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Abstract: This study aimed to identify ticks infesting dogs admitted to the Potchefstroom Animal
Welfare Society (PAWS) and to detect tick-borne pathogens they are harbouring. A total of 592 ticks
were collected from 61 stray dogs admitted to PAWS originating from several suburbs in and near
Potchefstroom, South Africa. The dog ticks were identified as Haemaphysalis elliptica (39%) and
Rhipicephalus sanguineus (61%) by both morphological and DNA analyses. Of these ticks, H. ellip-
tica consisted of 67.5% (156/231) and 32.5% (75/231) female and male ticks, respectively, whilst
R. sanguineus consisted of 48.5% (175/361) and 51.5% (186/361) female and male ticks, respectively.
Microscopic examination of blood smears from engorged female ticks indicated overall occurrences
of 0.5% (1/204) for Babesia spp. from R. sanguineus, 1% (2/204) of Anaplasma spp. from H. elliptica,
and 22% (45/204) of Rickettsia spp. from both H. elliptica and R. sanguineus. Using pooled samples
molecular detection of tick-borne pathogens indicated overall occurrences of 1% (1/104) for A. phago-
cytophilum in H. elliptica, 9.6% (10/104) of Rickettsia spp. in H. elliptica and R. sanguineus, 5.8% (6/104)
of Ehrlichia canis in H. elliptica and R. sanguineus, and 13.5% (14/104) of Coxiella spp. in both H. elliptica
and R. sanguineus. Additionally, PCR detected 6.5% (2/31) of Coxiella spp. DNA from H. elliptica eggs.
Our data indicate that urban stray dogs admitted at PAWS are infested by H. elliptica and R. sanguineus
ticks which are harbouring several pathogenic organisms known to cause tick-borne diseases.

Keywords: Anaplasma phagocytophilum; Babesia spp.; Coxiella spp.; Rickettsia spp.; Ehrlichia canis;
Haemaphysalis elliptica; Rhipicephalus sanguineus

1. Introduction

Ticks are blood feeding acarines with body sizes ranging from 2–30 mm infesting
domestic and wild animals [1]. To date there are four described families of ticks including
Ixodidae, Argasidae, Nuttalliellidae, and the extinct Deinocrotonidae [2–4]. Ticks are of
great medical and veterinary significance due to their ability to transmit several pathogenic
microorganisms to human and animal hosts [5,6]. These tick-borne pathogens are trans-
mitted to other ticks and hosts associated with ticks by transovarial and transstadial
transmission [7,8].

Ticks primarily feeding on companion animals may feed on humans in the absence
of preferred hosts, resulting in the incidental transmission of tick-borne pathogens to
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humans [9]. In addition, these ticks are well adapted to urban environments, to the extent
that female ticks deposit eggs in cracks of walls or inside dog bedding, resulting in tick
infestations among human settlements [7]. Several tick-borne pathogens from ticks infesting
dogs that are well-documented include Anaplasma phagocytophilum which is associated
with human and canine granulocytic anaplasmosis, Babesia spp. causing canine babesiosis,
Coxiella spp. causing Q-fever in humans, Ehrlichia canis associated with canine ehrlichiosis,
as well as Rickettsia spp. causing African tick bite fever, Mediterranean spotted fever, and
Astrakhan fever [7,10–12].

There is always a need to monitor and document ticks infesting urban dogs and
their associated tick-borne pathogens due to their close association with human beings,
particularly using modern DNA based techniques. This study aimed to identify ticks and
their associated tick-borne pathogens, infesting stray dogs housed at the Potchefstroom
Animal Welfare Society (PAWS) which originated from urban settlements. Ticks and tick-
borne pathogens were identified by using a combination of morphological and molecular
methods.

2. Results
2.1. Identification of Ticks

A total of 592 ticks were collected from 61 dogs admitted to PAWS originating from
several suburbs in Potchefstroom (Table 1). These ticks were morphologically identified as
H. elliptica (GTTM voucher accession number: OP5113) and R. sanguineus (GTTM voucher
accession number: OP5078). The overall occurrence of H. elliptica was 39% (231/592),
where R. sanguineus had an overall occurrence of 61% (361/592). In the respective species,
67.5% (156/231) and 48.5% (175/361) were female, and 32.5% (75/231) and 51.5% (186/361)
were male. Of these ticks H. elliptica consisted of 43.7% (101/231) nymphs and 56.3%
(130/231) adults, whereas R. sanguineus consisted of 60.9% (220/361) nymphs and 39.1%
(141/361) adults. The H. elliptica species was most abundant in Miederpark (22.47%), whilst
R. sanguineus was most abundant in both Miederpark (16.39%) and Ikageng (13.85%). There
was a significant difference in tick species occurrence based on the geographical localities of
R. sanguineus (X2 = 495.09, df = 9, p-value < 2.2 × 10−16) and H. elliptica (X2 = 629.3, df = 9,
p-value < 2.2 × 10−16) ticks collected at various sampled sites.

Table 1. Tick abundance from sampled dogs at PAWS and their various locations.

Location
Tick Species Total Number of Ticks

per Location
Total Number of Dogs

per LocationH. elliptica (%) a R. sanguineus (%) a

Potchefstroom b 4 (3.31) 117 (96.69) 121 7
Potchindustrie 7 (21.88) 25 (78.13) 32 2

Boskop 21 (77.78) 6 (22.22) 27 4
Die Bult 11 (57.89) 8 (42.11) 19 6

Baillie park 4 (18.18) 18 (81.82) 22 3
Miederpark 133 (57.83) 97 (42.17) 230 27
Boipatong c 38 (88.37) 5 (11.63) 43 4

Ikageng 4 (4.65) 82 (95.35) 86 6
Fochville c 9 (100) - 9 1

Kannonierspark - 3 (100) 3 1

Total number of ticks 231 361 592 61
a: Indicates the occurrence of ticks from dogs originating from several locations in percentages; b: Ticks collected
from dogs originating from Potchefstroom, but their exact locations of origin was unknown; c: Incidental tick
samples from dogs not originating from Potchefstroom although admitted at PAWS Potchefstroom.

The BLASTn search results of the CO1 and ITS2 genes indicated that R. sanguineus se-
quences of this study (GenBank accession numbers: MK295614, MK295616, MK295617, and
MK295618) were similar to other R. sanguineus sequences on the NCBI database with match-
ing identifications of 99% for the CO1 gene and 94 to 97% for the ITS2 gene. For H. elliptica
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there was no reference sequence available on the NCBI database. However, BLASTn search
indicated H. elliptica sequences from this study (GenBank accession numbers: MK295612,
MK295613, and MK295615) were similar to several species among Haemaphysalis with pair-
wise identity between 87 to 99% for CO1, and 85 to 96% for ITS2. Phylogenetic analysis of
CO1 (Supplementary Figure S1) and ITS2 (Supplementary Figure S2) revealed the presence
of two major clades. In one of these clades, all Rhipicephalus species clustered together and
in the other clade all Haemaphysalis species clustered together.

2.2. Molecular Detection of Tick-Borne Pathogens

The PCR agarose gel images are shown in Supplementary Figures S3, S5, S7 and S9.
Out of the 104 tick pools screened for the presence of tick-borne pathogens there was
an overall occurrence of 1% (1/104) for A. phagocytophilum, 9.6% (10/104) for Rickettsia,
5.8% (6/104) for Ehrlichia canis, and 13.5% (14/104) for Coxiella spp. Table 2 represents the
occurrence of several tick-borne pathogens of H. elliptica and R. sanguineus tick pools of
dogs originating from several suburbs in Potchefstroom, as well as from the Fochville and
Boipatong suburbs. Of the 31 egg pools screened for the presence of tick-borne pathogens,
only Coxiella spp. was detected with an overall occurrence of 6.5% (2/31). These pathogens
were detected in 1 of 2 (50%) and 1 of 11 (9.1%) H. elliptica egg batches of dogs originating
from Boipatong and Miederpark suburbs, respectively.

Table 2. Overall occurrence of tick-borne pathogens detected by PCR from tick pools.

Location Species
A. phagocy-

tophilum (%)
a

Rickettsia sp.
(%) a

B. canis (%)
a

B. vogeli (%)
a

B. rossi
(%) a

E. canis
(%) a

Coxiella
spp. (%) a

Total
Pools

Screened

Baillie park H. elliptica - - - - - - - 1
R. sanguineus - 2 (50) - - - - 1 (25) 4

Boipatong b H. elliptica 1 (33.3) 1 (33.3) - - - - - 3
R. sanguineus - - - - - - - 3

Die Bult
H. elliptica - - - - - - - 4

R. sanguineus - - - - - - - 3
Fochville b H. elliptica - - - - - - 1 (50) 2

Ikageng H. elliptica - - - - - - - 4
R. sanguineus - - - - - - - 10

Kannonierspark R. sanguineus - - - - - - 1 (50) 2

Miederpark H. elliptica - 6 (24) - - - 4 (16) 9 (36) 25
R. sanguineus - - - - - 1 (4.3) 1 (4.3) 23

Boskop H. elliptica - - - - - - 1 (20) 5
R. sanguineus - - - - - 1 (50) - 2

Potchindustrie
H. elliptica - - - - - - - 1

R. sanguineus - - - - - - - 2

Potchefstroom c H. elliptica - - - - - - - 4
R. sanguineus - 1 (16.7) - - - - - 6

Total 1 (1) 10 (9.6) 0 (0) 0 (0) 0 (0) 6 (5.8) 14 (13.5) 104

a: Indicates the occurrence of ticks from dogs originating from several locations in percentages; b: incidental
tick samples from dogs not originating from Potchefstroom; c: Ticks collected from dogs originating from
Potchefstroom, but their exact locations of origin was unknown.

Anaplasma phagocytophilum were detected in 2% (1/49) of H. elliptica ticks. There
was no A. phagocytophilum detected from R. sanguineus tick DNA extracts. There was no
significant statistical difference (X2 = 9, df = 9, p-value = 0.4373) of A. phagocytophilum
prevalence based on geographical localities. The E. canis was detected in 8.2% (4/49) of
H. elliptica ticks and 3.6% (2/55) of R. sanguineus ticks. There was a significant statistical
difference (X2 = 37.333, df = 9, p-value = 2.295 × 10−5) in prevalence of E. canis based on
the geographical localities. Rickettsia spp. were detected in 14.3% (7/49) of H. elliptica ticks
and 5.5% (3/55) of R. sanguineus ticks with significant difference of prevalence (X2 = 32,
df = 9, p-value = 0.0001991) when geographical localities were compared. Coxiella spp. was
detected in 10.5% (2/19) of H. elliptica eggs, 22.4% (11/49) of H. elliptica ticks and 5.5%
(3/55) of R. sanguineus ticks with a significant statistical difference (X2 = 60.286, df = 9,
p-value = 1.181 × 10−9) in the geographical localities in ticks, whereas there was no signifi-
cant statistical difference (X2 = 5, df = 6, p-value = 0.5438) of Coxiella spp. prevalence of the
19 H. elliptica tick egg batches analysed. In addition, mixed infections of A. phagocytophilum
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and Rickettsia spp. were detected from ticks of dogs originating from Boipatong suburb
as well as mixed Coxiella spp., E. canis, and Rickettsia spp. from dogs originating from
Miederpark suburb.

The BLASTn results of 16s rRNA gene of A. phagocytophilum detected in this study
(GenBank accession number: MK295611) confirmed that it matches with relevant species
on the NCBI database (GenBank accession numbers: AY623650.1 and MF787270.1) with
matching pairwise identity scores of 99% (Supplementary Figure S3).

The gltA gene results of Rickettsia from this study (GenBank accession numbers:
MK295619, MK295620, MK295621, MK295622, MK295623, and MK295624) were simi-
lar to Rickettsia conorii sequences on the NCBI database (GenBank accession numbers:
DQ821855.1, MF002509.1, and KY640399.1) with matching pairwise identity scores ranging
between 98 and 100% (Supplementary Figure S4).

Similarly, the 16S rRNA gene of E. canis detected in the current study were similar
to E. canis sequences on the NCBI database (GenBank accession numbers: DQ494536.1,
JQ976640.1, and MF153965.1) with matching pairwise identity scores ranging between 85
and 100% (Supplementary Figure S5).

Furthermore, the results of IS1111 transposase gene of Coxiella spp. of this study were
similar to Coxiella spp. sequences on the NCBI database (GenBank accession numbers:
JF970261.1, MH394636.1, and CP014563.1) with matching pairwise identity ranging between
95 and 100%, respectively (Supplementary Figure S6).

3. Discussion

In this study, R. sanguineus were identified as the most abundant tick species infesting
dogs admitted to PAWS, in the North West Province, as compared to H. elliptica. This was
expected as findings of previous studies [13–16] suggested that the most abundant species
infesting South African companion animals are R. sanguineus, H. elliptica, and R. simus.
Results of this study were similar to studies conducted by Mtshali [17] with reported
occurrences of 49.9% and 5% of R. sanguineus and H. elliptica, respectively, collected from
companion animals in Mafikeng, North West Province. Furthermore, Bryson et al. [16]
reported respective occurrences of 96.62% and 2.85% for R. sanguineus and H. elliptica in
the North West Province. In the province of Mpumalanga, Kolo et al. [18] reported 27
R. sanguineus and 30 H. elliptica from a total of 103 ticks infesting dogs. In this study,
the most ticks were collected from dogs originating from Miederpark (where H. elliptica
was more abundant than R. sanguineus) and Ikageng (where R. sanguineus was more
abundant) suburbs of Potchefstroom. These collections were from stray dogs housed at
PAWS which is located in Miederpark, whilst Ikageng is a settlement where many strays
occur. The R. sanguineus ticks are behaviourally adapted to survive in urban settlements
and dog kennels for extended time periods [6]. If preferred hosts are absent, these ticks will
readily infest other hosts such as other domestic animals, livestock, and humans [16,19,20].
Rautenbach et al. [14], Bechara et al. [21] and Little et al. [19] suggested that R. sanguineus
are reported in higher abundance in settlements where strays are present, or in animal
shelters where dogs are co-housed, because tick control measures are lacking. The H.
elliptica ticks prefer to infest murid rodents during the larval and nymphal developmental
stages, whereas the adult stage prefers to infest members of the Canidae family [13,16,22].
Horak [15] and Bryson et al. [16] suggested that H. elliptica are often reported in higher
abundance from communities with access to modern veterinary services. This might
explain their lower abundances in other suburbs of Potchefstroom [13,16,22]. In addition,
Chong et al. [23] and Lebert et al. [24] suggested that the difference in the distribution of the
locations of different tick species, as well as the difference in their numbers in the different
developmental stages may be due to several factors, including but not limited to seasonality
of the tick species, differences in climatic conditions and availability of preferred hosts.

The ITS2 and CO1 genes were used to supplement morphological identification of tick
species. A study conducted by Fukunaga et al. [25] revealed that the use of ITS2 nucleotide
sequences was able to distinguish between ticks sharing the same morphological features
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or synonymized tick species. The CO1 gene is often used as a standard barcode for animal
identification [26–29]. Lv et al. [29] suggested that the combined use of the ITS2 and CO1
gene, along with other genes, including 12S rDNA, 16S rDNA, and 18S rDNA, give more
reliable results.

Molecular detection of Anaplasma spp. detected in this study using species-specific
primers was similar to observations made in previous studies conducted in South Africa.
A study by Mtshali et al. [30] reported presence of Anaplasma-like organisms from dog and
ticks. Inokuma et al. [31] also reported the presence of Anaplasma spp. infesting dogs from
South Africa that are closely related to A. phagocytophilum and A. platys. The low occurrence
may be due to A. phagocytophilum that activates cytopenias and reduces the amount of white
and red blood cells which influences the infection ability of other haemoparasites [32].

Rickettsia species were detected from DNA of tick pools by PCR using genus specific
Rickettsia primers. These were identified as R. conorii by sequencing. Fourie et al. [33]
suggested that R. conorii infections in both R. sanguineus and H. elliptica ticks are possi-
ble. This pathogen has previously been detected in R. sanguineus ticks [34,35], and in H.
elliptica [36]. Mtshali et al. [30] reported an overall occurrence of 38% for R. conorii and
R. africae in dog ticks in the North West Province using PCR. In another study conducted
by Kolo et al. [18], Rickettsia spp. infestation rates of 70% were reported from ticks and
blood from dogs in the Mpumalanga province. Members of Rickettsia genus are known to
be obligatory intracellular parasites or mutualists of arthropods [37] which explains their
consistent positive detection from ticks. The European Food Safety Authority (EFSA) Panel
on Animal Health and Welfare (AHAW) (2010) [38] and Uilenberg et al. [39] stated that
although R. conorii mainly infect R. sanguineus, the transmission of this pathogen to humans
is possible by H. elliptica as well. Rickettsia infections, due to tick bites from several species,
were also reported by as well as from humans that either reside in or travelled to South
Africa [40–45].

In the current study, Babesia spp. were not detected by the conventional PCR was
used. Even though Babesia infections are commonly reported in companion animals in
South Africa, infection rates seem to differ. Allan [46] reported the presence of B. rossi and
B. vogeli with respective infection rates of 12.7% and 3.2% in Cape Town. Furthermore, the
occurrence of B. rossi with respective infection rates of 75% and 32.1% and B. vogeli with 3%
and 1.8% in dog blood was reported in the city of Pretoria, whilst these piroplasms were
also detected from several tick species infesting dogs in the same city [15,16]. Schetters
et al. [47], Horak [15] and Bryson et al. [16] suggested that although ticks are generally
collected from dogs in South Africa which have been diagnosed with canine babesiosis,
they are not essential vectors of this pathogen, possibly explaining lack of Babesia spp.
detection in this study.

During the current study, the presence of E. canis was detected only by PCR from
tick pools. Infections of E. canis in R. sanguineus ticks were previously reported by studies
conducted by Murphy et al. [48], Aguiar et al. [49] and Harrus et al. [50]. Furthermore,
H. elliptica are not recognised vectors of E. canis; however, Ogbu et al. [51] suggested
that E. canis may be transmitted to other tick species after exposure to an infected host,
possibly explaining the E. canis infection in H. elliptica observed during this study. Mtshali
et al. [30] reported E. canis infections in the North West Province, whilst 16% were reported
in Mpumalanga, 12.7% in Cape Town, 42% in Bloemfontein, and 17.2%, as well as 3% in
Maboloka were reported by Kolo et al. [18], Allan [46], Pretorius and Kelly [52], Rautenbach
et al. [14], and Matjila et al. [53], respectively. The E. canis infections are difficult to detect
when using blood smears, due to low parasitaemia [14,52,54,55]. This may explain why
this pathogen was absent in Giemsa-stained blood smears but could be detected by PCR.

Coxiella spp. was detected in the current study by PCR from tick pools as well as
from egg batches. As suggested by Woldehiwet [56], de la Fuente et al. [11], as well as
Angelakis and Raoult [57] Coxiella spp. may be transmitted by means of transstadial and
transovarial transmission, thus suggesting the presence of Coxiella spp. in tick eggs as well
as ticks during their different developmental stages. Mtshali et al. [30] reported an overall
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occurrence of 31% for Coxiella spp. from ticks infesting companion animals in the North
West province. Duron et al. [58] also reported infections of Coxiella-like endosymbionts
in several tick species, including R. decoloratus and R. microplus infesting wildlife in South
Africa. Baca and Paretsky [59], Dupont et al. [40], Buhariwalla et al. [60], Zhang et al. [61],
Loftis et al. [62] and Duron et al. [58] reported that Coxiella spp. infections in humans
are quite common and globally reported, due to the inhalation of contaminated aerosol
particles. This may be an indication that the majority of human infections are due to the
association between humans and infected livestock. Heinzen et al. [63], Mediannikov
et al. [64] and Duron et al. [58] suggests that arthropods, especially ticks, are not vital in
maintaining transmission of Coxiella spp. to humans or other animals, but this pathogen
may be transmitted by means of transstadial transmission during blood meals of infected
ticks. This often results in Q-fever infections in reservoir hosts, including companion
animals, and accidental hosts, including humans.

The study indicated mixed infections of several tick-borne pathogens. These include
mixed infections of A. phagocytophilum and R. conorii, as well as R. conorii, E. canis, and
Coxiella spp. Van Heerden [65] and Pennisi et al. [66] suggested that mixed infections are
common, especially where domestic animals are co-housed. Matjila et al. [53,67] suggested
that mixed infections may be attributed to R. sanguineus and H. elliptica ticks feeding on
similar infected hosts in overlapping regions. Griffiths et al. [68] suggested that mixed
infections are significant as pathogens present within the host interact with one another.
These interactions may improve the transmission and progression of the associated diseases
or cause disturbances in the colonization or virulence of other pathogens. Even though ticks
are well known for their ability to transmit pathogenic organisms to their hosts the detection
of medically and veterinary important tick-borne pathogens, associated with companion
animals, in this study and previous studies [14–16,18,30,31,34–36,46,48–50,52,58,67] raises
concern. These animal hosts often suffer due to illness caused by the pathogens. In several
cases, infection of tick-borne pathogens may result in host mortality [20,69]. Several species
of Ixodid ticks follow a three-host life cycle. This requires a blood meal during each
developmental stage, of the ticks, from various hosts to enable life cycle completion. In the
absence of companion animals, the ticks may feed on alternative hosts, including humans,
resulting in zoonosis [11,16].

4. Materials and Methods
4.1. Sampling and Areas of Origin for the Dogs

Tick specimens (N = 592) were collected by the veterinarian from rescued stray dogs
(N = 61) on arrival for admission at PAWS in 2017–2020 (Table 1). The suburbs where
dogs originated from before they were admitted to PAWS are Potchindustrie (26◦43′7.37′′ S,
27◦4′14.0952′′ E), Boskop (26◦33′51.9836′′ S, 27◦7′44.0036′′ E), Kanonnierspark (26◦41′43.0631′′

S, 27◦4′19.3904′′ E), Baillie Park (26◦42′58.1173′′ S, 27◦6′58.2487′′ E), Ikageng (26◦43′32.3738′′

S, 27◦2′59.9492′′ E), Die Bult (26◦42′52.3069′′ S, 27◦5′49.371′′ E), Miederpark (26◦45′11.362′′ S,
27◦5′17.6428′′ E), Boipatong (26◦44′48.0476′′ S, 27◦1′51.492′′ E) and Fochville (26◦28′37.4059′′

S, 27◦29′27.1457′′ E) (Figure 1).

4.2. Morphological Identification of Ticks by Microscopy

Tick specimens were collected weekly from stray dogs from urban areas which were
admitted to PAWS. Ticks were morphologically identified to species level by using the
Nikon SMZ745 stereo microscope and identification keys of Horak et al. [70], Barker
and Walker [71] and Walker et al. [72]. To confirm correct morphological identification,
representatives of each tick species were submitted to the Gertrud Theiler Tick Museum,
located at the Agricultural Research Council-Onderstepoort Veterinary Research (ARC-
OVR) and voucher numbers were issued. All of the engorged female ticks (N = 204)
collected during the study were kept, while they were still alive, in separate containers
until eggs were laid. Afterwards the dead ticks and eggs were stored in 70% ethanol for
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a different study, however, the eggs were included for molecular detection of tick-borne
pathogens.
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Figure 1. Maps indicating the sampling locations (made with ARGIS). (A) indicates a map of Africa
showing South Africa. (B) indicates a map of South Africa showing the different sampling provinces.
(C) indicates the locations of origin of sampled dogs.

4.3. Molecular Identification of Ticks

In preparation for molecular identification of the tick species, legs were removed from
selected tick samples for DNA extraction. For molecular detection of tick-borne pathogens,
ticks were pooled together according to the same species, host, the hosts location of origin,
and life stage, from which they were collected. Tick pools consisted of three or four ticks,
however, in cases where there were less than three specimens, the samples were not pooled
but were treated separately as individual samples. Additionally, for the molecular detection
of tick-borne pathogens, the tick egg batches (each made up of 50 eggs) originating from
the same tick species and location were stored. In total there were 104 tick pools and 31 egg
batches. Prior to DNA extraction, ticks and eggs were surface sterilized for 1 h with 10%
Tween 20 and then rinsed twice with 70% ethanol and rinsed three times with double
distilled water. Genomic DNA (gDNA) was extracted from legs, tick pools, and egg batches
by the salting out method as described by Riveroa et al. [73] and stored at −35 ◦C until
further use.

The cytochrome oxidase subunit 1 (CO1) and internal transcribed spacer 2 (ITS2) were
the targeted gene regions for molecular identification of the collected tick samples. The PCR
for the amplification of the CO1 gene was conducted using primers LCO1490 forward (GGT
CAA CAA ATC ATA AAG ATA TTG G) and HCO2198 reverse (TAA ACT TCA GGG TGA
CCA AAA AAT CA), and the ITS2 gene using primers ITS2F forward (YTG CGA RAC TTG
GTG TGA AT) and ITS2R reverse (TAT GCT TAA RTT YAG SGG GT) described by Licari
et al. [74] and Muruthi [3], respectively. For both gene regions, the PCR reaction mixture
had a final volume of 25 µL which consisted of 12.5 µL of AmpliTaq Gold 360® Master
Mix (Applied Biosystems, Woodlands, Singapore), 1 µL each of primer [each at 10 µM
concentration], 2 µL of the template DNA, and 8.5 µL double distilled water. Haemaphysalis
longicornis DNA (obtained from Obihiro University of Agriculture and Veterinary Medicine,
Obihiro, Japan) was used as positive control, while distilled water was used as negative
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control. PCR conditions consisted of initial denaturation at 95 ◦C for 10 min, 35 cycles of
denaturation at 95 ◦C for 30 s, annealing at 47 ◦C (CO1 gene) and 50 ◦C (ITS2 gene) for 30 s,
and extension at 72 ◦C for 60 s, followed by a final extension at 72 ◦C for 7 min and final
hold at 4 ◦C, using the ProFlex PCR System (Applied Biosystems, Woodlands, Singapore).

4.4. Molecular Detection of Tick-Borne Pathogens

Molecular detection of tick-borne pathogens, namely Anaplasma phagocytophilum,
Babesia spp., Coxiella spp., Rickettsia spp. and Ehrlichia canis from 104 tick pools and 31 egg
batches were analysed where the PCR mixture was prepared as described above using
species specific PCR primers for the different pathogens. The PCR was conducted targeting
the 16S rRNA gene to determine the presence of A. phagocytophilum [75] and E. canis [76]
by, respectively, using the EHR-521 forward (TGT AGG CGG TTC GGT AAG TTA AAG)
and EHR-747 reverse (GCA CTC ATC GTT TAC AGG GTG) primers, as well as the E.c
16S forward (TCG CTA TTA GAT GAG CCT ACG T) and E.c 16S reverse (GAG TCT GGA
CCG TAT CTC AGT) primers. For Babesia spp., the 18S rRNA gene (Duarte et al., 2008)
was targeted for the detection of B. canis, using the primers BAB1 forward (GTG AAC CTT
ATC ACT TAA AGG) and BAB3 reverse (CTA CAC AGA GCA CAC AGC C), B. vogeli,
using the primers BAB1 forward (GTG AAC CTT ATC ACT TAA AGG) and BAB4 reverse
(CAA CTC CTC CAC GCA ATC G), as well as B. rossi, using the primers BAB1 forward
(GTG AAC CTT ATC ACT TAA AGG) and BAB5 reverse (AGG AGT TGC TTA CGC ACT
CA). For the detection of Rickettsia spp., the gltA gene [77] was targeted using the primers
Rp877p forward (GGG GAC CTG CTC ACG GCG G) and Rp1258n reverse (ATT GCA
AAA AGT ACA GTG AAC A). The detection of Coxiella spp. was performed targeting
the IS1111 transposase gene [78] using the primers IS1111aF forward (CAT CAC ATT GCC
GCG TTT AC) and IS1111aR reverse (GGT TGG TCC CTC GAC AAC AT). For positive
controls, A. phagocytophilum DNA was obtained from a PCR positive horse from Northern
Cape [79] while controls of E. canis, R. africae and Coxiella spp. DNA acquired from the
Research Centre for Zoonosis Control, Hokkaido University, Japan were used. Babesia canis
positive controls were synthesized from gBlock® gene fragments obtained from Whitehead
Scientific (Pty) Ltd., Cape Town, South Africa. The PCR conditions consisted of initial
denaturation at 95 ◦C for 30 s, 30 cycles of denaturation at 95 ◦C for 30 s, annealing at
50 ◦C (B. canis, B. rossi, and B. vogeli), 52 ◦C (Rickettsia spp.), 57 ◦C (Coxiella spp.), and 60 ◦C
(A. phagocytophilum and E. canis) for 60 s and extension at 68 ◦C for 60 s followed by a final
extension at 68 ◦C for 5 min and final hold at 4 ◦C, using the ProFlex PCR System (Applied
Biosystems, Woodlands, Singapore).

The PCR products were purified using the QIAquick Gel Extraction Kit (Qiagen, DE,
Hilden, Germany) by following the manufactures instructions (Qiagen, DE, Hilden, Ger-
many). Purified PCR products were submitted for sequencing at Inqaba Biotechnological
Industries (Pty) Ltd., Pretoria, South Africa. Sequence visualisation and editing was per-
formed by using Molecular Evolutionary Genetics Analysis version 7.0 (MEGA7) software
package [14]. The nucleotide Basic Local Alignment Search Tool (BLASTn) was used to con-
firm tick and tick-borne pathogen identification (https://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 15 August 2017).

4.5. Blood Smears

Giemsa stained thin blood smears were prepared of engorged ticks by using a modified
method described by Poostchi et al. [80].

4.6. Statistical Analysis

The significance relating to the geographic localities of ticks as well as tick-borne
pathogens was determined in R-studio by using the Pearson’s chi-square test. Confidence
interval (CI) of an average of 95% was used to determine tick and tick-borne pathogens
occurrences. Phylogenetic trees were constructed using CO1 and ITS2 gene sequences
obtained from this study, along with homologous sequences of closely related species

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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obtained from the NCBI database. All sequences were added to the alignment explorer in
MEGA7, aligned by ClustalW using default parameters and trimmed to be even length.
Lowest Bayesian Information Criterion (BIC) score was used to determine the best nu-
cleotide substitution model. Maximum likelihood method was used for construction of
the phylogenetic trees with 10,000 bootstrap replications. During phylogenetic analysis,
missing nucleotide data or gaps were removed and rates among sites were handled as
uniform rates.

5. Conclusions

The ticks collected in this study were identified as R. sanguineus and H. elliptica in
accordance with other studies and the literature. This is an indication that ticks flourish
in environments where stray dogs are present, especially in the absence of tick control
measures. This study also demonstrated the presence of tick-borne pathogens including,
A. phagocytophilum, R. conorii, E. canis, and Coxiella spp., in ticks and their eggs indicating a
cause for concern with regards to the health of companion animals and humans as most of
these species are associated with zoonotic diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens11080862/s1. Figure S1. Phylogenetic analysis of tick CO1 gene sequences using
the Maximum Likelihood (ML) method based on the General Time Reversible (NTR) model [81].
Bootstrap percentage of 10,000 replicates, in which the associated taxa are clustered together is
displayed next to the branch nodes. Twelve nucleotide sequences were used for data analysis.
Sequences of this study are indicated by a black bullet. Myialges spp. was used as an outgroup.
Phylogenetic analysis was performed by using MEGA 7 [82]. Figure S2. Phylogenetic analysis of tick
ITS2 gene using the Maximum Likelihood (ML) method based on the Kimura 2-parameter model [83].
Bootstrap percentage of 10,000 replicates, in which the associated taxa are clustered together is
displayed next to the branch nodes. Fourteen nucleotide sequences were used for data analysis.
Sequences of this study are indicated by a black bullet. Dermanyssus sp. was used as an outgroup.
Phylogenetic analysis was performed by using MEGA 7 [81]. Figure S3: Fragment of the BLASTn
alignment between A. phagocytophilum of this study and a corresponding sequence. First strand
represents A. phagocytophilum detected from ticks collected from the JB Marks local municipality.
Second strand represents a reference sequence from NCBI. Red arrows indicate where nucleotides
mismatch. Figure S4: Fragment of the BLASTn alignment between R. conorii of this study and a
corresponding sequence. First strand represents R. conorii detected from ticks collected from the JB
Marks local municipality. Second strand represents a reference sequence from NCBI. Red arrows
indicate where nucleotides mismatch. Figure S5: Fragment of the BLASTn alignment between E.
canis of this study and a corresponding sequence. First strand represents E. canis detected from
ticks collected from the JB Marks local municipality. Second strand represents a reference sequence
from NCBI. Red arrows indicate where nucleotides mismatch. Figure S6: Fragment of the BLASTn
alignment between C. burnetii of this study and a corresponding sequence. First strand represents C.
burnetii detected from ticks collected from the JB Marks local municipality. Second strand represents
a reference sequence from NCBI
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