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Ovarian cancer is one of the most fatal gynecologic cancer types, and its heterogeneity in the microenvironment limited the
efficacy of the current treatment. In this study, we aimed at building a risk score to predict patient survival based on the amino acid
metabolic genes and TCGA RNA-seq dataset (n� 376). We first used univariate analysis and PCA to select and test the survival-
related genes, and the LASSO regression was applied to build the risk score signature with prediction accuracy estimation by
survival analysis and ROC. We then conducted GSEA and GSVA to investigate the biological roles of the signature and run
ESTIMATE and 4 different immunocyte infiltration algorithms to investigate the immunological diversity between the risk
groups. Furthermore, the immune checkpoint expression was compared. We finally explored the cMap and PRISM database to
screen out sensitive drugs for high-risk patients and analyzed the oncogenic role of TPH1 by clone formation and transwell
migration assays. As a result, the risk score predicted patients’ survival and stage with high accuracy. We found that the signature
mainly affected the extracellular activities and cancer immunity by functional enrichment. We further discovered that the high-
risk OV harbored a high level of stromal cell infiltration and was associated with highly infiltrated fibroblasts and decreased CD8+
T cells. 'e immune checkpoint analyses showed that TGFB1 and CD276 were upregulated. Finally, we screened out 4 PRISM
drugs with lower IC50 in the high-risk group and validated the oncogenic role of TPH1 in OV cancers. We believe this research
offered a novel understanding of the interplay between amino acid metabolism and immunity in OV and will benefit patients with
better prognostic management and therapeutic strategy development.

1. Introduction

Ovarian (OV) cancer is one of the most lethal cancer types
for female health, and it is the second fatal solid tumor of
gynecologic cancers [1]; the routine treatment of OV is the
combination of cytoreductive surgery and chemotherapy
based on the platinum usage. Approximately 10% of OV
cancers are familial syndromes, and 90% of them are spo-
radic [2]. 'e major risk factors for OV cancer are family
history and the carrier of BRCA1/BRCA2 mutations; mean
lifespan risk for OV cancer is 30% in BRCA1 mutation
carriers and 27% in BRCA2 mutation carriers [2]. In recent
years, the morbidity and mortality rates of OV cancer were
slowly decreasing, but it still threats the health of females,

giving rise to the exploration of more effective cancer
characteristic prediction and therapeutic strategies.

Metabolism reprogramming is a common feature in
various cancer types that adapts cancer cells to the energy of
substrates requirement of rapid proliferation or metastasis.
Glycolysis has been noticed as the leading metabolic form of
OV cancer [3], and many strategies were developed to target
the glycolysis network to treat OV cancer. However, the
effects vary due to the heterogeneity of the cancer histology
and microenvironment. Amino acid metabolism is also a
critical metabolic activity in cancers; it not only provides the
substrate for protein production but also intersects the
purine and one-carbon metabolism to fulfill the various
biomass requirement of cancer cells [4]; the many amino
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acids have been discovered to promote cancer progression
and metastasis [5].

Amino acid metabolism can not only affect the prolif-
eration of cancer cells themselves but also regulate the
noncancer cells in the tumor microenvironment. Arginine is
a critical substrate that functions during macrophages’ M1
and M2 polarization; M1 macrophages activate iNOS, a
cancer-supporting factor [6, 7], to catalyze arginine, pro-
ducing NO to attack cancer cells, whereas M2 macrophages
express arginase 1, converting arginine to ornithine to
further promote the cancer cells [5]. Tryptophan deprivation
can inhibit the stabilization of T cells [8], and its catabolic
product, kynurenine, can prevent thematuration of T17 cells
and stimulate the regulatory T-cell proliferation [9]. How-
ever, the association between amino acid metabolism and
cancer immunity remained unclear in OV cancer.

In this study, we aimed at constructing a risk score based
on the amino acid metabolism-related gene sets to predict
the OV cancer patient survival and clinical stage. We will
also investigate the association between amino acid meta-
bolism and the immune landscape in the tumor microen-
vironment using functional analyses and various algorithms.
We believe that this study will provide a new perspective on
the OV pathological mechanism, and benefit patients with
better prognostic management and novel therapeutic target
development.

2. Materials and Methods

2.1. SequencingDataCollection. 'e sequencing data and the
corresponding clinical information on ovarian cancers were
obtained from 'e Cancer Genome Atlas (TCGA). 'e
downloaded FPKM expression matrix was then transformed
into the TPM matrix. 'e amino acid metabolism gene list
was obtained from the GOBP_CELLULAR_-
AMINO_ACID_METABOLIC_PROCESS of the Gene
Ontology (GO). 'e samples without clinical survival in-
formation were removed. 'e gene sets for functional an-
alyses were retrieved from the Molecular Signatures
Database (MSigDB) of the Gene Set Enrichment Analysis
(GSEA).

2.2. Principal Component Analysis and Risk Score
Construction. 'e 286 amino acid metabolism-related
genes were first tested by univariate cox regression to select
the survival-associated candidates, and the genes that
passed the test were used for principal component analysis
(PCA) clustering to divide the samples into 2 clusters. After
PCA clustering, we compared the prognostic diversity of
the clusters by conducting a survival analysis. Furthermore,
the least absolute shrinkage and selection operator
(LASSO) regression [10] was applied to select the pa-
rameters from the genes that passed the univariate test and
build a risk score for predicting the survival risks of the OV
patients. 'e “lambda.min” was selected for obtaining the
model with the lowest deviance, and the corresponding
coefficients were also presented. 'e risk score was orga-
nized as follows:

Risk score � 
n

i

βi ∗gi. (1)

'e augment gi refers to the expression of the gene i
selected by LASSO and βi means the coefficient of gene i.

Besides, the expression differences of the survival-related
amino acid metabolism genes between different risk groups
were presented in a heatmap. And the expression differences
of the amino-acid-metabolism-related pathways were ana-
lyzed by gene set enrichment analysis (GSEA) and gene set
variation analysis (GSVA) [11].

We estimated the prognostic value of the risk score by
conducting a survival analysis for the patients separated by
the median risk score, and receiver operating characteristics
curves (ROC) were utilized to access the accuracy of the
survival prediction of 1-year, 3-year, and 5-year by the risk
score, and the prediction accuracy was compared among risk
score, PCA cluster, and age.

2.3. Clinical Significance of the Risk Score and the Association
between the Classifiers. Apart from the ability for predicting
survival, we also evaluate the association between stages, age,
and risk score. 'e risk level was compared between three
stages and the age groups (separated by the median age of
59). Also, the ROC was applied to estimate the prediction
accuracy of clinical stages by the risk score, PCA cluster, and
age.

Subsequently, we performed unsupervised clustering of
all the ovarian cancer samples by consensus clustering using
the function “ConsensusClusterPlus” of the R package
“ConsensusClusterPlus.” We selected the best k value by
evaluating the cumulative distribution function (CDF) and
the relative change in area under CDF curve. Survival
analysis was used to access the prognostic significance of the
consensus clusters, and a Sanky plot was drawn to explicit
the distribution of the data flow among risk groups, PCA
cluster, and the consensus clusters.

2.4. Functional Analysis of the Transcriptional Diversity be-
tween Risk Groups. To clarify the biological changes caused
by the amino acid metabolism signature, we conducted
functional enrichment analyses using the gene sets from GO
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
datasets. Gene set enrichment analysis (GSEA) was con-
ducted to calculate the enrichment score of the biological
processes from GO or the pathways from KGG. Meanwhile,
gene set variation analysis (GSVA) [11] was performed to
compare the gene sets’ variation between the high-risk and
low-risk groups.

'e stemness diversity of all samples was calculated from
the signature (mRNAsi, EREGnRBAsi) calculated by in-
novative one-class logistic regression (OCLR) algorithm
[12], and it was compared between the risk groups.

2.5. Immune Landscape and Immunocyte Infiltration Diver-
sity between Risk Groups. Since the functional enrichment
analyses had indicated the involvement of immune-related
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biological processes and pathways, we first investigate the
immune landscape of the two risk groups by Estimation of
STromal and Immune cells in MAlignant Tumor tissues
using Expression data (ESTIMATE) analysis using the R
package “estimate” [13], and the ESTIMATEScore, Immu-
neScore, StromalScore, and TumorPurity were compared
respectively between the high-risk and low-risk group. As
for the immunocyte infiltration diversity, we utilized 4
different approaches to firmly evaluate the infiltrating levels
of various immunocytes between the two groups by the
function “deconvolute” of the R package “immunedeconv”
[14]. A heatmap (scaled by rows) and box plots were pre-
sented to visualize the differences.

2.6. Stimulating and Inhibitory Immune Checkpoint
Expression. 'e immune analyses suggested the immuno-
suppressive roles of high risk. We further explored whether
immune checkpoints were employed to facilitate the de-
pression of antitumor immunity. 'e expression of the 20
inhibitory and 35 stimulatory immune checkpoints [15]
between the high-risk and the low-risk groups was compared
and visualized by a heatmap and box plots. To further
validate the correlation between immune checkpoints and
amino acid metabolism, the enrichment levels of the amino-
acid-metabolism-related gene sets in the samples ranged by
immune checkpoint expression levels were analyzed by
GSVA.

2.7. AntitumorDrugDevelopment for Patients withHigh Risk.
To develop a novel therapeutic strategy for high-risk pa-
tients, we searched the connective map (cMap) and PRISM
compound databases to screen out high-sensitivity drugs.
'e top 50 compounds were presented in a heatmap
showing the opposite similarity between the effects of the
compounds and the transcriptional changes caused by the
amino acid metabolism signature on 9 cancer cell lines. 'e
mechanism of action (MoA) of these compounds, which
showed the effective mechanisms of drugs, were presented in
a scatter plot. 'e 50% inhibitory concentration (IC50) of
drugs in the PRISM database for all ovarian cancer patients
was predicted by the “callPhenotype” function of the R
package “oncoPredict” [16], using the input of a training cell
line expression matrix and a response matrix and the ridge
regression algorithm. 'e top 4 significant drugs with IC50
lower than 30 were analyzed, and their IC50 was compared
between the high-risk and the low-risk groups.

2.8. Cell Culture, Small-Interfere RNA Knockdown, and
Western Blot Detection of the Protein Levels of OV Cells.
'e A2780 cells were cultured in 10% FBS containing the
RPMI-1640 medium under 37°C and 5% CO2. 'e knock-
down of TPH1 was performed using small-interfere RNAs
with transfection reagents. After transfection for 48 hours,
the cells were harvested and lyzed using RIPA lysis buffer.
After ultrasound sonication and centrifugation, the proteins
were heated with loading buffer in a mental bath. 'e
electrophoresis and membrane transferring were conducted

according to the standard protocol. 'e membranes were
blocked with 5% skim milk powder and incubated with the
primary antibodies overnight under 4°C. After secondary
antibodies incubation, the membranes were washed, and the
bands were detected using chemiluminescence. Each ex-
periment was performed three times.

2.9. Clone Formation, Transwell Cell Migration, and Invasion
Assay. After the transfection of 48 h, the cells were harvested
and cultured at a low concentration (2000 cells per well) in a
6-well plate. After 14 days, the cells were washed with PBS
and stained using crystal violet. We counted the effective
clones to describe the clone formation ability of the cells. For
transwell assay, the cells were resuspended in RPMI-1640
medium containing 1% FCS and added to the upper
chamber with a concentration of 1× 104 cells per chamber.
'e lower room was filled with RPMI-1640 medium with
20% FBS. For invasion assay, each chamber was coated with
Matrigel diluted in the medium before cells were planted.
After incubation for 24 hours, the cells were stained with
crystal violet for 1 hour, and the cells in the upper chamber
were erased using a cotton swab. Each experiment was
performed three times.

2.10. StatisticalAnalyses. All the statistical analyses were run
on the R software. 'e mutual correlations of the genes were
quantified by Pearson’s correlation coefficient. All the sur-
vival analyses were examined by log-rank test, and the ROC
was used to calculate the AUC of the predictions. 'e risk,
gene expression, and immunocyte infiltration level differ-
ences between different groups were tested by Student’s t-
test or Wilcox test. Grouped comparison was tested by
ANOVA (for normally distributed variables) or the Krus-
kal–Wallis test (for non-normally distributed variables), and
Dunnett’s multiple comparisons test were applied as post
hoc test for ANOVA. P< 0.05 was considered statistically
significant. ∗, ∗∗, and ∗∗∗ referred to the P value less than
0.05, 0.01, and 0.001 respectively.

3. Results

3.1. PCA Clustering and Construction of an Amino Acid
Metabolism-Related Risk Score. In order to identify a sur-
vival-related amino acid metabolism signature for OV pa-
tients, we downloaded a gene list of 286 amino acid
metabolism from MsigDB of GSEA, and univariate Cox
regression was applied to screen out survival-related genes.
As a result, 19 genes were significantly associated with
patient survival and their mutual correlations were pre-
sented in Figure 1(a); most of the genes shared low corre-
lations. 'e genes that passed univariate analysis were then
used to conduct PCA clustering, 2 clusters were identified,
and the patients grouped in cluster 1 suffered a lower
survival rate (Figures 1(b) and 1(c)).

Subsequently, the LASSO regression was used to select
parameters to construct a risk score, and 17 genes were
retained with the lambda.min value of 0.0144 (Figures 1(d)
and 1(e)). 'e coefficients of the 17 genes are presented in
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Figure 1: PCA clustering and risk score construction using LASSO (a)'emutual correlations of the genes that passed the univariate cox analysis.
(b)'e PCA clustering of the patients based on the genes in Figure 1(a). (c)'eKaplan–Meier curves show the ability of the PCA clusters 1 and 2 in
separating patient overall survival rate. (d) LASSO coefficients profiles. (e) LASSO deviance profile for selecting the best numbers of parameters. (f):
Coefficients of the retained predictors. (g) Kaplan–Meier curve shows the survival prediction ability of the risk score. (h) ROCpresents the predictive
accuracy of 1-, 3- , 5-year overall survival of the risk score. (i) Comparison of the survival predictive accuracy between risk score, PCA cluster, and age.
PCA, principal component analysis; LASSO, the least absolute shrinkage and selection operator; ROC, receiver operating characteristic curve.
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Figure 1(f), 14 genes were identified as risky genes, and 3
were protective genes. According to the median risk score,
all patients were classified into high-risk or low-risk groups.
We validated that the amino-acid-metabolism-related genes
that passed the univariate analysis were differentially
expressed between the risk groups, as IDO, WARS1, RARS2,
HPDL, DGLUCY, and SLC7A11were highly expressed in the
low-risk group, and the remaining were highly expressed in
the high-risk group, which was consistent with the results of
their coefficients (Supplementary Figure S1A). 'e GSEA
and GSVA of the amino-acid-metabolism-related gene sets
exhibited a series of elevated pathways (Supplementary
Figures S1B, S1C).

To test the risk score’s ability to predict the survival rate,
survival analysis was conducted on the patients in the high-
risk and low-risk groups, and the high-risk group exhibited a
significantly lower survival rate (Figure 1(g)). 'e prediction
accuracy was examined by ROC, and the risk score can
predict patient 1-year, 3-year, and 5-year survival rate with
the area under curve (AUC) values of 0.661, 0.717, and 0.706,
respectively, and the predictive performance of the risk score
outperformed PCA cluster and age (Figures 1(h) and 1(i)),
indicating that the risk score harbored a high prognostic
value.

3.2. High Risk Associated with Higher Cancer Stage, High Age,
andPCACluster 1. 'e clinical significance of the risk score,
except for survival rate, was then explored. As depicted in
Figures 2(a) and 2(b), samples with stages III and IV, and age
above 59 years exhibited higher risk compared to stages I∼II
and the low age group. 'e accuracy of stage prediction by
risk score, PCA cluster, and age was evaluated by ROC, and
the risk score showed the highest AUC value (Figure 2(c)).

Additionally, we conducted unsupervised classifying
using consensus clustering, and all the samples were divided
into 2 clusters according to the best k value (Figures 2(d)–
2(f)). However, the consensus clusters did not separate the
survival rate of patients (Figure 2(g)). 'e correlations be-
tween risk groups, PCA clusters, and consensus clusters were
visualized in a Sanky plot, and almost all the high-risk
distributions flowed to PCA cluster 1 (Figure 2(h)).

3.3. Amino Acid Metabolism Was Involved in Extracellular
BiologicalActivities inOV. To investigate the biological roles
of amino acid metabolism in OV, we conducted GSEA and
GSVA of the biological processes from the GO database and
the pathways from the KEGG database. For the GO bio-
logical processes, we noticed that mesenchymal stem cell,
fibroblast, and macrophage-related activities were highly
enriched in the high-risk group, and the cell adhesion was
negatively regulated (Figure 3(a)). Similarly, the GSVA re-
sults of GO showed mesenchymal cell-related pathways.
Notably, the GSVA results also presented down-regulated
immunity in the high-risk group (Figure 3(b)). As for the
enrichment results from KEGG, we found the activated
TGF-β signaling pathway and ECM-receptor interaction
via both GSEA and GSVA. Moreover, the GSVA of KEGG
discovered the active regulation of the cytoskeleton. 'ese

results suggested that the high amino acid metabolism
status of OV may facilitate the interaction between the
mesenchymal stem cell differentiation, fibroblasts, and
cancer cells, and led to immunological changes and cell
migration.

We then calculated the stemness of the OV samples and
compared it between the risk groups. We noticed that the
mRNAsi was lower in the high-risk group, indicating the
stem cell differentiation in the high-risk group, although
EREGmRNAsi was not significantly different (Figures 3(e)
and 3(f)).

3.4. �e High Risk of OV Was Related to High Cancer-Asso-
ciated Fibroblasts and Low CD8+ T-Cell Infiltration. To seek
the diversity of the immune status caused by the amino acid
metabolism signature, we first calculated the ESTIMATE of
the samples. As presented in Figure 4(a), the high-risk group
showed higher ESTIMATEScore, StromalScore, and lower
TumorPurity. We employed 4 different approaches to cal-
culate the immunocyte infiltration to go further with the
immune infiltration.'e heatmap of the immunocyte results
exhibited that cancer-associated fibroblast infiltration,
identified by both the Xcell and Epic algorithms, increased as
the risk grew (Figure 4(b)). We then conducted statistical
comparisons of immunocyte levels between the high-risk
and low-risk groups. 'e cancer-associated fibroblasts were
significantly enriched in the high-risk group according to the
Epic and Xcell approaches (Figures 4(c) and 4(d)). Besides,
we noticed that the enrichment of CD8+ T cells was lower
(Figures 4(c)–4(e)) and macrophages were higher in the
high-risk group (Figures 4(d)–4(f )). 'e immune landscape
of the OV indicated that the immunity was affected.

3.5. High Risk Was Associated with a Higher Level of CD276
and TGFB1. Immune checkpoints have been discovered as
critical factors contributing to immunity depression. Hence,
we compared the expression of the immune checkpoint
between the risk groups. As the heatmap showed, many
stimulatory immune checkpoints seemed to decrease as the
risk grew, including CXCL10, BTN3A1, BTN3A2, CD40LG,
GZMA, PRF1, CD27, CXCL9, IFNG, CD80, and ICOS, while
the inhibitory immune checkpoints TGFB1 and CD276
seemed to increase (Figure 5(a)). 'e expression of those
molecules was then compared between the risk groups. As
exhibited in Figure 5(b), the expression of BTN3A1,
BTN3A2, CD27, CD40LG, CD80, ICOS, IFNG, IL2, IL2RA,
and PRF1 was decreased in the high-risk group. As for
inhibitory immune checkpoints, we noticed that CD276 and
TGFB1 were upregulated in the high-risk group, suggesting
their roles in mediating immune suppression. To further
confirm the association between amino acid metabolism and
CD276 and TGFB1, we analyzed the amino-acid-meta-
bolism-related gene set enrichment levels in samples ranged
by CD276 and TGFB1, respectively. As presented in
Figure 5(d) and Figure 5(e), the enrichment levels of these
gene sets increased as the expression of CD276 and TGFB1
was elevated.
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3.6. Development of Novel Drugs Targeting the High-Risk OV.
For the high-risk OV patients, we sought for more sensitive
compounds to treat them. 'e cMap online tool was
employed to analyze the transcriptional changes that arose
from the median risk score, the top 50 compounds with
opposite transcriptional disturbance to those that arose by
median risk score were presented in a heatmap, and their
MoA was also shown (Figures 6(a) and 6(b)). 'e most
associated compound was chaetocin, a histone lysine
methyltransferase inhibitor, and three of the compounds
were adrenergic receptor agonists.

We further explored the PRISM database for potential
sensitive drugs, the top 4 drugs with the most remarkable
fold change and IC50 less than 30 were selected, and their
IC50 was compared between the high-and low-risk group,
where the drug BRD-K47000838-001-01-6 showed the
lowest IC50 in the high-risk group (Figures 6(c)–6(f)).

3.7. Knockdown of TPH1 Expression Depressed the Clone
Formation, Migration, and Invasion Ability of OV Cancer
Cells. We performed the western blot detection of the
protein levels in control, TPH1-si-RNA-#1, and TPH1-si-
RNA-#2 groups. As exhibited in Figures 7(a) and 7(b), the
protein levels in TPH1-si-RNA-#1 and TPH1-si-RNA-#2
groups were decreased. 'e clone formation assay results
showed that the clone assay of OV cancer cells in the TPH1-
si-RNA-#1 and TPH1-si-RNA-#2 groups was depressed
(Figure 7(c)). Similarly, the transwell results also presented

that TPH1 knockdown inhibited the OV cancer cell migration
and invasion (Figure 7(d)). 'e quantification results of these
experiments are shown in Figures 7(d)–7(g). 'ese results
implied the oncogenetic roles of TPH1 in OV cancers.

4. Discussion

Amino acid metabolism controls the protein synthesis of
cells, which are the most critical components in cellular
activities. Here, we built a risk score for OV patients based
on the amino acid metabolism signature using LASSO.

Previously, many metabolism-related cancer risk scores
have been reported to predict the overall survival of OV
patients, including total metabolism, energy metabolism,
and lipid metabolism signature. However, the roles of amino
acid metabolism in affecting OV patients’ survival have not
been explored so far. Herein, we first established an amino
acid metabolism-based risk score in OV cancers and
revealed its roles in patient survival. 'is risk score can
predict patient survival, especially long-term survival, with
high accuracy, outperforming the previous metabolism-re-
lated models [17, 18]. And similarly, it can predict the
clinical stage of OV cancers with high performance as well.
'e diversity of the expression pattern of the amino-acid-
metabolism-related genes and gene sets validated the as-
sociation between the risk score and amino acid metabolism.

Amino acid metabolism plays an important role in
regulating anticancer immunity in many cancers. As the
previous studies found, the metabolites of tryptophan
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Figure 4: Continued.
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metabolism supported tumor-associated macrophages to
facilitate immunosuppression in pancreatic cancer [19].
High levels of arginase that catalyze the L-arginine can
inhibit the proliferation of antigen-specific T cells in lung
cancer [20]. Besides, serine and glycine metabolism can
destroy the anticancer function of macrophages and neu-
trophils [21]. In OV cancers, only glutamine was found as a
key molecule in modulating myeloid-derived suppressor
cells (MDSCs) activities, and targeting glutamine can ease
the immunosuppressive effects led by MDSCs [22], and the
evidence of the association between amino acid metabolism
and cancer immunosuppression is still lacking. In this study,
we discovered the potential association between highly
infiltrated cancer-associated fibroblasts, decreased CD8+
Tcells, and the amino acid signature, and to our knowledge,
this is the first study revealing this association.

For the potential underlying mechanism, fibroblasts
were found to utilize the extracellular lactate, which pro-
moted their amino acid biosynthesis and inhibited the tri-
carboxylic acid (TCA) cycle [23]. 'e acidification of the
microenvironment was attributed mainly to the glycolysis of
cancer [24], which transferred the cancer cells from TCA to
macromolecule metabolism and lactate production. 'is
may also be one of the factors explaining the association
between amino acid metabolism and fibroblasts in the tumor
microenvironment. But importantly, amino acid biosyn-
thesis, such as glycine and proline, directly provided the
substrates for extracellular collagen production and as-
sembly, and this may result from the glycolysis in fibroblasts
themselves [25]. Apart from collagen production, fibroblasts
were also found to provide necessary fuels (such as lactate,
amino acids, and fatty acids) to cancer cells, and this process
was facilitated by cancer cell-derived paracrine oxidative
stress [26]. Shortly, the amino acid metabolism triggered by
the glycolysis inside the fibroblasts or the lactate stimulation
from cancer cell glycolysis promoted the extracellular matrix
production and fuel provision for cancer cells, leading to

immunity exclusion and cancer growth support. A study has
reported that the inhibition of a metabolism enzyme of the
tryptophan of fibroblast restored the T-cell response in vivo
[27], and this was in accordance with our finding that CD8+
Tcells were decreased in the high-risk group, indicating that
T cells were the main immunosuppressive target of fibro-
blasts driven by abnormal amino acid metabolism.

For the molecular discoveries of the high-risk distur-
bance in OV cancer, we noticed the elevated expression of
TGFB1.'is discovery further confirmed the involvement of
fibroblasts in high-risk OV cancer, since TGFB1 is the driver
of collagen accumulation produced by fibroblasts and im-
mune suppression, and the inhibition of TGF-β signaling
pathway and expression of LOXL2 depressed the fibroblast
activities and pathological collagen accumulation [28].
Moreover, the inhibition of TGF-β1 improved the function
of CD8+ T cells [29]. 'ese suggested that abnormal amino
acids employed TGF-β signaling pathway to control the
microenvironment alteration. Interestingly, we also noticed
the elevated CD276 expression in the high-risk group.
CD276 has been reported to increase HIF-1α expression and
promote the glycolysis of cancer cells [30]. 'is provided a
hypothesis that the high-risk OV cancers highly expressed
CD276 to enhance glycolysis, which directly stimulated the
amino acid metabolism of fibroblast or acidated the mi-
croenvironment to prompt fibroblast metabolism. At the
same time, they expressed TGFB1 to promote fibroblast
activities, and as a result, both the two pathwaysmay support
tumor growth and depress normal immunocytes, like Tcells.
For the association between the two immune checkpoints
and amino acid metabolism, only a recent study has dem-
onstrated that glutamine metabolism inhibition decreased
CD276 expression and enhanced granzyme B produced from
CD8+ T cell via ROS [7]. And there is no evidence of the
correlation between amino acid metabolism and TGFB1.
Hence, our study presents a novel mechanism of immune
checkpoints-mediated effects on OV cancers.
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Figure 4: ESTIMATE and immunocyte infiltration. (a) comparison of ESTIMATEScore, ImmuneScore, StromalScore, and TumorPurity
between the risk groups. (b) A heatmap shows the immunocyte infiltration by QuanTIseq, Epic, Xcell, and timer algorithms. (c)–(f ) Box
plots displayed the comparison of different immunocyte enrichment levels between risk groups by epic (c), Xcell (d), QuanTIseq (e), timer
(f ). ESTIMATE, Estimation of STromal and immune cells in MAlignant Tumor tissues using Expression data.
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In this study, we finally confirmed the oncogenetic role
of TPH1 in OV cancer. TPH1 catalyzed the reaction of
enhanced degradation of tryptophan to serotonin, and its

oncogenetic has been discovered in breast cancer, bladder
cell carcinoma, and colon cancer [31–33]. Similarly, we
found that the knockdown of TPH1 inhibited OV cancer
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Figure 6: Development of risk-sensitive drugs to OV patients. (a) and (b) A heatmap presents the top 50 cMap compounds causing opposite
transcriptional disturbance to that caused by the median risk (a) and the scatter plot shows their correspondingMoA (b). (c) Comparison of
the IC50 levels between the risk groups of 4 drugs from PRISM database. cMap, connective map; MoA, mechanism of action; PRISM,
profiling relative inhibition simultaneously in mixtures.
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Figure 7: Continued.
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clone formation and migration ability, which is consistent
with previous findings. Interestingly, TPH1 participated in
mast cell-mediated immunosuppression, indicating its po-
tential role in tumor-supporting and immunity depression
[33]. However, this requires further investigation.

5. Conclusion

Comprehensively, we identified a novel risk score based on
OV cancer amino acid metabolism, the risk score pre-
dicted survival and tumor stages with high accuracy, and
the oncogenic role of the risky gene TPH1 was experi-
mentally validated. We also discovered the immunological
roles of amino acid metabolism signature. 'e high-risk
group was associated with increased cancer-associated
fibroblast infiltration and decreased CD8+ T cells. Besides,
the immune checkpoints CD276 and TGFB1 were highly
expressed. We believe this study sheds light on the un-
derstanding of the association between amino acid
metabolism and immunosuppression in OV cancer. It will
benefit patients with better prognostic management and
provide novel targets for developing more effective ther-
apeutic strategies.
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