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Abstract: Intersection and non-intersection locations are commonly used as spatial units of analysis
for modeling pedestrian crashes. While both location types have been previously studied, comparing
results is difficult given the different data and methods used to identify crash-risk locations. In
this study, a systematic and replicable protocol was developed in GIS (Geographic Information
System) to create a consistent spatial unit of analysis for use in pedestrian crash modelling. Four
publicly accessible datasets were used to identify unique intersection and non-intersection locations:
Roadway intersection points, roadway lanes, legal speed limits, and pedestrian crash records. Two
algorithms were developed and tested using five search radii (ranging from 20 to 100 m) to assess
the protocol reliability. The algorithms, which were designed to identify crash-risk locations at
intersection and non-intersection areas detected 87.2% of the pedestrian crash locations (r: 20 m).
Agreement rates between algorithm results and the crash data were 94.1% for intersection and 98.0%
for non-intersection locations, respectively. The buffer size of 20 m generally showed the highest
performance in the analyses. The present protocol offered an efficient and reliable method to create
spatial analysis units for pedestrian crash modeling. It provided researchers a cost-effective method
to identify unique intersection and non-intersection locations. Additional search radii should be
tested in future studies to refine the capture of crash-risk locations.
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1. Introduction

Promotion of active transportation is an important goal of transportation planning and public
health [1,2]. Since walking trips are more likely to be observed in dense urban areas where motorized
travel is congested [3,4], a safe environment from motorized vehicles is crucial to protecting pedestrians
and promoting walking. Thus, identifying locations where pedestrians are most vulnerable is important
to further promote this environmentally friendly and healthy mode of travel. Given the prevalence of
motor-vehicles, unprotected pedestrians are vulnerable and prone to experience serious injuries when
colliding with motor-vehicles. In 2017, nearly 6000 pedestrians were killed in motor vehicle crashes in
the US [5]. While non-pedestrian fatalities decreased by 14% from 2007 to 2016, pedestrian fatalities
increased at an alarming rate of 27%.

Studies have shown that the likelihood of pedestrian crashes is impacted by the characteristics of
the micro-environment around crash-risk locations (e.g., roadway characteristics and traffic conditions)
as well as the characteristics of the macro-environments (e.g., neighborhood characteristics such as
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development densities and land uses that generate or attract pedestrian travel) [6–11]. More specifically,
past studies have focused on modelling two types of outcomes: The severity of pedestrian injury
and the frequency of pedestrian crashes. While the unit of analysis for injury severity models has
been an individual pedestrian crash [7,12–14], crash frequency models have adopted location-based
approaches. In frequency models, crash locations have been measured as points (e.g., intersection) [6,9],
polylines (e.g., roadway segment) [15,16], polygons (e.g., jurisdictional boundary) [17,18], and grid
cells (e.g., rasterized map) [19,20].

Pedestrian crash-risk locations come as two main types: Intersections and non-intersections [14].
An intersection is defined as the general area where two or more roadways meet [21]. Intersections are
locations where most directional changes in travel take place, and consequently where conflicts between
pedestrians and vehicles are high [9,22]. While intersection-specific engineering safety measures are
used to mitigate these conflicts, intersection design standards often prioritize the operation of vehicles
rather than the safety of walkers [8,23]. A non-intersection is any location within a roadway segment
or along a transportation facility, that is not at an intersection. Past research has shown that factors
(e.g., vehicle type, roadway curves) that impact collisions at intersections do not necessarily impact
crashes at non-intersections [14].

The identification of crash-risk locations at an intersection and non-intersection area is an important
part of modeling pedestrian crashes. However, there are limited definitions, data or methods to
appropriately identify crash-risk locations [24]. Regarding intersections, the definition of what constitutes
an intersection might be similar in the literature [9,22,25–27]. However, the data and methods used to
identify intersections vary across studies. For example, while some studies extracted intersection point
data from nodes on intersecting roadway polylines [7], other studies conducted field investigations to
obtain intersection locations [26,28]. Furthermore, non-intersections have broader definitions that range
from highway sections [15,29] to mid-block, cul-de-sac, curve [6], and even toll plazas [13].

There are also issues associated with the spatial analysis tools used for measuring features
around crash-risk locations [30]. Complex spatial analysis using Geographic Information System (GIS)
and advanced quantitative methods are often needed to measure the outcomes (e.g., the number of
pedestrian crashes) and predictors (e.g., residential density) of pedestrian crash models [6,7]. Buffering
techniques are widely used given the many transportation facilities that include GIS vectors [10]. A
wide range of bandwidths have been used for buffering, but most are within a 100 m radius [6,9,31].

Regardless of buffer size, overlapping areas between buffers of different crash-risk locations
are a major cause of spatial autocorrelation, which impacts the interpretation of pedestrian crash
models [6,25,27]. The statistical models estimated in previous studies have been based on the
assumption that observations were mutually independent [32–34]. However, the statistical requirement
that observations be independent and identically distributed (i.i.d) is often violated because of the
overlapping buffers. Adjacent crash-risk locations are more likely to violate this assumption because
they are more likely to have overlapping buffer areas.

Very few studies have accounted for the spatial autocorrelation in pedestrian safety studies.
Mixed-effects models have been adopted in some studies to reflect contextual characteristics [6,25,27].
Although these models mitigate the effects of spatial autocorrelation by adopting advanced statistical
methods, the source data for spatial analysis units might still involve a problem of autocorrelation
derived from overlapping buffers. A different approach is the use of sampling to identify uncorrelated
crash-risk locations. For instance, a subset of intersections that were considered to be independent
through field investigation can be used in statistical analyses [26,28]. However, this requires extensive
time and effort, and typically yields a small sample size.

The objective of this study was to introduce a systematic and replicable protocol to create
uncorrelated spatial units of analysis for pedestrian crash modeling for intersection and non-intersection
areas. Although the modeling results from previous studies provide valuable insights, measurements
of pedestrian crash-risk locations are often not consistent among research projects, in part due to
differences in collecting and processing the source data [28]. This has led to complications in interpreting
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and comparing model results. A standardized method to identify pedestrian crash-risk locations would
help improve the reliability, accuracy, and validity of locational factors impacting crash risk. With a
clear and replicable unit of analysis for pedestrian crash modeling, researchers and transportation
planners could better understand the factors that influence the pedestrian crashes.

2. Materials and Methods

2.1. Data

2.1.1. Pedestrian Crashes

Pedestrian crash data came from the Transportation Data, GIS and Modeling Office of WSDOT
(Washington State Department of Transportation) and covered the years between 2013 and 2017. The
data included all crashes that had been reported to and recorded by local police or State Highway
Patrol. There were 2222 pedestrian crashes on state routes during the study period, with data
including individual-level information such as time, weather, road condition, and socio-demographic
and behavioral characteristics of both drivers and pedestrians. In the data, crash location came as
milepost on state routes and county roads; and as distance from the closest intersection on city streets.
Crash latitude and longitude were identified by WSDOT using Linear Referencing System (LRS) and
geocoding tools in GIS.

The data included information as to whether the pedestrian crashes occurred at intersections or
non-intersections. The crash data was segmented into nine location types:

• Type 1: At driveway within major intersection;
• Type 2: At intersection and not related;
• Type 3: At intersection and related;
• Type 4: Circulating roundabout;
• Type 5: Exiting roundabout;
• Type 6: At driveway;
• Type 7: Driveway related but not at driveway;
• Type 8: Intersection related but not at intersection;
• Type 9: Not at intersection and not related.

For the forthcoming analysis, this information was re-categorized into 2 groups; intersection
(type 1 to 5), and non-intersection (type 6 to 9). Among 2222 state route pedestrian crashes, 1423
(64%) occurred at an intersection and 799 (36%) occurred at a non-intersection. This information was
used as a reference to test the performance of the algorithm for detecting unique intersection and
non-intersection locations.

2.1.2. Roadway Lanes and Legal Speed Limits

Two transportation network datasets were obtained from the Office of Information Technology of
the WSDOT: 1) Roadway lane polyline data, 2) legal speed limit polyline data. First, roadway lane
data included state routes, county roads, and city streets. The data included roadway width, number
of increasing/decreasing lanes, and milepost information for state routes. Jurisdictional information
such as city names were also included for county roads and city streets. There were 18,999 state route
segments and 127,652 non-state route roadway segments used in this study. Second, legal roadway
speed limit information was obtained as a separate dataset, which contained 2478 records. The data
included speed limit information for each state route polyline segment.

2.1.3. Investigating Intersection Point Data

Roadway intersection point data came from the Office of Information Technology of the Washington
State Department of Transportation (WSDOT). In this dataset, intersections related to vehicular travel,
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and were derived not from road or street center lines, but from vehicular traffic lanes. Intersections were
defined as any location where vehicular traffic could change travel direction. Different intersections
were generated based on traffic direction (e.g., a left-turn lane from the north of an intersection had
a different intersection with straight travel lanes than a left turn lane from the south of the same
intersection) (NOTE: This definition is generated by the researchers based on their investigation of
the data, and has not been confirmed by WSDOT—there is no meta data attached to the intersection
dataset).

The data contained 26,204 records of intersections and provided intersection type information.
Nine types were identified:

• Type A: A lane becoming an on ramp to a limited access road;
• Type E: An off-ramp lane to a limited access road;
• Type G: An intersection where roadways are crossed at a common grade;
• Type N: An entrance lane to a limited access road;
• Type O: On and off ramp lanes to limited access roads.
• Type R: Roundabouts;
• Type T: An entrance or an exit lane to a limited access road;
• Type X: An exit lane from a limited access road;
• Type Y: A WYE (Y) connection where lanes formed three legs in the general form of a Y and the

angle between 2 legs is less than 60 degrees.

Many of the intersection types included in the data did not correspond to locations where
pedestrians would cross streets or roads (Figure 1). Two trained GIS analysts investigated over 100
intersection data points and compared them with aerial photos and Google Maps to extract intersection
data points where pedestrians could actually walk and cross a street or a road. Overall, they found that
only intersection types G (grade intersection) and T (entrance and exit) corresponded to intersections
that pedestrian would use. These intersection types were included in the pedestrian intersection data.
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Figure 1. Examples of Washington State Department of Transportation (WSDOT) data identified
intersection points in Seattle, at (a) (Interstate-5 and NE Northgate Way) and (b) (state route 99
and Denny Way) in Seattle, Washington State. The blue lines represent the vehicular lanes in the
respective facilities.
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Several observations emerged for intersection type G, and T. Figure 1 shows intersection points
identified in the data and pedestrian crash locations. In Figure 1a, Interstate-5 is a limited access
highway which pedestrians are prohibited from using. Yet, the facility intersects with locations where
pedestrians are allowed to cross. In Figure 1b, lanes from State Route 99, a limited access highway
where pedestrians are prohibited to use, intersect with Denny Way, a city street that pedestrians can
cross. The data identified 5 points where vehicular lanes intersect. Yet these intersection points are so
close to each other that they are representing one pedestrian crossing location.

There were 2 issues identified from these aerial photos. First, in Figure 1a, the WSDOT intersection
point data convey information on possible directional changes for vehicles that are not often on or near
intersections used by pedestrians. In other words, the intersection point data are not restricted to streets
or roads that can be crossed by pedestrians. Thus, the raw intersection GIS data might not be appropriate
for modeling pedestrian crashes because some areas are not actually accessible by pedestrians. To
model pedestrian crashes, intersection points on limited-access highways (e.g., interstate) needed to be
removed before analysis [28]. However, some of these limited-access highways are located near local
streets (e.g., city street), where pedestrians are allowed. Hence, a systematic protocol was needed to
distinguish the pedestrian accessible intersection points from the inaccessible ones.

Second, as observed in Figure 1b, when multiple intersection points were in close proximity,
intersection locations could be double-counted, leading to double-counting of pedestrian crashes. If
crashes were allocated to only one intersection buffer, there would be cases and controls that had
similar locational attributes. Furthermore, intersections along a certain corridor will share similar
roadway characteristics and land use. In addition, adjacent intersections share similar traffic conditions,
and therefore drivers’ behaviors in those locations might also be alike. Thus, crash-risk locations in
close spatial proximity were most likely correlated, leading to a biased model [22,27].

2.2. Decision Tree Algorithms

Two algorithms were developed and tested to detect unique crash-risk locations. Figure 2 shows
the steps used in the data reduction process. First, an algorithm was created to identify unique
intersection locations. Figure 2a is workflow of the algorithm. Intersection point data from WSDOT
were used as the input dataset for this process. Pedestrian accessible intersection points were extracted
by using intersection type, road type, and legal roadway speed limit information. Figure 2b shows the
decisions made for detecting unique non-intersection locations. WSDOT pedestrian crash data were
used as a baseline dataset to first identify non-intersection locations with crashes. These locations were
considered as the “cases” of a case-control conceptual model. “Control” non-intersection locations were
identified using Voronoi diagram techniques to detect random non-intersection locations where crashes
did not but could occur. A detailed description for each process is explained in the following sections.

2.2.1. Intersection Points on Limited Access Roadways

From a legal perspective, intersection points on the main thoroughfares of limited–access roadways
are not to be used by walkers for transportation purposes. However, in some cases, these intersection
points were physically accessible by walkers at ramps and other locations where the highway connected
to local streets such as county roads and city streets. In addition, pedestrian crashes have occurred at
some of these locations. To identify these locations, 10 m buffers from local streets were created and
pedestrian accessible intersection points were extracted.

For the next step, intersection points on non-interstate routes were examined using a state route
network dataset, which included legal speed limit information for each roadway segment. State route
segments where the speed limits were greater than or equal to 50 mph were used to represent locations
inaccessible to pedestrians. Intersections that were beyond 10 m from these segments were identified as
being pedestrian-accessible. Pedestrian accessible intersection points on interstate and non-interstate
route segments were then merged as a single GIS point layer for detecting unique intersection locations.
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Figure 2. The decision tree algorithms show processes for detecting unique intersection locations (a)
and non-intersection locations (b).

2.2.2. Detecting Unique Intersection Locations

The creation of Euclidean buffers using state route intersections resulted in many overlapping
buffers, leading to potential autocorrelation. Considering 2 intersections with overlapping buffers (i
and j), the environmental characteristics of intersection i will be associated with the outcomes (e.g.,
number of crashes) of intersection j through the overlapping area between the 2 intersection buffers.
We applied buffering techniques described in Figure 3 to account for potential autocorrelation. Three
steps were used to identify uncorrelated intersection locations without overlaps.

Pedestrian-accessible intersection points identified from the analyses of street network data
summarized in Figure 2a were used as an input dataset. Euclidean buffers were first developed from
each intersection point to represent initial intersection locations. If there was an overlapping area
between Euclidean buffers, a dissolved buffer was created to capture overlapping areas of polygons. A
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single centroid was then detected from each dissolved buffer and used as a unique intersection location.
Lastly, Euclidean buffers were re-created from each point to represent unique intersection locations.
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Figure 3. Processing intersection point data and street network for detecting unique intersection
locations. Round dot indicates intersection location from the WSDOT state route dataset. Pentagon
indicates centroid of unique intersection location.

2.2.3. Detecting Unique Non-Intersection Locations

According to the WSDOT pedestrian crash data, 36% of the pedestrian crashes on state routes
occurred at non-intersections. The second algorithm was to detect non-intersection locations with
(cases) or without (controls) pedestrian crashes. Figure 4 shows the 5 steps used in the analysis.
Non-intersection pedestrian crash points on state route network data were first buffered to identify
unique non-intersection locations (case observation). Non-intersection locations without pedestrian
crashes (control observation) were generated using a Voronoi diagram based on case observation
points. The control locations points were positioned where Voronoi polygons boundaries intersected
with street segments. Since all Voronoi polygon boundaries represented the farthest lines from the
location of cases, the chance of overlaps between cases and controls was minimized. Lastly, to extract
unique non-intersection locations removing the overlapping area, the same buffering techniques used
in previous steps were repeated.
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Figure 4. Processing pedestrian crash data and street network for detecting unique non-intersection
locations. Black triangle indicates crash locations. Black square indicates non-intersection crash
locations (cases); multiple adjacent crash locations are dissolved into one location. Square outline
indicates intersection of Voronoi lines with state route and streets. Hexagon outline indicates unique
non-intersection locations without crash (controls).
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2.3. Parameter Setting and Assessment

The algorithm relies on Euclidean buffers with a defined search radius to identify unique
intersection and non-intersection locations. First, the effect of the buffer size on the number of unique
crash-risk locations was investigated by looking at the number of locations identified by the algorithm
that have and do not have crashes. Second, the overall performance of the algorithm was tested by
calculating the proportion of the crashes that were captured by the algorithm-detected crash-risk
locations. Lastly, 5 performance runs were generated to test the agreement rates between the algorithm
and the locational information from crash data using search radii of 20, 40, 60, 80, and 100 m.

3. Results

3.1. Effect of Buffer Size on the Number of Unique Crash-Risk Locations

Table 1 shows the number of unique intersection and non-intersection locations based on each
search radius setting. The total number of unique intersection locations decreased and the relative
proportion of case locations increased as a search radius increased. For example, using a 20 m radius
produced 7522 unique intersections with 10.6% having crashes, whereas a 100 m radius produced 3019
unique intersections with 14.2% having crashes. Results of the algorithm for non-intersection data
were similar to results with intersection data. The total number of unique non-intersection locations
decreased from 1608 at 20 m to 955 at 100 m. The proportion of case (non-intersection location with
state route pedestrian crashes) increased from 35.3% at 20 m to 38.7% at 100 m.

Table 1. Count of unique intersection locations by buffer size.

Parameter 20 m 40 m 60 m 80 m 100 m

Unique Intersection

With recorded crash 794
(10.6%)

818
(12.3%)

596
(12.8%)

514
(13.8%)

428
(14.2%)

With no recorded crash 6728
(89.4%)

5808
(87.7%)

4056
(87.2%)

3212
(86.2%)

2591
(85.8%)

Total 7522 6626 4652 3726 3019

Unique Non-intersection

With recorded crash 567
(35.3%)

455
(38.0%)

419
(38.3%)

374
(37.9%)

370
(38.7%)

With no recorded crash 1041
(64.7%)

743
(62.0%)

674
(61.7%)

612
(62.1%)

585
(61.3%)

Total 1608 1198 1093 986 955

3.2. Overall Performance of the Algorithms

There were 2222 state route pedestrian crashes in Washington State (2013–2017). Not all of these
crashes occurred on algorithm detected intersections and non-intersections. Table 2 shows the number
of pedestrian crashes at crash-risk locations and other locations. The proportion of pedestrian crashes
occurring at locations not identified using the algorithm was lowest at 20 m (12.8% of crashes) and
highest at 100 m (39.2% of crashes). The proportion of pedestrian crashes captured within intersection
location buffers ranged between 35.7% (r: 100 m) and 61.4% (r: 40 m). The proportion slightly increased
from 20 m to 40 m, then decreased sharply at and above 60 m. The proportion of pedestrian crashes
detected by non-intersection location buffers was relatively stable compared to intersection locations.
It was lowest at 40 m (22.8% of crashes) and highest at 20 m (27.6% of crashes).
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Table 2. Number of pedestrian crashes at crash-risk locations and other locations.

Parameter 20 m 40 m 60 m 80 m 100 m

Others (not captured by
crash-risk locations)

284
(12.8%)

351
(15.8%)

629
(28.3%)

784
(35.3%)

781
(39.2%)

Within intersection
location buffers

1324
(59.6%)

1364
(61.4%)

1063
(47.8%)

928
(41.8%)

793
(35.7%)

Within non-intersection
location buffers

614
(27.6%)

507
(22.8%)

530
(23.9%)

510
(23.0%)

558
(25.1%)

Total 2222 2222 2222 2222 2222

3.3. Agreement between Algorithm Crash-risk Locations and Location Type in WSDOT Crash Data

Agreement rates were computed and compared between algorithm-identified locations and
WSDOT-recorded crash location. Table 3 shows counts of pedestrian crashes within algorithm-identified
intersection location buffers. A total of 1324 pedestrian crashes occurred within 20 m buffer of
intersection locations, of which 94.1% identified as intersection-related crashes from the crash data.
The agreement rates decreased gradually with increasing buffer radius. The lowest agreement rate
(79.2%) was found with 100 m intersection location buffers.

Table 3. Agreement rates between algorithm intersection location and crash data.

Buffer
Radius (r)

Count of Pedestrian Crashes

All Algorithm Intersection
Crash Locations

Location Type from WSDOT Crash
Data Agreement

Intersection Non-Intersection

20 m 1,324 1246 78 94.1%
40 m 1,364 1202 162 88.1%
60 m 1,063 907 156 85.3%
80 m 928 761 167 82.0%

100 m 793 628 165 79.2%

Table 4 shows concurrence between algorithm-identified non-intersection locations and WSDOT
data for pedestrian crashes that were recorded as having occurred at non-intersection locations. Of the
total of 614 pedestrian crashes within 20 m of non-intersection locations, 98.0% were categorized as
non-intersection crashes from the crash data records. The agreement rates showed a sharp decrease
after and beyond 60 m. The lowest agreement rate (77.8%) was found with the longest search radius
(100 m).

Table 4. Agreement rates between non-intersection location and crash data.

Buffer
Radius (r)

Count of Pedestrian Crashes

All Algorithm Non-Intersection
Crash Locations

Location Type from WSDOT Crash Data Agreement
Intersection Non-Intersection

20 m 614 12 602 98.0%
40 m 507 11 496 97.8%
60 m 530 65 465 87.7%
80 m 510 86 424 83.1%

100 m 558 124 434 77.8%

4. Discussion

This study produced a systematic and reproducible protocol to identify unique
pedestrian-motor-vehicle crash-risk locations at intersection and non-intersection areas. A unit
of spatial analysis for pedestrian crash modeling was derived from two algorithms, and the reliability
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of the protocol was assessed by comparing the outcomes with the actual pedestrian crash data. A set
of parameters (buffer sizes) was tested to check the sensitivity of the algorithm results.

Buffer size has a significant impact on the number of unique intersection locations identified using
state route intersection points and street network GIS data. The total number of unique intersection
locations decreased as the search radius increased because larger buffers create larger overlapping areas
around the original intersection points and these areas are then dissolved to identify one crash-risk
location. The shortest search radius (20 m) generated 7522 unique intersection locations, down from
26,204 initial intersection points, which meant that on average 3.5 initial intersection points were
dissolved as one pedestrian crash-risk location. Although the total number of unique intersection
locations was largest with a 20 m buffer radius, the number of actual crash locations identified was
largest with a 40 m search radius. Considering that pedestrian crashes are rare events, the determination
of a search radius size should be based on the purpose of the study and not only on the number of past
crash locations.

Non-intersections are more difficult to identify than intersections because they can be located
anywhere along single road segments. By using pedestrian crash data points at non-intersections to
construct the Voronoi diagrams, we could detect numerous unique non-intersection locations where
a crash could occur. Since any location within a Voronoi polygon is closer to its associated central
point than to any other point input feature, newly detected control observations have the farthest
distance from case observations, thus minimizing the possibility of overlapping cases and controls.
The number of unique non-intersection locations showed a sharp decrease between the 20 m and 40 m
search radius, implying that radii shorter than 40 m might be preferable.

The performance of protocol was assessed with over 2,000 pedestrian crashes that occurred
on state routes between 2013–2017. Overall, the proportion of pedestrian crashes captured within
algorithm-detected locations was highest (87.2% of 2,222 crashes) using the 20 m search radius.
Intersection locations captured the largest number of pedestrian crashes with 40 m search radius
(61.4%), showing a major decrease after applying a 60 m search radius (47.8%). Non-intersection
locations captured relatively steady number of pedestrian crashes (22.8–27.6%).

Agreement rates between algorithm-generated and crash records locations were high, ranging
from 79.2% to 94.1% for intersections and 77.8% to 98% for non-intersections, suggesting that the
two algorithms could readily distinguish between the two types of locations. Misclassifications were
expectedly higher with large buffers, as for instance, would be the case of a non-intersection pedestrian
crash occurring close to the intersection location. Clearly, however, pedestrian crash data are a useful
reference to assess the protocol, but they are not a gold standard for evaluating the algorithms (e.g.,
there can be human errors in recording and reporting pedestrian crash locations, and not all crashes
are necessarily recorded in the data).

Given their high performance in identifying two types of crash-risk locations, the algorithms
presented in this study have major benefits. First, they can reduce human errors and labor hours to
clean existing intersection data similar to the 26,204 intersection points on state routes in Washington
State. Second, the algorithm uses clear definitions of and processes to define crash-risk locations. There
has been little consistency to-date in identifying non-intersection locations in the literature, which has
limited comparisons between studies. Third, the protocol presented come in separate modules that can
be applied to data sets that are different from the four publicly accessible datasets used in this study.
For instance, some states may not offer intersection point data, in which case researchers will rely on
roadway network GIS data to create nodes as intersection points. The buffering techniques modules
introduced in this study can be applied to any point data set and help identify unique intersection
locations without overlaps. Similarly, modules for creating Voronoi polygons can be used to detect
non-intersection locations on any point data set. Lastly, while only one Voronoi diagram was used to
identify non-intersection locations in this study, this module can be repeated multiple times to create
more control observations. Depending on the purpose of a study or the data availability, the algorithms
offer a useful way to create a balanced sample of crash-risk locations.
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The study has limitations. First, the reduction of intersection points performed by the algorithms
was evaluated with multiple criteria (e.g., sample size, coverage, and accuracy), but additional manual
check for randomly selected data points (e.g., comparison with aerial photos) might enhance the
protocol. Second, the algorithm for non-intersection locations relies on empirical pedestrian crash
data, which may not be available everywhere or which may be of poor quality. Consistency of the
pedestrian crash data across jurisdictions will make this algorithm more useful.

5. Conclusions

The protocol developed in this study provides an efficient and effective way to create spatial
units of analysis for pedestrian crash modeling. It can save substantial time in identifying unique
intersection and non-intersection locations. The algorithms will also make it possible for researchers to
compare their model results with other studies by using the same unit of analysis.

The algorithms showed sustained performance in identifying crash-risk locations at road or street
intersections and non-intersections. Different search radii serve to optimize sample size, coverage, and
accuracy, depending on the objective of a study. In the present analyses, the algorithms using the 20 m
buffer showed highest performance, and a sharp drop in performance was noted when using 60 m and
larger buffers. A 40 m radius can be an alternative if large numbers intersection locations are desired.
Buffers between 20 and 40 m should be tested in future studies.

The protocol discussed in this study is a tool for integrating pedestrian crash data with the
transportation network and for detecting unique intersection and non-intersection locations. Pedestrian
crash modeling using this protocol will broaden the applicability of algorithms and enrich the discussion
in the future.
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