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Abstract

Physiologically-based pharmacokinetic (PBPK) modeling is a popular drug develop-
ment tool that integrates physiology, drug physicochemical properties, preclinical data,
and clinical information to predict drug systemic disposition. Since PBPK models seek
to capture complex physiology, parameter uncertainty and variability is a prevailing
challenge: there are often more compartments (e.g., organs, each with drug flux and
retention mechanisms, and associated model parameters) than can be simultaneously
measured. To improve the fidelity of PBPK modeling, one approach is to search and
optimize within the high-dimensional model parameter space, based on experimental
time-series measurements of drug distributions. Here, we employ Latin Hypercube
Sampling (LHS) on a PBPK model of PEG-liposomes (PL) that tracks biodistribution
in an 8-compartment mouse circulatory system, in the presence (APA+) or absence
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(naive) of anti-PEG antibodies (APA). Near-continuous experimental measurements
of PL concentration during the first hour post-injection from the liver, spleen, kidney,
muscle, lung, and blood plasma, based on PET/CT imaging in live mice, are used as
truth sets with LHS to infer optimal parameter ranges for the full PBPK model. The
data and model quantify that PL retention in the liver is the primary differentiator of
biodistribution patterns in naive versus APA+ mice, and spleen the secondary differen-
tiator. Retention of PEGylated nanomedicines is substantially amplified in APA+ mice,
likely due to PL-bound APA engaging specific receptors in the liver and spleen that
bind antibody Fc domains. Our work illustrates how applying LHS to PBPK models
can further mechanistic understanding of the biodistribution and antibody-mediated
clearance of specific drugs.

Keywords PBPK model - Latin hypercube sampling - Parameter optimization -
Anti-PEG antibodies - PEGylated liposomes

1 Introduction

Drug development generally involves extensive studies in animal models to assess the
pharmacokinetics and biodistribution of the drug over time, as the complex interac-
tions between the drug and different elements of a living system must be carefully
assessed, and they cannot be properly assessed by in vitro experiments alone. To inter-
pret and guide animal studies, physiologically-based pharmacokinetic (PBPK) models
are increasingly used to integrate drug and system (physiology) information into a
mathematical modeling framework to describe and predict the absorption, distribution,
metabolism, and excretion of the drug in humans and animals. The PBPK models are
further integrated with data from animal studies. A key feature of PBPK models is their
mechanistic focus, capturing the mass balance of the drug of interest by incorporating
the anatomical, physiological, physical, and chemical processes that govern the fate of
a drug in the body over time. Many PBPK parameters are pre-determined experimen-
tally—for example, organ-specific blood flow rates and volumes have been determined
using appropriate radioactive tracers for a variety of model organisms (Brown et al.
1997; Davies and Morris 1993; Garg and Balthasar 2007; Kaliss and Pressman 1950).
PBPK models, coupled with the principle of allometric scaling, enable translations
across species and populations (Huh et al. 2011; Mordenti et al. 1991; Ritschel et al.
1992). Not surprisingly, PBPK models are broadly adopted in drug development and
regulation (Jones and Rowland-Yeo 2013; Yuan et al. 2019), including the prediction
of drug-drug interactions (Stader et al. 2021; Ueno et al. 2021), dose adjustment in
special populations (Lang et al. 2020; Lutz et al. 2021), bioequivalence assessment of
complex drug formulations (Fan et al. 2017; Le Merdy et al. 2020), and many other
mechanistic explorations (Cao and Jusko 2012; He et al. 2018, 2019; Nasu et al. 2005;
Walsh et al. 2016).

A limiting aspect of PBPK models is that some, and often many, key parameters are
either not accurately measured or not well-documented. This is especially true in the
development of new therapeutics. The complexity of living systems, as reflected by a
large number of model parameters together with ethical as well as practical limitations,
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makes it difficult to measure or estimate all parameter values. This necessitates the
use of various mathematical and statistical techniques: to identify the most sensitive
and influential model parameters that govern drug efficacy and uptake to the target;
and, to estimate values and ranges of model parameters to improve the predictive
power of the PBPK model. Examples include assessing variable response to treatment
and individual-to-individual variability (Edginton et al. 2016; Krauss et al. 2013;
Tsamandouras et al. 2015).

We previously developed a minimal, 2-compartment PBPK model to capture the
systemic circulation over time of liposomal drug carriers modified with polyethylene
glycol (PEG), or PEGylated liposomes (PL), in the presence of anti-PEG antibodies
(APA) (McSweeney et al. 2018). Clinically, APA have been shown to bind to a num-
ber of PEGylated drugs. Above a critical threshold, APA cause rapid elimination of
the PEGylated drugs from the circulation, greatly reducing their efficacy as well as
increasing the adverse events associated with the therapy (Abu Lila et al. 2013; Yang
and Lai 2015). We expanded the previous minimal PBPK model to 8 compartments
in order to improve the resolution of the biodistribution of PEG-liposomes, with and
without APA. We compare the 8-component PBPK model predictions to experimental
data obtained from tracing radiolabeled PL in different organ tissues over time, using
positron emission tomography/computed tomography (PET/CT) scanning. Here, using
the experimental time series data as truth sets, we employ Latin Hypercube Sampling
(LHS) on the 8-compartment PBPK model for both APA+ and naive mice. This allows
us to infer model parameter ranges, identify the primary parameters that induce the
largest model variability, and optimize parameter values that give best fits to the exper-
imental truth set. In doing so, we confirm hypotheses that the liver and spleen are most
responsible for accelerated blood clearance (ABC) of PEGylated liposomes by APA.
Further, we identify the specific kinetic mechanisms, drug retention by the liver and
spleen that is amplified by the presence of APA, as the driving factors for increased
clearance.

2 Model Parametrization and Exploration

2.1 Parametrizing the Model with Latin Hypercube Sampling and Experimental
Data

Here we introduce a full, multi-compartment PBPK model to describe the biodis-
tribution of PL, and how it is altered in the presence of APA. The model was able
to fit mouse data with and without APA, illustrating its capacity to recapitulate the
accelerated blood clearance (ABC) phenomenon mediated by APA. All mice in this
study exhibited high APA titers (> 15 pg/ml anti-PEG IgG) induced by injection of
empty PEG-liposomes at least one week prior to the study. This represents APA well
above the threshold needed for ABC (McSweeney et al. 2018). The model accounts
for the redistribution of radiolabeled PL from an IV injection through the lungs, liver,
spleen, kidney, and muscle. A remainder compartment comprises the brain, adipose,
and other tissues that may sequester small amounts of the drug. Initializing the model
att = 1 min allows us to model the complete redistribution of drug to the appropriate
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Fig. 1 Schematic of the PBPK model. The PBPK system tracks the concentration of PL in each organ
compartment after an initial IV injection

organs, with some degree of noise, while eliminating excessive fluctuations due to
very fast transient changes immediately post injection and limitations in the timing of
the PET/CT imaging used to obtain the experimental data (i.e., a peak in signal that
may appear and disappear between the 10-s windows used for binning images).

We consider the PBPK system (Fig. 1, Eqs. 1-8) defined by the following system
of rate equations for transport of the “Drug” (PL) between all compartments (p =
venous plasma, /i = liver, k = kidney, s = spleen, m = muscle, a = arterial plasma,
lu = lung, r = remainder compartment):

dC,
d—t" =1/Vy-(=Cp-CLp) — Qu - fria- Cp/Vp
+ Q1+ fri+ Qs frs)/Vp - (Cii/ Kpi)
+Om - frm/Vp - (Cm/Kpm)
+ Ok - fr/Vp - (Cx/Kpy) + Or - fre/Vp - (C/Kpr) (D
dCy
dtl =1/Vii - (Q1i- fri-Ca—(Q1i- frii+ Qs - frs) - Cui./Kpii)
+ Qs - frs/Vii - (Cs/Kps) 2
dC
= = O Fr/ Ve (Ca = Cu/Kpi) 3)
dCs
ar = Qs frs/Vs - (Ca — Cs/Kps) “)
dCp,
? =0Om* frm/Vm - (Ca — Cn/Kpm) 5)
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dC,
dr = Q- friu/Va - (Cu/Kpw)
—Ca-(Qii- fni/Va
+Om - frm/Va
+Qs - frs/Va
+0x - fri/Va
+0; - frr/va) (6)
dClu
dr = Q- fru- Cp/vlu = Ow - friw- Ca/(Mu - Kpi) @)
dc;
?: Or - fre/Ve- (Ca — C:/Kpr) ()

Here Q, represents blood flow in compartment x, V, represents the volume of tis-
sue and interstitial components, C, represents the concentration of PL (in %ID/g),
CL, represents clearance rate, fr, represents the dimensionless permeability fraction
controlling the extravasation rate into compartment x, and Kp, represents the parti-
tioning (drug retention) coefficient and the potential for accumulation in compartment
x. A model incorporating permeability-limited distribution was chosen because the
PL are ~ 100 nm in diameter, a sufficiently large size to make its extravasation rate
much lower than blood perfusion. The concentration in each compartment was taken
as the weighted average of the tissue/ interstitial sub-compartment and the plasma
sub-compartment, assuming that each sub-compartment was well-mixed, which cor-
responded with the overall PET signal in each region.

In order to explore ranges for all parameters, we used Latin Hypercube Sampling
(LHS). Rather than running parameter sweeps across the product space of ranges for
all parameters, which is computationally impractical, LHS semi-randomly samples
the product space of parameter ranges (McKay et al. 1979; Iman et al. 1981). We
parametrized the system at the individual mouse level in order to consider inter-mouse
and inter-cohort variability (Helton and Davis 2003; Hora and Iman 1989; Marino et al.
2008), and progressively refined parameter ranges based on LHS outputs for each in
silico mouse.

To set limits of minimum and maximum possible parameter values, we first searched
the literature. Some physiological parameters are well-documented in the literature,
for example, blood flow and organ volume (Brown et al. 1997; Davies and Morris
1993; Garg and Balthasar 2007; Kaliss and Pressman 1950). Further details such as
residual blood volume allowed us to determine an even more accurate approximation
of the signal or drug concentration in each compartment (Brown et al. 1997; Kaliss
and Pressman 1950). We selected a suitable initial range for the drug retention coeffi-
cients (Kpy) per compartment from data, as the nearly continuous PET scan provided
sufficient data to estimate Kp, for each compartment as a function of its area under the
curve (AUC). AUC for an organ compartment is computed as the integral of drug con-
centration over the duration of the study and is used as a measure of the organ’s total
drug exposure for this duration. Restrictions on values of these more well-documented
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parameters allowed us to perform a targeted exploration of less-known parameters,
e.g., the organ permeability fraction (fry).

For the parameters with less certainty, tests were used to determine parameter
bounds that result in valid vs. invalid output. These pass/fail tests progressively nar-
rowed the parameter ranges in order to more reliably produce acceptable outputs. For
the first round of tests, a parameter set was considered successful (passed) if (1) the
model drug concentration in each organ was within fivefold of in vivo experimental
concentrations, (2) the AUC was within 20% of the AUC calculated from in vivo data,
and (3) the remainder compartment was non-negative and thus preserved mass bal-
ance. After completing a round of LHS simulations using relatively wide ranges for
the least well-known parameters, each parameter range was examined to see which
values yielded simulations that passed all tests and which values yielded simulations
that failed at least one test. We found a representative parameter set whose model
concentration and AUC plots visually resembled the in vivo experimental data and
whose parameter values were not relatively close to values found in a failed test. From
this representative parameter set, we created an updated range for each parameter by
extending 10% above and below its value. The sampling ranges of the refined drug-
retention coefficients (Kpy) were reasonably close to the initial guess from AUC ratios
(most well within +50%). Using these updated parameter ranges, we performed a
second round of LHS simulations (Figs. S.1, S.2). We sorted the model outputs (pre-
dicted drug concentration in each organ for the duration of the study) by the total
sum of squared errors compared to the in vivo experimental data, and a characteristic
parameter set for each mouse was selected from the 10 simulations with the low-
est least-squares error. The least-squares error function was defined such that greater
weight was placed on compartments with greater drug uptake, because errors were
normalized by total signal in the mouse rather than normalized by individual organ.
This optimization procedure prioritized organs with higher drug concentration and
overall signal, which also enabled the model to converge faster and more consistently
when implemented. After the parameter sets had been sorted according to the low-
est least-squares error, the top 10 predictions based on LHS-randomized parameter
selection tracked with the data (Fig. 2). The optimal parameter set for each mouse was
selected from these candidate sets.

2.2 Parametrizing the Model: An Exploration of Parameter Space

Since prolonged drug circulation typically correlates with improved efficacy, we
focused on the altered clearance of PL between these cohorts. We next sought to
specifically characterize which process(es) and compartment(s) in the PBPK model
(and corresponding physiological processes) can distinguish drug clearance to the
highest degree between cohorts of mice with and without APA.

Evidence suggests that the systemic clearance of PL and small immune complexes,
such as PL bound to APA, is predominantly liver-mediated (Ganesan et al. 2012; Ishida
et al. 2005; McSweeney et al. 2018), in good agreement with our experimental (Fig.
S.3) and model findings that the organ with greatest PL accumulation over time is
the liver. To explore this in greater detail, we focused simulations on the parameters
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Fig. 2 In vivo experiment and PBPK model comparisons. Data (black dots) show PL concentrations in 6
compartments (blood plasma and 5 primary organs) of one APA+ mouse, obtained via continuous PET/CT
scan for the first hour after PL injection. Simulated data using the 10 most suitable parameter sets within
the optimal ranges identified by LHS are overlaid with the experimental measurements (colored curves,
with each color representing a unique LHS simulation ID) (Color figure online)

responsible for controlling the extent of drug exposure and retention in the liver:
the liver permeability fraction, frj;, and the retention coefficient, Kpj;. Together, the
parameters frj; and Kpj; control total drug in the liver. We used the model to explore
how APA alter the role of frj; and Kpj;, contributing mechanistically to the increased
liver accumulation.

We considered the concentration of PL in the liver as a measurement of percent
injected dose per gram liver tissue (%ID/g). We measured uptake one hour post-
injection, consistent with the early-phase redistribution of the liposomes and the
available data for continuous PET/CT scanning. We conducted a parameter sweep
for liver-specific fr and Kp, through the widest region searched with LHS, while
fixing the other parameters at the average of their optimized values (generating the
prediction with the lowest least-squares error) for representative naive and APA+ mice
according to the characteristic LHS runs, and thus generated a space of simulated liver
uptake in an “average mouse” for each cohort 1 h after liposome injection (Fig. 3).
Here, we visualize LHS-identified parameter ranges for liver permeability (fr};) and
retention (Kpy;), and the LHS-identified best-fit values of both liver parameters from
the experimental data over 1 h for naive and APA+ mice. In this state diagram, we
observe regions of parameter sensitivity and impact. Assuming a base level of drug
availability (fry;), there is consistently a gradient of PL taken up by the liver, increasing
while Kpj; is increased. However, distinct regions emerge as fry; is varied from its lower
to upper bounds, occurring at the ridge where contour lines switch from horizontal to

@ Springer



123 Page8of16 A. M. Talkington et al.

A Naive Mice

%ID/g

» %ID/g
: 0.3
0.25
0.2 0.2
0.15
0.1 0.1
0.05
0 0
APA+ Mice

%ID/g

oss %ID/g
0.3 0.3
0.25
0.2 0.2
0.15
0.1 0.1
0.05 N I
0 : : 3 0

0
fl'li Kpli

Fig. 3 PBPK-generated heat map of drug concentration in liver at 1 h post injection versus liver perme-
ability (fr);) and liver retention (Kpj;j) parameter specifications. Ranges of parameters are identified from
Latin Hypercube Sampling (LHS) based on experimental measurements for 1 h post PEGylated liposome
injection, from representative a naive and b APA+ mice. All other PBPK model parameters are set at the
average of optimal LHS-identified values for each cohort. The black dots are mean values of both liver
parameters optimized by LHS based on best-fits to the experimental data over the entire 1-h measurements,
whereas the ellipses have semi-axes given by the standard deviations of each LHS-identified parameter for
each cohort. Heat map colors and values are normalized so that 1 = 100%ID/g (Color figure online)

vertical (Fig. 3). This implies that given sufficient permeability of the drug in the liver
(through fr); above a sufficiently high threshold), the final liver PL concentration loses
sensitivity to fr};, and liver drug concentration is driven primarily by the organ’s ability
to retain the PL (determined by Kpj;). At the far left of the landscape, for low Kpy;,
liver retention is sufficiently low such that permeability (fr|;) makes no difference in
overall uptake, since very little drug is retained regardless of availability.

When the model was optimized for the experimental data, all mice showed suffi-
cient fr}; above the minimal threshold, and all naive mice clustered on the far left of
the landscape. Thus, both naive and APA+ mice fall in the regions where Kpj; is a
more sensitive parameter than fry; in governing liver uptake. In other words, uptake in
the liver compartment is driven more by its retention ability (partitioning coefficient
Kpii), and loses dependence on permeability after a certain point. In this framework,
permeability simply controls how quickly the uptake occurs, but not total accumu-
lation. For example, if Kpy; is fixed at a high value (assume, for instance, Kpj; > 3),
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frii close to 1 will result in the drug uptake reaching the organ’s “carrying capacity”
(determined by Kpj;) almost immediately, within the first few minutes, whereas fry;
< 0.1 will result in the drug concentration gradually reaching its upper limit over the
course of an hour. The liver retention coefficient (Kpj;) has similarly been identified as
a critical parameter in the context of PBPK models for other therapeutics (Hsieh et al.
2018). Correspondingly, we also find that if the retention ability and capacity to take
up a drug are high enough, the availability of the PL determined by fry; then becomes
the factor limiting uptake, and we see a rapidly increasing gradient as fr}; increases.
Ultimately, if Kpj; and fry; are sufficiently high (in the top right corner in Fig. 3), we
reach the upper bound of drug uptake in the liver. This “plateau” is limited only by
the amount of drug in the body.

Physiologically, these findings suggest that a heightened drug retention in the liver
(likely due to APA-mediated uptake into cells in the liver) is more responsible for
increased concentration of PL in the liver in mice with APA, rather than drug per-
meability of the liver tissue or any changes to permeability promoting extravasation
in the APA+ cohort. This is not surprising, as hepatic clearance is consistent with
the elimination of small immune complexes from the circulation by liver sinusoidal
endothelial cells expressing the receptor Fcyllb, which binds to the Fc domain of the
PL-bound APA.

We next investigated other methods to confirm the liver drug retention capability
Kpji as the key parameter in differentiating the biodistribution patterns of PL in mice
with distinct levels of APA. We examined the full parameter space and found that the
parameters cluster for the mice within each cohort, with small fluctuations. Further-
more, in all drug retention (Kpy) and permeability (fry) parameters, except for drug
retention in the liver and spleen, there is no notable cohort-to-cohort difference as
opposed to variation between individuals within a cohort; i.e., variability due to liver
and spleen retention (Kpj;, Kps) is only notable in the presence of APA. This suggests
APA+ and naive mice otherwise appear physiologically similar (Fig. 4, Fig. S.4, Table
1) (figure format adapted from Moses 2021). Organ-specific Kp (drug retention abil-
ity) parameters optimized by LHS cluster consistently at small values (< 0.5) with the
exception of liver- and spleen-specific Kp in APA + mice. Kp;; and Kp; are the most
variable parameters, and the variability increases with the presence of APA (Fig. 4,
Fig. S.4). The naive mice are highly robust (Fig. 4A). Organ-specific fr (extent of
permeability) parameters are consistently optimized around 0.1 in all mice, regardless
of APA status. Thus, drug permeability (fr) parameters have low variability relative to
drug retention (Kp) parameters and are not influenced by the presence of APA (Fig. 4).

While spleen data were unavailable for 4 of the mice in the sample set due to inability
to accurately delineate the spleen in PET/CT imaging, gamma counter readings at
the terminal time point confirm a high splenic concentration. Isolating and looking
more closely at the retention coefficients for liver and spleen, which reflect the net
uptake of APA/nanoparticle complexes by different cells within these organs, we
can identify a significant disparity in the values of LHS-optimized parameters for
each mouse depending on whether or not a mouse has high levels of APA (Fig. 5).
Specifically, the optimal liver and spleen retention parameters in APA+ mice were both
significantly larger (p <0.05: unpaired, one-tailed t test with Welch’s correction), which
reflects markedly greater rates of net uptake by cells in these organs, and more variable
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Fig. 4 Spider plots of LHS-optimized parameters. Retention and permeability parameters for all 5 primary
organs from a 6 naive mice and b 6 APA+ mice. Each colored line represents an individual mouse (diamonds
and dashed lines indicate mice with APA, and circles and solid lines indicate naive mice). Note that spleen
data are not available for 4 of the mice (Color figure online)

Table 1 Ranges of all optimized

permeability and retention Parameter Total range Naive range APA+ range

parameters
frii 0.057-0.113 0.083-0.113 0.057-0.093
fri 0.085-0.204 0.146-0.196 0.085-0.204
frg 0.050-0.100 0.050-0.070 0.050-0.100
frm 0.011-0.072 0.026-0.072 0.011-0.040
friu 0.050-0.192 0.069-0.155 0.050-0.192
K p;; 0.435-3.744 0.435-0.734 1.869-3.744
Kpi 0.160-0.379 0.160-0.308 0.230-0.379
Kp; 0.413-1.867 0.413-0.484 0.614-1.867
Kpm 0.009-0.063 0.013-0.063 0.009-0.030
Kpi, 0.333-0.603 0.365-0.590 0.333-0.603

Ranges reflect optimized values for each unknown permeability (fr)
and retention (Kp) parameter reported for all 12 individual mice in the
study. The increased range and stratification between naive and APA+
mice for Kpj; and Kps are highlighted in bold
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Fig. 5 Correlations between liver and spleen LHS-optimized retention parameters. Values corresponding to
APA + mice (n = 6 in liver, n = 4 in spleen) are presented as squares, and values corresponding to naive
mice (n = 6 in liver, n = 4 in spleen) are presented as circles. Error bars represent standard deviations. (*p <
0.05, ***p < 0.001)

(p < 0.05: F test). This is consistent with both liver (primary) and spleen (secondary)
retention as the key organs responsible for the APA-induced ABC of PL. One possible
physiological mechanism for such APA-induced retention of PL in liver and spleen
is the direct uptake of PL/APA complexes, formed in the blood, by liver sinusoidal
endothelial cells (LSECs) and Kupffer cells via FcyRIIb (Pyzik et al. 2019).

3 Discussion

PEG is routinely conjugated to proteins and liposomes to reduce the immunogenicity
and extend the systemic circulation times of the underlying therapeutic (Yang and Lai
2015). There are currently at least 12 PEGylated therapeutics on the market, and many
more in development (Yang and Lai 2015). Unfortunately, evidence has emerged that
some patients may possess pre-existing or develop APA, which in turn leads to ABC
of select PEGylated therapeutics (Povsic et al. 2016; Kozma et al. 2020), including
Krystexxa (Hershfield et al. 2014; Lipsky et al. 2014) and Oncospar (Armstrong et al.
2007). Animal studies have repeatedly shown that APA can lead to ABC of PL (Ishida
et al. 2005; Mohamed et al. 2019; McSweeney et al. 2018). There are even suspicions
that APA may be responsible for the anaphylactic response to COVID-19 mRNA
vaccines formulated with PEG-lipids (Kleine-Tebbe et al. 2021; Worm et al. 2021).
Thus, there is immense interest in a better understanding of how APA can engage
PEGylated drugs in living systems, and the consequent temporal fate of the PEGylated
drug. While in vivo studies have elucidated the immunological mechanisms of the APA
induction (Ishida et al. 2005), the ABC phenomenon (Ishida and Kiwada 2008; Abu
Lilaetal.2013), and the resulting biodistribution of the PEGylated drugs, these existing
studies do not readily reveal the key physiological mechanisms that are responsible
for the clearance itself.

Here, by performing search and optimization using Latin Hypercube Sampling on
an 8-compartment PBPK model together with PET/CT data, we identify the most
influential factors that drive the observed accumulation of PL/APA complexes in the
liver and spleen. Our work gives insight into the physiological factors underlying
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the PBPK model for PEGylated nanomedicine biodistribution, refines the parameter
unknowns from experimental data, and explains the observed variation in the system.
In this way, we gain mechanistic insights into accelerated drug clearance by APA that
are otherwise difficult to measure and validate experimentally.

In the model, consistent with PET/CT studies, we observed that naive mice exhibited
less variability in their optimized parametrizations and maintained nearly constant
signals through the first hour. This contrasts with the greater variations in mice with
appreciable APA titers, which underscores the complexity of APA-mediated ABC. The
liver and spleen ability to retain the PL drug carriers (high retention coefficients Kpy;,
Kps) exhibited the most significant difference between the naive and APA+ cohorts
and subsequently appeared to be the driving parameters in this system, distinguishing
the cohorts of mice with and without APA. The liver and spleen permeability to PL,
controlled by fry;, frs, restrict the amount of drug accessible to the liver and spleen; these
properties are not greatly affected by APA status, indicating that, mechanistically, the
difference in clearance driven by APA is attributed to APA binding to PL and retention
of the resulting APA/PL complexes in the liver via uptake by cells such as LSECs or
Kupffer cells. However, the APA need not speed the process of exposing different
cells in the liver to PL, which would be a process limited by delivery via blood flow
or capillary permeability and reflected in greater sensitivity to drug permeability. This
was not the case reflected in the model or the data. Increased total drug uptake in
the liver and spleen is further evidenced in comparing the time series for PET signal
and AUC values between the cohorts. We have identified that the retention process
in the liver, attributed in the model to Kpj; and caused physiologically by antibodies
cross-linking PL in the liver, is primarily responsible for the increased liver uptake.
This is the greatest difference between the mice in the APA+ versus naive cohorts.

PBPK models have a large number of parameters, and there is always a possibility of
multiple optimal parameter ranges consistent with the experimental data. However, we
were encouraged by the consistent clustering between mice and the ability of LHS to
distinguish naive and APA+ mice by their non-overlapping ranges for liver and spleen
permeation and retention properties, while also revealing greater variability in APA+
mice. Other approaches to parameter estimation, such as Markov Chain Monte Carlo,
have been demonstrated for other dynamical systems (Li et al. 2018; Talawar and
Aundhakar 2016). Bayesian methods combined with MCMC have been demonstrated
for parameter identification in PBPK systems (Krauss et al. 2013), and LHS has been
previously employed for quantifying uncertainty in PBPK (Fabrega et al. 2016). In this
study, LHS produced optimized parameter ranges in our PBPK model at a predictable
and acceptable computational cost. Furthermore, the non-convex and highly sensitive
nature of this optimization problem lends itself to a structured stochastic global algo-
rithm like LHS as opposed to alternative methods. To confirm this, we wrote a gradient
descent algorithm and searched for a minimum. We found that gradient descent, ini-
tialized in the neighborhood of LHS-determined optimal ranges, indeed converges to
optimum parameter values reasonably near the initialization point. However, we also
found that using gradient descent with initial values within the naive ranges used in the
initial LHS run may converge to some local minima far above other local minima (Fig.
S.5). This demonstrates that when there is uncertainty in the convexity of the model
landscape, or if one identifies that the model possesses multiple local minima, LHS
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can be used as a computationally efficient, semi-random sampling method to identify
the global minimum, i.e., the optimal parameter set. We conclude that it is advisable
to begin with a comprehensive stochastic search algorithm, such as LHS, and then
perhaps subsequently refine within a smaller window using other MCMC, Bayesian,
or deterministic methods as presented by An and Choi (2013). Alternatively, one could
continue using LHS, or once refined enough, switch to a gradient descent algorithm
for subsequent iterations. However, due to inherent variability in our biological system
of interest, the potential for non-convexity in the landscape, and noise in the collected
data, we assert that LHS is both computationally efficient and most informative of the
optimal ranges and values consistent with the experimental data.

Overall, these data-based analyses provide a means to further our understanding of
the driving physiological processes behind accelerated drug clearance and to begin to
consider strategies for overcoming APA-mediated accelerated clearance.
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org/10.1007/s11538-021-00950-z.
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