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Temporal preferences of animals and humans often exhibit inconsistencies, whereby an earlier, 
smaller reward may be preferred when it occurs immediately but not when it is delayed. 
Such choices reflect hyperbolic discounting of future rewards, rather than the exponential 
discounting required for temporal consistency. Simultaneously, however, evidence has 
emerged that suggests that animals and humans have an internal representation of time that 
often differs from the calendar time used in detection of temporal inconsistencies. Here, we 
prove that temporal inconsistencies emerge if fixed durations in calendar time are experienced 
as positively related (positive quadrant dependent). Hence, what are time-consistent choices 
within the time framework of the decision maker appear as time-inconsistent to an outsider 
who analyzes choices in calendar time. As the biological clock becomes more variable, the fit 
of the hyperbolic discounting model improves. A recent alternative explanation for temporal 
choice inconsistencies builds on persistent under-estimation of the length of distant time 
intervals. By increasing the expected speed of our stochastic biological clock for time farther 
into the future, we can emulate this explanation. Ours is therefore an encompassing theoretical 
framework that predicts context-dependent degrees of intertemporal choice inconsistencies, to 
the extent that context can generate changes in autocorrelation, variability, and expected speed 
of the biological clock. Our finding should lead to novel experiments that will clarify the role of 
time perception in impulsivity, with critical implications for, among others, our understanding 
of aging, drug abuse, and pathological gambling.
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time perception. The neurobiological mechanism behind the bio-
logical clock has recently become a topic of intense study (Buhusi 
and Meck, 2005).

We start from the preposition that discounting is exponential, 
as required for time-consistent choice. At the same time, we posit 
that the internal representation of time (under which discounting 
occurs) varies stochastically (randomly) from calendar time. This is 
illustrated in Figure 1: two events at times 0 and ∆ in calendar are 
experienced to occur at t

0
 = F(0) and t∆ = F(∆) in biological time, 

where F is some stochastic (random) transformation F.
Now consider two events at a later time s and s + ∆, separated 

by the same amount of (calendar time) delay ∆. The times s and 
s + ∆ are transformed to t

s
 = F(s) and t

s + ∆ = F(s + ∆) in biological 
time. Although the delay between the pair of events is the same 
in calendar time, the corresponding delay between the events in 
biological time, t∆ − t

0
 and t

s + ∆ − t
s
 are generally different.

We assume that the biological clock is positive quadrant depend-
ent (Esary et al., 1967). Intuitively, this means that if t

s
 is small, the 

chance increases that the subsequent interval t∆ − t
s
 is small too. It 

implies positive autocorrelation, i.e., cov(t
s
, t

s + ∆ − t
s
) > 0. And cru-

cially, it implies that discount factors are positive autocorrelated: 
cov(exp(−t

s
), exp(−(t

s + ∆ − t
s
))) > 0. We also assume that increments 

in biological time are stationary: the distribution of time changes 

1 IntroductIon
Suppose we are asked to choose between $10 now or $11 tomorrow. 
We may prefer the $10 immediately rather than the $11 received 
after a day. However, if we are offered to choose between $10 to 
be received after 364 days, or $11 after 365 days, we often prefer to 
wait the additional day for the extra dollar. After waiting 364 days, 
the latter choice becomes one between an immediate $10 or $11 
tomorrow. Now we would want to reverse it, asking for the $10 
immediately, rather than waiting the extra day we seemed to have 
been willing to accept in the past. This time inconsistency can be 
modeled using hyperbolic discounting of future rewards (Laibson, 
1997). To avoid inconsistencies, rewards should be discounted 
exponentially over time (Sutton and Barto, 1998).

Here, we conjecture that hyperbolic discounting has a rational 
explanation, based on the generally accepted principal that the 
animal and human biological clocks tick at a different rate from the 
calendar clock. Animals and humans are indeed known to main-
tain an internal representation of time that differs from standard 
calendar time and whose properties change with time scale, from 
microseconds up to years, with representations of (calendar) time 
at larger scales showing the highest variability (Buonomano, 2007). 
In humans, drugs (Meck, 1998; Wittmann et al., 2007), and age 
(Mischel et al., 1989), among other things, are known to influence 
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late (3 units under the biological clock) is weighted less, because it 
occurs farther in time; it is discounted with exp(−3); the weighted 
value in that case is exp(−3)*0.538 = 0.027. In expectation, the value 
of receiving K at s + ∆ equals (0.538 + 0.027)/2 = 0.283.

Compare this to getting $1 at s = 2. There is no loss or gain (one 
always gets $1). With 50% probability, the dollar arrives early (1 unit 
in biological time), and its discounted value is exp(−1) = 0.368, and 
with 50% chance the dollar arrives late (3 units under the biological 
clock), and its discounted value is exp(−3) = 0.050. In expectation, 
the value equals (0.368 + 0.050)/2 = 0.209. This is strictly less than 
the value of getting K delayed (0.283).

Hence, while K was set to be indifferent between receiving $1 
now and K dollars at ∆, the promise of K at s + ∆ is worth more 
than getting $1 at s.

The astute reader will have noticed that the positive dependence 
of the biological clock is not really needed to get time inconsist-
encies. They occur also with negative dependence. However, with 
positive dependence, the decision maker will always prefer to wait 
when comparing options in the future for which she is indifferent 
now. That is, she looks more patient when deciding about payoffs 
in the future. This is the classical time inconsistency that has led 
to modeling of intertemporal choice using hyperbolic discount-
ing. With negative dependence, the decision maker looks more 
patient in the immediate future than when considering options 
in the far future.

2 SImulatIonS
We now illustrate that hyperbolic discounting provides a good fit to 
the choices resulting from positive temporal dependence of biologi-
cal time. To model biological time, we choose the lognormal dis-
tribution (Jaynes, 2003), which has a continuous positive support. 
Under the biological clock, any two time increments, such as t∆ − t

0
 

and t
s + ∆ − t

s
, are jointly lognormal. When the time increments are 

positively correlated, they will also be positive quadrant depend-
ent (this follows from Pitt, 1983), and hence, the corresponding 
discount factors will be positively correlated as well.

To make the example concrete, consider the choice between a 
payoff of 1 at time 0, and 1 + K at a delay (in calendar time) of 
∆ = 0.5. We compare this to a pair of later options equally distanced 
in calendar time, at s = 2 and at s + ∆ = 2.5. In biological time, 
these events are at t

0
 = 0 and t∆ for the first pair, t

s
 and t

s + ∆, for the 
second pair. The time of payoff delivery under the biological clock 
is a random variable.

We obtain the values of the options by Monte Carlo sampling. 
To generate the samples, we consider n increments in biological 
time, t

1
,…, t

n
, that correspond to time increments of 0.5 units in 

calendar time. The n increments in biological time are drawn from 
a multivariate lognormal distribution with common mean 0.5 and 
unit variance. The correlations between the increments are posi-
tive, but decrease exponentially as they are farther apart in time. 
We encode the correlation structure as a covariance matrix with 
diagonals equal to 1, and covariances equal to r, r2,…, rn − 1 in the 
off-diagonal spots (see Appendix). We obtain instances in biological 
time by adding increments: t∆ = t

1
, t s i i= ∑ =1

4 t , and t s i i+ == ∑∆ 1
5 t . 

These formulae reflect the fact that the biological expiration time of 
the delayed early option occurs after one increment, while the two 
later options mature after four and five increments, respectively.

does not depend on when they occur; the distribution of t∆ − t
0
 

is the same as that of t
s + ∆ − t

s
. The following theorem states the 

main result.

theorem: PoSItIve dePendence In bIologIcal tIme ImPlIeS 
temPoral choIce InconSIStency
The rigorous proof of the theorem is provided in the Section 
“Appendix,” that the reader is encouraged to peruse. Here we aim to 
provide the intuition with a simple numerical example. We envisage 
delivery of $1 now or K dollars at ∆ (a point in calendar time). K is 
to be chosen so that there is indifference. We then compare delivery 
of $1 at s = 2 with delivery of K dollars at s = 2 + ∆.

The biological clock is as follows. Either s feels like it takes 1 unit 
of (biological) time, or it takes 3 units, with an average of 2 units. 
∆ is on average half the length; it feels either short (0.5 units) or 
long (1.5), with an average of 1 unit.

The biological clock is positive quadrant dependent. We will 
make the dependence perfect, to simplify the argument. When s 
feels like it takes 1 unit, the subsequent ∆ will take 0.5 unit; when s 
feels long (2 units), the subsequent ∆ is long as well, at 1.5 units.

As mentioned, K is set so that there is indifference between 
getting $1 now and K dollars at ∆. Today’s value of K is 0.5*exp
(−0.5) + 0.5*exp(−1.5)*K, because with 50% probability, delivery 
is felt like taking place in 0.5 units of (biological) time, and with 
50% chance, it feels like it takes place 1.5 time units in the future. 
We set K so that today’s value equals $1. So, K = 2/(exp(−0.5) + 
exp(−1.5)) = 2.411.

Essentially, K is set so that the gain of having to wait a short time 
(only 0.5 units of biological time) is offset by the loss in value for 
having to wait a long time (1.5 units). The former gain (relative 
to today’s $1) is 2.411*exp(−0.5) − 1 = 0.462, or 46.2%; the latter 
loss equals 1 − 2.411*exp(−1.5) = (1 − 0.538) = 46.2%. The gains 
and losses offset.

As for delivery of K at s + ∆, notice that, while the gain and loss 
from waiting an extra ∆ beyond s have equal probability of occur-
ring, they are discounted differently. The gain occurs when s = 2 
arrives early under the biological clock (1 unit); this is weighted 
more heavily, because it is discounted with only exp(−1); its 
weighted value is exp(−1)*1.462 = 0.538. The loss when s = 2 arrives 

Figure 1 | The calendar time and biological time evolve at different 
rates. Two equal intervals (0, ∆) and (s, s + ∆) in calendar time (horizontal axis) 
translate into unequal intervals (t0, t∆) and (ts, ts + ∆) in biological time (vertical 
axis). The function F(·) depicts one possible realization of the (stochastic) 
transformation from calendar to biological time.



www.frontiersin.org January 2011 | Volume 5 | Article 2 | 3

Ray and Bossaerts Time perception and hyperbolic discounting

For the first option pair, the value of the immediate option is 
1, and the option with payoff at (calendar time) ∆ = 0.5, is val-
ued at E e Kt[ ( )],− +∆ 1  assuming a unit discount rate (in biological 
time). Monte Carlo analysis based on N(=106) samples of t∆ esti-
mates this to be (1/N e Ki

N ti

) ( ).∑ +=
−

1 1∆  For K = 0.78, we find that 
E e Kt[ ( )] ,− + ≈∆ 1 1  i.e., the decision maker is approximately indiffer-
ent between immediate delivery of $1 and a payoff of $1.78 after a 
delay of ∆ = 0.5 units of calendar time.

For the pair of options at the more distant future, the values 
of the early and later options are estimated to remain approxi-
mately equal when time increments are independent, i.e., r = 0 
( [ ( )] [ ( )] . ).E e E e Kt ts s− −≈ + ≈+1 1 0 056∆  When time increments are 
positively correlated, i.e., r > 0, the later option is valued more 
highly, in accordance with our Theorem. For example, when r = 0.5, 
the early option has value E e ts[ ( )] . ,− ≈1 0 091  and the later option 
has value E e Kts[ ( )] . .− + + ≈∆ 1 0 104  So the decision maker prefers to 
wait to receive $1.78 later, while he was indifferent between an 
immediate $1 and $1.78 after an equally long delay of ∆ = 0.5. We 
thus have obtained a temporal inconsistency.

We can obtain a discounting curve by evaluating payoffs at 
various delays, as in the previous example. We generated n(=10) 
increments, t

1
,…, t

n
, of length ∆ = 0.5. The time indicated by 

the biological clock at calendar time s is given by t s i
s

i= =Σ 1t .  The 
value of a payoff of $1 at time 0 is 1, and at (calendar) time s is 
E e ts[ ( )]− 1  (we continue to use a unit discount rate.) The values 
obtained for each point in calendar time can then be compared to 
valuation with hyperbolic discounting (in calendar time), assum-
ing a discount factor is 1/(1 + ks). We find the best-fitting value of 
k by minimizing the squared error between the theoretical values 
under the hyperbolic function, and that generated by our Monte 
Carlo procedure. Similarly, we can also obtain a comparison with 
valuation (in calendar time) assuming exponential discounting, 
where the discount factor equals e−ds. The discount rate d is also 
obtained by minimizing the squared error.

We are interested, in particular, in the effect of the correlation 
parameter r of the biological clock on the shape of the discounting 
curve. When autocorrelation equals zero (r = 0), the discounting 
curve is pretty much exponential, as shown in Figure 2 (Top). The 
best-fitting exponential curve has d = 0.3; this differs from the true 
discount rate (1) because the latter only applies to biological time. 
The hyperbolic curve has k = 2.75, but its fit is worse. Figure 2 
(Bottom) illustrates how, when the autocorrelations are very high 
(r = 0.97), hyperbolic discounting provides the better fit. The best-
fitting exponential discount rate equals d = 0.45, and the hyperbolic 
discount rate is estimated at k = 1.75.

Variability in the mapping from calendar to biological time 
also plays a role. In the limit, when the biological clock is accu-
rate (i.e., the mapping is deterministic, and, because we assume 
a constant speed for the biological clock, linear), we of course 
obtain exponential discounting in calendar time. Section A3 in 
Appendix shows how variability induces increased convexity in 
the  discounting curve.

3 dIScuSSIon
Time inconsistencies, like the ones that led to modeling time prefer-
ences with hyperbolic discounting, arise when the biological clock 
advances randomly in calendar time, and increments in biological 
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Figure 2 | (Top) No autocorrelation of biological time (r = 0). The 
discounting curve in biological time is exponential with discount rate equal  
to 1. It generates the dotted discounting curve in calendar time (“ZeroCorr”). The 
best exponential (“Exp”) fit in calendar time produces a discount rate of 0.30, 
and the best hyperbolic fit (“Hyp”) has a discount rate equal to 2.75. (Bottom) 
Very high autocorrelation of biological time (r = 0.97). The discounting curve 
in biological time is exponential with discount rate equal to 1. It generates the 
dotted discounting curve in calendar time (“HighCorr”). The best exponential 
(“Exp”) fit in calendar time produces a discount rate of 0.45, and the best 
hyperbolic fit (“Hyp”) in calendar time has discount rate equal to 1.75.

time are positively dependent. When measured in calendar time, 
discounting becomes increasingly hyperbolic as the biological clock 
becomes more highly correlated and more variable.

Prior to our result, hyperbolic discounting emerged in a norma-
tive (i.e., fully rational) model because discount rates were assumed 
to be stochastic (Farmer and Geneakopolos, 2009). Our rational 
explanation of hyperbolic discounting does not rely on random 
discounting, but on randomness in the transformation between 
calendar time (which determines payoff times) and biological time 
(which is relevant for decision making). The two explanations can 
be shown to be related mathematically, but they are biologically 
very different. Specifically, stochastic time perception is biologi-
cally plausible, while stochastic discounting is rarely considered 
outside the arcane world of mathematical finance. An exception 
is Skog (1997).
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of temporal dependence of the biological clock is novel, however, 
and may elucidate timing anomalies that an independent clock 
cannot explain (Machado and Keen, 1999). Positive temporal cor-
relation in the internal clock is neurobiologically plausible; it may 
be supported by the positive autocorrelations recently discovered 
in human brain activity oscillations, displaying slow decreases 
even over thousands of cycles (Linkenkaer-Hansen et al., 2001, 
2004), not unlike those generated by fractional Brownian motions 
(Mandelbrot and Van Ness, 1968). It is unknown to what extent 
this generalizes to longer time horizons, however.

Our theoretical framework provides a potentially unifying 
account for recorded time preferences. This is fortunate, because 
hyperbolic discounting is known to not be universal, with the shape 
(and level) of discounting changing with context (Scholten and 
Read, 2010). Context-dependence is consistent with our theory, 
which implies exponential discounting when the speed of the 
internal clock is expected to be constant, and the relation between 
calendar time and biological time accurate, or increments in biolog-
ical time uncorrelated. Hyperbolic discounting emerges when the 
biological clock exhibits temporal dependence, or when its speed 
is expected to decrease in the more distant future. Future research 
should clarify which features of the biological clock can account 
for the observed context-dependence of discounting. In Scholten 
and Read (2010), intertemporal preferences were observed to be 
different depending on whether a time interval is divided up, or 
time is extended by adding intervals. In principle, our theory could 
accommodate such differences, but it may require the biological 
clock to not be self-similar (Mandelbrot and Van Ness, 1968); that 
is, its temporal properties may have to change as one moves from 
coarser to finer sub-divisions of time.

Our theorem provides a new, unifying framework to study time 
perception and how it relates to impulsivity in temporal decision 
making (Wittmann and Paulus, 2008). Our linking the phenom-
ena of biological time and intertemporal discounting should lead 
to novel studies of the symptoms and causes of many disorders 
involving anomalous time perception, such as attention-deficit 
hyperactivity syndrome, borderline personality disorder, anxiety 
disorder, and schizophrenia.
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Other rational explanations of hyperbolic discounting focus on 
specific forms of uncertainty about the ability of the payer to deliver 
the future payment (because he is bankrupted) or of the payee to 
receive it (because she may have deceased beforehand). When the 
hazard rate is stochastic, the apparent discount rate can be shown to 
become stochastic (see Sozou, 1998; Azfar, 1999; Sozou and Seymour, 
2003). However, payment uncertainty cannot provide a comprehen-
sive explanation. In particular, it fails to explain hyperbolic discount-
ing in experiments where design precludes bankruptcy and where the 
time horizon is too short for significant effects from sudden inability 
of the payee to take delivery (e.g., Kable and Glimcher, 2007).

Our explanation of hyperbolic discounting assumes that dis-
counting is exponential in biological time. Consistent with this, 
temporal discounting has empirically been shown to have an expo-
nential form when subjective estimates of time elapsed are taken 
into account (Zauberman et al., 2009). Other work has shown that 
discounting is hyperbolic if subjects perceive realizations of future 
events to be uncertain (Dasgupta and Maskin, 2005).

The importance of perceived time in discounting has been 
pointed out before (Kim and Zauberman, 2009; Nakahara and 
Kaveri, 2010), but because random time changes were never con-
sidered, some type of misperception had to be invoked to generate 
hyperbolic discounting and the associated choice inconsistencies. 
Specifically, in Kim and Zauberman (2009), Nakahara and Kaveri 
(2010), the mapping from calendar to biological time is concave, 
so that increments farther in calendar time are expected (under the 
biological clock) to become shorter, inconsistent with the actual 
experience once the future arrives. In contrast, in our case, the speed 
of the biological clock is in tune with the calendar time, on average. 
Our approach relies on variability in the estimates.

Still, we can emulate the misperception of Kim and Zauberman 
(2009), Nakahara and Kaveri (2010) by increasing the expected 
speed of the biological clock for time farther into the future, or 
equivalently, decreasing the drift in the mapping from calendar to 
biological time. This generates concavity in the (random) map-
ping from calendar to biological time, and hyperbolic discounting 
adequately captures the resulting intertemporal choices; see Section 
A4 in Appendix. Positive dependence in the biological clock is no 
longer needed; nor is variability. As such, our framework encom-
passes explanations that rely on concavity in the mapping from 
calendar to biological time.

Stochasticity in time perception has long been accepted in psy-
chology. Gibbon et al. (1984), e.g., uses a random clock process to 
explain response accuracy in animal timing tasks. Consideration 
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The biological time after s increments is given by: t s i
i s= ∑ =
=

1 ti .

a3. IncreaSed randomneSS In the maPPIng from calendar to 
bIologIcal tIme
Simulations are performed as for Figure 2. We set the autocorrela-
tion of the biological clock (r) equal to 0.3, and increase variability 
(variances of the multivariate lognormal distribution of biological 
time intervals) from 0.50 to 1 and 4 (the middle case is the value 
used to generate Figure 2). Variability generates increased convexity 
in the discounting curve in calendar time. See Figure A1.

a4. concave maPPIng from calendar tIme to bIologIcal tIme
The time increments t

1
,
 
t

2
,…, t

n,
 are generated according to a multi-

variate lognormal distribution. To generate concavity (on average) in 
the (stochastic) mapping from calendar to biological time, we let the 
drift in the mapping from calendar to biological time decrease with 
time. The expected length of the kth interval in biological time equals: 
E[t

k
] = (0.5k)g − (0.5(k−1))g, where g < 1 (e.g., g = 0.5). The covariance 

matrix is identity, thus assuming no correlation across increments. As 
before, the biological time after s increments is given by: t s i

i s
i= ∑ =

=
1 t .
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We set g = 0.5. In Figure A2 we find that the discounting curve 
generated by the concavity in the relation between calendar and 
biological time is best modeled as hyperbolic.

aPPendIx
a1. Proof of the maIn theorem
Theorem: positive correlation in biological time implies temporal 
choice inconsistency
Proof. To prove this theorem, we start with setting the exponential 
discount rate (in biological time) equal to 1. This is without loss 
of generality; any other discount rate would work. Now pick an 
amount K so that the decision maker is indifferent between an 
immediate (at time 0) payoff of 1 and a payoff of 1 + K after a delay 
∆(>0). Again without loss of generality, we set the initial biological 
time t

0
 = 0 (although at times we will keep t

0
 explicit, for clarity). 

Let t∆ be the time that will have passed according to the biological 
clock by the time the calendar clock indicates ∆. Because of the 
preference of our decision maker, the valuations corresponding to 
the immediate option (left-hand side) and to the delayed option 
(right-hand side) are equal:

 1 10= +− −E e Kt t[ ( )]( )∆

 (1)

Now consider the valuation of 1 at some later time s, as well 
as that of 1 + K at the same time s plus the delay ∆. The cor-
responding times according to the biological clock are t

s
 and 

t
s + ∆ respectively. The increment from s to s + ∆ equals t

s + ∆ − t
s
 

in biological time. The (time 0) value of the payoff of 1 at (cal-
endar time) s equals E e ts[ ],−  and the value of the payoff of 1 + K 
at s + ∆ equals

 E e K E e e Kt t t ts s s s[ ( )] [ ( )]( )− − − −+ ++ = +∆ ∆1 1  (2)

We assume that calendar time increments are perceived to be 
positive quadrant dependent. Hence, cov e et t ts s s( , ) ,( )− − −+ >∆ 0  or, 
applying the definition of covariance,

 cov e e E e e E e E et t t t t t t ts s s s s s s s( , ) [ ] [ ] [( ) ( ) (− − − − − − − − −+ + += −∆ ∆ ∆ tt s )] .> 0  (3)

We can use the latter inequality to obtain a lower bound for the 
value of the later option:

 E e e K E e E e Kt t t t t ts s s s s s[ ( )] [ ] [ ( )].( ) ( )− − − − − −+ ++ > +∆ ∆1 1  (4)

Our assumption that time increments are stationary implies, 
in particular, that

 E e K E e Kt t t ts s[ ( )] [ ( )].( ) ( )− − − −+ + = +∆ ∆1 10

 (5)

But we picked K so that the latter equals 1. Combining this with 
the above, we conclude that the later option is worth more than:

 E e e K E et t t ts s s s[ ( )] [ ].( )− − − −+ + >∆ 1  (6)

But the right-hand side is the value of the earlier option. As 
a result, the decision maker is no longer indifferent between the 
earlier and later options as she was when the earlier option was 
immediate; she now strictly prefers the later option, which is a time 
inconsistency. 

a2. generatIng tIme IncrementS
Biological time increments t

1
, t

2
,…, t

n
 are generated according 

to a multivariate lognormal distribution. The mean of the time 
intervals is fixed at 0.5. The covariance matrix encodes first-order 
autocorrelation, with correlation parameter r.
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Figure A1 | impact of increased variability onto shape of discounting 
under mild autocorrelation of the biological clock (r = 0.3). As variability 
(“Var”) increased from 0.5 over 1 to 4, the discounting function becomes 
more convex.
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Figure A2 | Time intervals generated from concavity in the mapping 
from calendar to biological time, induced by decreasing the speed of the 
biological clock for time intervals further into the future (g = 0.5). The 
biological clock does not exhibit autocorrelation (r = 0). The discounting curve 
in biological time is exponential with discount rate equal to 1. The dashed-
dotted line depicts the resulting discounting curve in calendar time 
(“Concav”). The best exponential (“Exp”) fit in calendar time produces a 
discount rate of 0.40, and the best hyperbolic fit (“Hyp”) has a discount rate 
equal to 2.20.


