) to 5′,10′-methylene-tetrahydrofolate (MTHF). Metabolites from the homocysteine-
methionine and betaine-dimethyl glycine pathways help convert 5′-methyl-THF to THF
to ensure the progression of the folate cycle (Figure 2A). Dysregulation of homocysteine
metabolism, as well as de novo pyrimidine biosynthesis, can lead to uracil accumulation in
DNA, resulting in DNA aberrations and defects in repair [24].
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We examined a metabolic dataset we published earlier for metabolites in the de novo
pyrimidine biosynthesis pathway to determine if upregulation of uracil production occurs
in AA patients [3]. Glutamine, carbamoyl-L-aspartate, and UMP levels were all significantly
upregulated in AA PCa compared to matched benign adjacent prostate tissue (n = 50 pairs)
(p = 0.0028, 0.0313, and 0.0191, respectively; paired t-test) (Figure 2B). AA men are reported
to have lower folate levels than EA men [25]. We then examined metabolites fueling the
folate cycle in the same published dataset to examine metabolic defects in the progression
of the folate cycle (Figure 2B). Using this metabolomics data, our lab has previously shown
that AA PCa patients have elevated levels of homocysteine [3]. We previously also observed
that betaine-homocysteine methyltransferase (BHMT) protein expression is significantly
lower in AA PCa [3], suggesting an upregulation of betaine that may not be converted to
dimethyl glycine. In this dataset, we also confirmed that betaine levels are significantly
elevated in AA PCa (p = 0.0242, paired t-test) (Figure 2B). These data suggest that the
accumulation of homocysteine and betaine could impede folate cycle progression, leading
to an accumulation of UMP.
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Figure 2. Metabolomics analysis identifies upregulation of metabolites involved in de novo pyrimi-
dine biosynthesis and downregulation of metabolites necessary to drive the folate cycle. (A). Diagram
of the de novo pyrimidine biosynthesis pathway and the folate cycle. (B). Alterations in metabolites
associated with folate cycle and de novo pyrimidine synthesis in AA tumors (n = 50) in a previously
published metabolomics dataset (3). X-axis represents the degree of significance of altered metabolites
in AA tumors vs benign adjacent tissue. Bars extending the right of the red dotted line indicates the
statistical significance of the metabolic alterations (p ≤ 0.05). The Wilcoxon matched pairs signed
rank test was used to calculate statistical significance.
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In humans, Uracil DNA glycosylase (UNG) detects and excises the damaged base,
which signals for downstream repair proteins in the base excision repair (BER) pathway,
such as poly(ADP-ribose) polymerase 1 (PARP1), X-ray cross-complementing 1 (XRCC1),
and DNA polymerase β (Polβ), to be recruited to the damaged site to complete repair [26].
Since we observed differences in oxidative lesions and uracil content in AA patients, both
BER substrates, we examined changes in the expression XRCC1, PARP1, and UNG us-
ing immunofluorescence in our tissue microarrays. XRCC1 expression was significantly
reduced in AA PCa compared to EA PCa (Figure 3A, p < 0.001, two-tailed t-test). Surpris-
ingly, we found that UNG expression was significantly higher in AA PCa than EA PCa,
even as more unrepaired uracil lesions were detected in AA tumors (Figure 3B, p < 0.0001
two-tailed t-test). We observed a 5 ± 1-fold (mean ± SEM) reduction of XRCC1 expression
coupled with a 2.2 ± 0.2-fold increase in UNG expression compared to the benign adjacent
tissue in the AA samples (Supplemental Figure S3). These differences in protein content
contribute to the 1.5 ± 0.2-fold increase in uracil lesions observed in AA over EA tumors.
We also checked for the presence of PARP1, which interacts with and recruits XRCC1 for
BER. PARP1 expression in AA PCa was not significantly different compared to EA PCa
(Figure 3C, p = 0.16 two-tailed t-test).
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Figure 3. African American prostate tumors exhibit lower XRCC1 expression and higher UNG
expression than European American tumors, impairing base excision repair of uracil and pyrimi-
dine damage. Quantitative graphs measuring immunofluorescence for (A) XRCC1, (B) UNG, and
(C) PARP1 in AA and EA PCa patients (n = 34 AA and 43 EA PCa patients). Data represented as the
mean ± the standard error of the mean. The Mann–Whitney test was used to calculate statistical
significance. Images for each patient are provided in Supplemental Figure S1.

The alterations in the BER protein expression result in different lesion fates between
AA and EA PCa patients. EA PCa patients show increased oxidative lesions, while AA PCa
patients show increased uracil lesions. These data demonstrate that nucleotide pool changes
through the alterations in metabolism influence the lesion content of the AA PCa tumors
and the dysregulation of BER through imbalanced UNG and XRCC1 expression. More
importantly, these data demonstrate unique clusters of DNA damage lesions within AA
and EA tumors that differentiate them from their adjacent benign tissues. A multivariate
graph of protein expression of XRCC1 and UNG, along with their full DNA damage profile
and uracil content, highlights the distinct shifts in protein expression and DNA lesion loads
between benign adjacent and tumor tissues for AA and EA patients (Figure 4). Each circle
denotes a PCa patient of AA (Figure 4A,B) or EA (Figure 4C,D) origin. The separation
on the x-y axis denotes the correlation between the expression of XRCC1 and UNG in
these patients, while the circle size and color denote the DNA lesion content for the full
RADD and the UDG RADD, respectively. Compared to the benign adjacent tissues, the
AA tumors show a clear shift to lower XRCC1 expression with their collapse toward the
origin and increased UNG expression (the spread along the X-axis, Figure 4A,B). The AA
tumors also show a corresponding increase in uracil lesions, with higher overall lesion
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content (up to 2.5 × 107) and overall DNA damage (increased symbol size, Figure 4A,B)
compared to the benign adjacent tissues. The EA tumors show more similar clustering
between benign adjacent and tumor tissues with marginal changes in XRCC1, UNG, and
uracil content (Figure 4C,D). This visual representation supports potential future patient
stratification using BER protein expression levels or even DNA damage measurements for
BER targeted therapeutics.
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The symbol color intensity corresponds to the uracil damage content (UDG RADD), while the symbol
size reflects the overall DNA damage content (Full RADD).

The increase in mutagenic DNA lesion content and the resulting genomic instability
may contribute to biological differences associated with PCa disparities. As observed
in Figure 4, several publications have noted imbalances in BER attenuated response to
chemotherapeutics, which has contributed to the aggressiveness of cancers [20,27]. In
particular, overexpression of UNG attenuated response to pemetrexed in lung cancer and
is also considered a negative prognostic marker for survival in melanoma and liver can-
cers [28–30]. Interestingly, we earlier demonstrated that reduced expression of XRCC1
sensitized breast cells to PARP inhibitors, and several groups have shown XRCC1 deficiency
in breast cancer increases response to PARP, WEE1 G2 Checkpoint Kinase (WEE1), ataxia
telangiectasia mutated (ATM), and ataxia telangiectasia and Rad3-related protein (ATR)
inhibitors [20,27,31]. Expression changes in XRCC1 have not been previously examined in
PCa or between racial groups, but more than 30 studies have examined prostate cancer pa-
tients for polymorphisms in XRCC1, particularly R194W, R280H, and R399Q. Unfortunately,
the associations between these SNPs and PCa risk, onset, ancestry, and treatment response
are still poorly understood due to conflicting results [32–36]. Our results demonstrate the
need for further investigation into changes in the expression of XRCC1 and the observed
alterations in DNA repair activity [37–40].
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4. Conclusions

Our study highlights the differences in DNA lesion classes in PCa tumors from AA
and EA patients detected by the RADD assay. The alterations of metabolites in the de novo
pyrimidine biosynthesis pathway and the folate cycle suggests that these pathways con-
tribute to the underlying biological differences in these tumors. The underlying biological
differences between AA and EA tumors also suggest that AA patients should be stratified
by their BER protein content and targeted with therapies that exploit deficiencies in this
pathway, such as PARP inhibitors or emerging UNG inhibitors. Using the RADD assay
in combination with protein and metabolic data, we have obtained critical insight into
the DNA lesion landscape of AA PCa and identified putative therapeutic targets for AA
PCa patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14041012/s1, Figure S1: Normalization of RADD fluorescent
signal between EA and AA kidney and liver samples from a single patient seeded at different
positions within the TMA, Figure S2: Representative patient TMA images for each variable analyzed,
Figure S3: African American prostate cancer tumors exhibit lower XRCC1 expression, impairing base
excision repair of uracil and pyrimidine damage; Table S1: AA Fluorescent Intensities, Table S2: EA
Fluorescent Intensities.
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