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A backbone-side-chain elastic network model (bsENM) is devised in this contribution to decipher the net-
work of molecular interactions during protein dynamics. The chemical details in 5 ls all-atom molecular
dynamics (MD) simulation are mapped onto the bsENM spring constants by self-consistent iterations.
The elastic parameters obtained by this structure-mechanics statistical learning are then used to con-
struct inter-residue rigidity graphs for the chemical components in protein amino acids. A key discovery
is that the mechanical coupling strengths of both backbone and side chains exhibit heavy-tailed distribu-
tions and scale-free network properties. In both rat trypsin and PDZ3 proteins, the statistically prominent
modes of rigidity graphs uncover the sequence-specific coupling patterns and mechanical hotspots. Based
on the contributions to graphical modes, our residue rigidity scores in backbone and side chains are found
to be very useful metrics for the biological significance. Most functional sites have high residue rigidity
scores in side chains while the biologically important glycines are generally next to mechanical hotspots.
Furthermore, prominent modes in the rigidity graphs involving side chains oftentimes coincide with the
co-evolution patterns due to evolutionary restraints. The bsENM specifically devised to resolve the pro-
tein chemical character thus provides useful means for extracting functional information from all-atom
MD.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Proteins exhibit remarkable properties such as thermal stabil-
ity, specific molecular binding, and catalytic activities. These func-
tionally important features are sensitive to mutation and can trace
their origin to both the polypeptide backbone that frames the
structure and the side chains that define the chemical specificity
[1–3]. Deciphering the contributions of these two components to
functional properties, though, remains a fundamental challenge
[4–6]. The folded topology was recognized to host a variety of
sequences in structural families [7,8] and has inspired artificial
protein engineering and design [9–11]. Constructing potential
energy function with the structural network, such as the elastic
network model (ENM) [12–14] and the Gō model [15–17], is very
useful in studying functional motions [12–14], protein folding
[15–17], and allosteric wiring [18–20]. In addition to the
Hamiltonian-based methods, graphical analysis [21–23] is fre-
quently applied to analyze the protein structural network. If the
distance between a residue pair is within a cutoff, their edge in
the adjacency matrix A is typically set to one, and the diagonal
degree matrix D records the residue contact numbers. This
topology-based approach corresponds to using a universal spring
constant in ENM. The Laplacian matrix (L ¼ D� A) [24,25] was
found to offer good approximation for low-frequency motions
[13,14], and the structural network is often used to study the col-
lective vibrations that are not very sensitive to the sequence speci-
ficity due to side chains. [26–29].

Yet, beyond the backbone-framed protein structure, how to
delineate the networks of molecular interactions, what are their
differences in comparison to the structural network, and what
are the manifestations of the side-chain sequence and dynamical
motions? In particular, if the interaction network of side chains
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could be studied, its properties are expected to differ from that of
the backbone. To address these key issues of the sequence-
structure-function relationship, a graph-theoretic methodology is
devised here to compute the mechanical interactions mediated
by side chains and backbone from all-atom molecular dynamics
(MD) simulations in an explicit solvent.

The guiding principle is that given the unique structural posi-
tion and chemical environment of a protein residue, its couplings
with surrounding atoms would assume specific strength during
dynamical motions. A mechanical-coupling dynamics perspective
is thus taken to unravel the network behaviors of physical interac-
tions. In particular, the elastic parameters in a model of backbone
and side-chain nodes connected by harmonic springs, i.e., the
backbone-side-chain elastic network model, bsENM, proposed in
this work and illustrated in Fig. 1A, is used to represent the effec-
tive interaction strengths. Our design of bsENM is to explicitly rep-
resent the protein chemical components for resolving the
backbone and side-chain contributions in the mechanical coupling
network. In particular, the scope of bsENM spring constants is
expanded for an unexplored context: to statistically learn the
mechanical coupling strengths of backbone and side chains from
all-atom MD simulations. The effective elasticities calculated by
self-consistent iterations [30–32] are then used to construct
inter-residue graphs. As will be shown later, this bsENM-graph
approach can be used to map the protein dynamics into distinct
Fig. 1. Rigidity graphs of the protein mechanical coupling network statistically learned
structure is mapped onto the coordinates of backbone and side-chain sites in the coarse
structure of RT bound with BPTI. The catalytic triad is highlighted and a zoomed-in
configuration. (B) Dividing the 5 ls all-atom MD trajectory into consecutive 10 ns wind
structure-mechanics statistical learning.
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rigidity groupings, namely the backbone-backbone (BB), the
backbone-side-chain (BS), and the side-chain-side-chain (SS).
Investigating them using spectral analysis allows us to uncover
their unique mechanical topologies for comparing with experi-
mental observables such as residue conservation and co-
evolution in multiple sequence alignment (MSA), mutation sensi-
tivity, residue flexibility profile, and signals reflecting residue
micro-environments. Under this structure-mechanics statistical
learning framework, in contrast to the aforementioned topology-
only approach, even interaction pairs of similar distance separation
can have very different coupling strengths. Using the elastic prop-
erties statistically learned from an all-atom MD trajectory as the
edge weights in A and D thus offers a new perspective—the rigidity
graphs of protein dynamics. To reveal the impact of chemical
details, the specifically designed scheme is dividing the bsENM
harmonic potentials into (a) skeleton springs as those linking the
nearest and second nearest residues and (b) non-skeleton springs
as the rest. With A ¼ Aðskeleton springsÞ þ A ðnon-skeleton
springsÞ and D ¼ DþD, we first establish that the low-
frequency modes of the skeleton Laplacian (L ¼ D�A) are exceed-
ingly insensitive to the variation in strength during protein dynam-
ics. Analysis of mechanical couplings is hence focused on non-
skeleton springs. A key finding is that the non-skeleton signless
Laplacian (K ¼ DþA) reveals the specific patterns very clearly.
The statistically prominent features of K can thus be extracted
from all-atom MD, see Materials and Methods for details. (A) A sampled atomic
-grained (CG) representation of bsENM. Left: a ribbon representation for the atomic
view showcases the atomic-to-CG mapping in Table S1. Right: the mapped CG
ows, and the work flow for computing the bsENM parameters of each segment by
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from the all-atom MD trajectory to reveal the mechanical topolo-
gies of different interactions. To illustrate this approach, we choose
as case studies a serine protease family member rat trypsin (RT)
[33,34] and PDZ3 (the third PDZ signaling domain) [35–37]
because they both are b-strand rich and have comprehensive data
for site-specific mutagenesis and functional activity experiments.
In addition, the wealth of sequence information allows the calcula-
tion of inter-residue co-evolution from statistical coupling analysis
(SCA) [38–40] or direct coupling analysis (DCA) [41,42] from MSA
and provides complementary insights. The BB (backbone-
backbone), SS (side chain-side chain), and BS (backbone-side
chain) rigidity graphs can thus be compared with these observ-
ables for linking physical interactions with biological functions
and evolutionary pressure.

2. Materials and methods

The elastic parameters in bsENM (kij’s) are calculated from an
all-atom MD trajectory by matching the fluctuations of inter-site
distances. Effectively, this structure-mechanics statistical learning
integrates out the other degrees of freedom by self-consistent iter-
ation with normal mode analysis (NMA) [30–32]. Moreover,
mechanical coupling strengths represented by the spring constants
are used to construct BB, BS, and SS rigidity graphs. This computa-
tional framework is detailed in the following using RT as the
example.

2.1. All-atom MD simulation

The X-ray structure of BPTI bound RT (PDB ID: 3TGI) is used to
construct its all-atom model [33] whereas for PDZ3, the apo X-ray
structure (PDB ID: 1BFE) [37] is used. All systems are solvated in
orthorhombic dodecahedron TIP3P water boxes and neutralized
with NaCl ions at 0.15 M. The CHARMM36 all-atom force field
[43] is used to compute the potential energy and the GROMACS
software [44] is used for MD runs. The production run for both
the RT and PDZ3 systems is at 300 K and 1 atm for 5 ls, during
which a snapshot is saved every 1 ps for analysis. The other details
are reported in SI.

2.2. Structure-mechanics statistical learning of bsENM parameters

With the raw data of protein dynamics generated with full
atomic details, the CG sites in bsENM serve to read out the statis-
tics of inter-site elasticity. The goal is to capture the significant
mechanical couplings that can survive thermal noise, and the CG
sites are thus located where specific molecular interactions are
typically observed in the trajectories. In particular, the backbone
is represented by two coarse-grained (CG) sites at the amide nitro-
gen and carbonyl oxygen positions as they are the loci of hydrogen
bonding, Fig. 1A. For side chains, a CG site is placed at the position
of a representative atom at which specific interactions are formed.
For example, the alanine side-chain site is at Cb and that of lysine is
at Nf. For hydrophobic side-chains, the center of mass of heavy
atoms is used. Table S1 lists the details of this atomic-to-CG map-
ping, which is used to convert each frame in the MD trajectory to a
bsENM configuration.

Given a set of bsENM configurations, the spring length l0ij
between sites i and j is their averaged distance. To parametrize

kij, the variance of distance fluctuation, hdl2ijiAA, in the all-atom
MD data is the targeted value. At each iteration step, NMA of the
bsENM gives the predicted distance fluctuation, and kij is adjusted
to match the targeted value [31,32]. Since the bsENM springs are
connected in the structure, their coupled fluctuations are handled
by self-consistent iterations in this fluctuation matching. Other
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details are reported in SI. To construct the starting model (initial
guess) for statistical learning, a cutoff distance lc is used to include
a harmonic potential in the bsENM for every inter-site pair with

l0ij < lc. The cutoff is thus an adjustable parameter and is deter-
mined by scanning the value and comparing the resulting residue
RMSF (root-of-mean-squared-fluctuation) and the low-frequency
vibrational modes of the statistically learned bsENM with those
calculated from all-atom MD. As discussed in Fig. S1, consistent
behaviors are observed over a wide range of cutoff values since
the bsENM springs are trained to match the all-atom MD target
data. The default lc is set to 7.8Å as shown in Fig. S1. After conver-
gence of the first round, connectivity trimming followed by
another round of fluctuation matching is conducted to prevent
having excessive springs in the network; other details are reported
in SI. An approximation of bsENM is using a universal value for all

springs within the cutoff. This 0th-order construction solely relying
on the structural network is denoted bsENM0. To highlight the
effects of chemical details within the native topology, the bsENM
statistically learned from all-atom MD is compared with the
bsENM0 of the same equilibrium structure and lc.

2.3. Construction of inter-residue rigidity graphs from bsENM

In our graphical representation of inter-residue interaction net-
works, the edge weights between residue nodes I and J in the adja-
cency matrix are kIJ ¼

P
i2I; j2Jkij, the sum over the bsENM spring

constants linking their CG sites. For bsENM0, kij is set to 1 for the
springs within lc. In this graphical theory, the degree matrix com-
ponents record the total coupling strength of each residue
kII ¼

P
I–JkIJ , or, in the case of bsENM0, the residue contact number

of CG sites within lc. Since bsENM springs can be categorized by the
types (backbone or side chain) of their CG sites, the graphs of dif-
ferent rigidity groups can be constructed accordingly. For example,
KBB, KBS, and KSS are the signless Laplacian of the non-skeleton
springs in backbone-backbone, backbone-side-chain, and side-
chain-side-chain groups, respectively. For KSS, disulfide bond
springs are exceedingly strong and are skipped to focus on non-
covalent mechanical couplings.

2.4. Comparison of rigidity graphs

A protein of N residues can thus have different N � N rigidity
graphs that are symmetric and positive-semidefinite or positive-
definite. The eigenvectors, which also form an orthonormal basis
set, are ordered according to their eigenvalues in a descending
order with mode index a. The eigenvectors of a rigidity graph are
the specific patterns of mechanical couplings between protein resi-
dues. To quantify whether different rigidity graphs have similar
behaviors, the following mode-based procedure is developed.

The similarity of graph L with respect to a reference graph R

along its mode a is defined as ra ¼ maxb mL
b � mR

a

���
���, i.e., by finding

the eigenvector bmax in L that the dot product with mode a in R
has the largest magnitude. Here, mL

b and mR
a are the eigenvectors

of the L and R rigidity graphs, respectively. For example, if ra ¼ 1
for L, the bsENM Laplacian, with respect to L0, the bsENM0 Lapla-
cian, then L has an identical counterpart as mode a in L0. The mode
of the compared graph that delivers the phase, bmax, may not be the
same as a in the reference graph, since the respective mode rank-
ings may differ.

2.5. Statistical analysis of protein rigidity graphs

With the 5 ls production runs of RT and PDZ3, a single bsENM
using the entire trajectory only provides an equilibrium harmonic
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approximation for structural fluctuations, omitting the potentially
interesting and informative fluctuations on the interaction-
network level. This limitation is overcome by dividing the trajec-
tory into consecutive 10-ns windows to compute a series of rigidity
graphs (see Fig. 1B for an illustration of windowed trajectory seg-
mentation for statistical analysis). The 10-ns window appears to be
a reasonably robust window size in terms of extracting mechanical
coupling parameters. This is illustrated in Fig. S2, which shows that
the distribution of the inter-site interaction strength, kij’s, appears
unchanged in 5-ns, 10-ns, or 20-ns window sizes. Therefore, the
coupling network (e.g., the rigidity graph) extracted from a 10-ns
window trajectory is used as an element in further statistical
analyses.

2.5.1. Mean-modes of fluctuating rigidity graphs
The rigidity graph of a protein fluctuates and evolves over time

as the protein experiences thermal fluctuations or interacts with
the surrounding molecules. To capture and quantify these fluctua-
tions on the network level using the rigidity graph, we begin by
defining ‘‘mean-modes” which are to be understood as the average
eigenmodes of an otherwise fluctuating rigidity graph. They are
computed as follows: From the bsENM of each trajectory window
indexed by n, the non-skeleton springs are used to calculate the
off-diagonal kIJ and the diagonal kII terms in the inter-residue rigid-
ity graph Kn. Averaging the Kn graphs over the temporal segments
gives the mean rigidity graph �K. From the mean rigidity graph �K,
one finds eigenvectors, ma0 ’s, each of which is a mean-mode with
a corresponding eigenvalue ka0—the coupling strength for the a0

mean-mode. Note that hereafter a superscripted index such as a0

is used for variables and functions derived from the mean rigidity
graph, �K.

2.5.2. Content of a mean-mode in an analysis time window
Each mean-mode is a unit vector for the N residues of the rigid-

ity graph, and can be understood as an N-vector mechanical cou-
pling pattern. In this light, in addition to the coupling strength,
another important property is how much the pattern of a particu-
lar mean-mode is retained in the mechanical coupling network of
each of the analysis window. This property is determined by first
calculating the mean-mode content in each trajectory window fol-
lowing the description in Section 2.4 as rna0 ¼ maxb mnb � ma0

�� ��, where
mnb is an eigenvector of Kn indexed by b. A high mean-mode con-
tent of rna0 � 1 indicates that the pattern of ma0 stays the same in
the trajectory window. Averaging the mean-mode content over
all trajectory windows then gives the averaged mean-mode con-
tent ra0 . It measures the extent to which the eigenvector-pattern
is retained throughout the entire all-atom MD trajectory.

2.5.3. Prominent modes of a rigidity graph
With the coupling strength ka0 and the average content ra0

defined for a given mechanical-coupling pattern (designated by
the mean-mode a0), we next ask which mean-mode features are
most prominent as the protein undergoes dynamical structural
fluctuations. For the present work, we define a ‘‘prominent mode”
as a mean-mode that exhibits both (a) strong strength in the
mechanical coupling and (b) high averaged content during the pro-
tein dynamics. More quantitatively, for (a), mean-modes exhibiting
strong couplings are defined as those showing higher than the
upper fence of an empirically defined quantity,
Q3 þ 1:5� ðinter-quartile regionÞ, within the fka0 g distribution
(see Fig. S3). For (b), mean-modes having high contents during
the protein dynamics are based on the cumulative density function
(CDF) of ra0 . The cutoff for high-content designation is assigned
empirically depending on the type of mechanical coupling. For
�KBB and �KBS, only those at top 25% of ra0 values are considered
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the candidates of prominent modes, while the empirical percentile
cutoff is top 32% for the �KSS modes (see Fig. S3 for summary plots).
As shown in Figs. S4–S6, the prominent modes of �K rigidity graphs
exhibit pointed patterns in residue weights (m2Ia0 ), and mechanical
hotspots are filtered out as the residues having significant
population.

2.6. Residue rigidity scores for backbone and side chain

The set of prominent modes in a �K rigidity-graph, P, contains
the strong and high-content mechanical coupling patterns during
protein dynamics and are potentially important for functional
activities. Therefore, key residues in the prominent modes likely
have significant biological importance, thereby providing yet fur-
ther refined chemical specificity. With this insight, the participa-
tion of each protein residue in the prominent modes is used to
compute a quantitative metric in the mechanical coupling net-
work—the residue rigidity score. In a rigidity graph, we start by
finding the characteristic mode I0 for each residue indexed by I.
The protein residue is first associated with a rigidity-graph mode
p0 2 P that its weight is the highest, and the I0 of I is set to p0 if
the weight is significant (m2Ip0 P m2c ).

I0 ¼
p0 ¼ arg max

b02P
m2Ib0 if m

2
Ip0 P m2c

a0 ¼ arg max
b0RP

m2Ib0 if m
2
Ip0 < m2c :

8><
>:

ð1Þ

In this equation, if residue I does not play a significant role in any of
the prominent modes (m2Ip0 < m2c ), I0 is one of the rest eigenvectors
(b0 R P) that it has the highest weight. As shown in Figs. S4–S6,
the empirical m2c ¼ 0:1 is used to identify the significantly populated
residues in a prominent mode. Next, the residue rigidity score in the
graph is defined as jI ¼ hrI0 ikI0 , i.e., the mechanical strength
weighted by the averaged mean-mode content. If the I0 of residue
I is in P, its residue rigidity score is high, while if I0 has a weak
strength and/or low averaged content during protein dynamics, jI

is low. The residue rigidity score in backbone is defined as
jB

I ¼ max jBB
I ;jBS

I

� �
, the maximum score the residue delivers

though its backbone, and jBS
I is compared only if residue I con-

tributes backbone in the mode. Similarly, the residue rigidity score
in side-chain is calculated as jS

I ¼ max jSS
I ;jBS

I

� �
, and jBS

I is only
considered if residue I participates by its side-chain.

3. Results and discussion

With the all-atom MD simulation, structure-mechanics statisti-
cal learning, and rigidity graph analysis for both the RT and the
PDZ3 proteins, the main text primarily uses RT for introducing
the rich and quantitative information made available by our new
approach. The two systems illustrate the common general features
of sparse mechanical coupling network, scale-free network cou-
pling strengths, hotspots in both backbone and side-chain interac-
tion networks, and the residue rigidity scores during protein-
dynamics as a new metric for biochemical functions. In what fol-
lows, the mechanical coupling network is analyzed in detail.

3.1. The protein mechanical coupling network is sparse

Our structure-mechanics statistical learning with bsENM pro-
vides a way to map the chemical details during protein dynamics
onto kij values. The bsENM calculated from a trajectory segment

thus contains a list of springs each with a length l0ij and a
positive-definite elastic constant kij. The diverse mechanical cou-
pling strengths can be seen in the kij distribution from a RT trajec-
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tory window, Fig. 2A. The skeleton springs between residues neigh-
bors and disulfide bonds are exceedingly strong and will be dis-
carded later in the analysis of rigidity graphs. In Fig. 2B, the
number of inter-site pairs in the protein structure separated by

the l0ij value in each bin is shown with its fraction of springs that
converge to kij>0 after the self-consistent iterations. With increas-

ing l0ij, it can be seen that the fraction of positive-definite springs
drops further, and the protein mechanical coupling network is thus
progressively sparser than the structural contact network. Sparsity
of the mechanical coupling network signifies that the protein fold
can afford sequence variations to accommodate different func-
tions, and the network properties of mechanical couplings during
protein dynamics can potentially serve to capture the functionally
important interactions.

Although the inter-residue Laplacian matrix (L ¼ D� A) of
topological contacts is useful in mimicking collective modes, cap-
turing the specific mechanical coupling patterns may call for a dif-
ferent representation. This aspect is illustrated by using the L0 of
bsENM0 from topological contacts (no chemical details) as the ref-
erence. For the lowest-frequency modes of L from all-atomMD, the
similarity ra being close to 1 with respect to those of L0 (Fig. S7A)
Fig. 2. The elastic spring parameters of a bsENM statistically learned from a
trajectory window of RT. (A) Normalized histogram of coupling strengths. Between
CG sites i and j, kij is the coupling strength. Disulfide springs that connect the Sc
atoms of a cysteine pair are very strong. Skeleton-1 includes the springs within a
residue and between the nearest residues. The very high strengths in skeleton-1 are
peptide bonds, whereas the other springs in this category are on the left. Skeleton-2
is the springs between the second nearest residues. Non-skeleton springs are the
rest with disulfide bonds also excluded. (B) In each 0.5 Å bin of the spring length l0ij ,
the number of pairs in the protein structure (left) versus the number of springs
converging to a non-zero kij in the fluctuation matching of a trajectory window
(right).
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shows that the collective vibrations in L are indeed insensitive to
the chemical details. If considering only the skeleton springs, the
L modes are essentially identical to those of L0 (Fig. S7A), whereas
the modes of L from non-skeleton springs exhibit lower ra values
with respect to those of L0. Robustness of the low-frequencymodes
in L thus mostly comes from the skeleton springs.

To better reveal the molecular specificities in inter-residue elas-
ticities (kIJ ’s), we seek to the K ¼ Dþ A rigidity graph. The similar-
ity ra of the K modes with respect to those of K0 shows that the
lowest-frequency modes of K still exhibit specific behaviors as
the ra values are low, Fig. S7. Even for skeleton springs, K exhibit
significant differences comparing to K0. Furthermore, inspection
of the K eigenmodes for non-skeleton springs (Fig. S8) shows that
they reveal clear signals for the patterns of non-covalent kIJ ’s.
Therefore, we employ the K rigidity graph and its BB, BS, and SS
parts in the following to uncover the interplay of backbone and
side chains in the protein mechanical coupling network.
3.2. Protein mechanical coupling networks have scale-free behaviors

The non-skeleton spring constants are used to construct the off-
diagonal inter-residue coupling strength kIJ in K, and the diagonal
kII is the total coupling strength of residue I. In the graphical theory
terms of K, kIJ is the edge weight between the I and J nodes, and kII
is the degree of node I. For a network, the degrees exhibiting
power-law scaling in its high-value tale is an indicator of the
scale-free property [45–47]. Such heavy-tailed profiles are due to
most nodes having low values, but a small fraction of hotspots
exhibits high couplings [48–50]. As a counter example, residue
contact number mII in the K0 graph of the bsENM0 is not scale-
free given the packing density in a native fold, Fig. 3A. The mechan-
ical coupling network of the bsENM springs statistically learned
from all-atom MD, on the other hand, behaves fundamentally dif-
ferent. The probability density p kIIð Þ exhibits a long tail and fits
quite well with the classical Lomax distribution [51] for heavy-
tailed profiles, Fig. 3B. As such, the mechanical coupling strengths
during protein dynamics exhibit power-law scaling despite the
data having more complicated patterns, and the exponent c is in
the typically encountered range (2<c<3) of real-world scale-free
networks [45–50]. The protein structural network, however, lacks
such scale-free property. The data in Fig. 3 include the bsENM
and bsENM0 of every 10-ns trajectory window in the 5-ls produc-
tion run of RT.

The scale-free behavior indicates that structural contacts within
similar distances have highly diverse coupling strengths. Our find-
ing of this network property of protein dynamics is consistent with
the observation of mutational tolerance [52,53] that only a certain
percentage of mutations would impact the phenotype. Protein
rigidity graphs, similarly, have just a fraction of inter-residue edges
carrying significant weights, and can potentially serve as the
molecular-scale mechanistic basis for mutation sensitivity. Next,
the functional connection is analyzed by first focusing on the speci-
fic properties of backbone and side-chain mechanical coupling
networks.

A key advantage in our design of bsENM is that the CG sites are
either the backbone or side-chain type. The backbone-backbone,
backbone-side-chain, and side-chain-side-chain rigidity graphs
can thus be constructed to uncover their separate behaviors in
the mechanical coupling network, and K ¼ KBB þKBS þKSS. This
decomposition of the mechanical coupling network shows that
the rigidity graphs of different chemical components all exhibit
heavy tails and scale-free behaviors, Fig. 4. Containing the overall
weaker non-polar interactions, Fig. S9, the exponent of power-
law scaling for the kII values in KSS is steeper (c ¼ 4:55), Fig. 4.
The high-value outliers in KSS, though, exhibit complicated behav-



Fig. 3. Mechanical couplings during protein dynamics exhibit a heavy tailed
distribution and scale-free network behavior. The diagonal components of K

(bsENM) and K0 (bsENM0) in every trajectory window of the 5 ls production run of
RT are included. Top panel: p kIIð Þ, the probability density distribution of kII , the
residue coupling strength due to non-skeleton springs in bsENM. Insert: p mIIð Þ,
where the K0 diagonal mII is the residue contact number. It follows a Gaussian
distribution given the packing density in the protein structure. Bottom panel: p kIIð Þ
in the log-log scale. The orange line is the best-fit Lomax distribution. The red line in
the insert is a power-law fit with the scaling exponent c.

Fig. 4. The p kIIð Þ (left panels) and p kað Þ (right panels) of KBB, KBS, and KSS rigidity
graphs on a log-log scale. The rigidity graphs of all trajectory windows in the 5 ls
production run of RT are used. The orange line is the best-fit Lomax distribution for
the heavy-tailed profiles. The red line in the insert is a power-law fit with the
scaling exponent c.
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iors that deviate from the simple power-law equation. In an alter-
native representation by spectral analysis, the rigidity graph eigen-
values (ka’s) are the coupling strengths of different modes, and
they also exhibit heavy-tailed distributions and power-law scaling.
For the ka distribution of KSS, the 2.39 exponent is similar to that of
KBB and KBS, Fig. 4, indicating synergistic combination of inter-
residue couplings in the collective modes.

For the protein mechanical coupling networks of a fixed num-
ber of nodes (residues) to have scale-free behaviors, their edge
weights exhibit high-strength tails as shown in Fig. S9. To analyze
the dependence of network properties on chemical differences, the
off-diagonal terms of KBB (kIJ ’s) are grouped according to the sec-
ondary structure (sheet, helix, and loop) while those of KSS are
divided into polar and nonpolar groups. The KBS couplings are all
polar since backbone is involved. If either residue I or J is not in
a helix or sheet, the pair is counted as in loop. The residue compo-
sition of RT secondary structures is listed in Fig. 5A. The power-law
scalings of these categories are indeed different, and each case has
evident higher and/or lower-valued outliers deviating from the
simple formula. The a helix kIJ ’s are the highest populated in the
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5-10 kcal/mol/Å2 range, but they do not have any instance of very
strong strengths (>15 kcal/mol/Å2) and are the least-tailed group,
Fig. S9. On the other hand, b sheets have much higher chances of
exhibiting exceptional strengths during the dynamical motions
and have the lowest c. Heavy-tailed distributions of strengths are
also seen in the BS, BB-loop, and SS-polar couplings. For the nonpo-
lar side chains in RT, its kIJ tail is shorter and the power-law scaling
exponent is higher.

In the 5 ls dynamics of PDZ3, scale-free behaviors of the BB, BS,
and SS rigidity graphs are similarly observed, Fig. S10, and the BB-
helix and SS-nonpolar couplings are also less heavy-tailed, Fig. S11.
The BB-helix kIJ ’s, though, have a better fit with the Lomax distribu-
tion than those in RT. Interestingly, the polarKSS components exhi-
bit a much extended tail in PDZ3, and strengths even higher than
those of b sheet KBB show up, Fig. S11, illustrating protein specific
behaviors in the mechanical coupling networks.

The results of both RT and PDZ3 show that the mechanical cou-
plings of backbone and side chains have different network proper-
ties. To further illustrate this point, specific patterns in the K

rigidity graphs of non-skeleton kIJ ’s are characterized by spectral
decomposition. This analysis also provides the data in identifying
the mechanical hotspots based on the contributions of residue
backbone and side chains.
3.3. Backbone and side chains exhibit specific mechanical hotspots

Graphical analysis of the bsENM quantitatively reveals the
backbone and side-chain contributions in the mechanical coupling
network. The high-strength tails in the eigenvalue distributions
imply that their mechanical coupling patterns are more resistant
to thermal noises during protein dynamics. The averaged mean-
mode contents during protein dynamics, ra0 , for the eigenmodes



Fig. 5. In RT, the prominent backbone-only mechanical couplings during protein dynamics. (A) A ribbon representation the structure and residue composition of secondary
structures. (B) Prominent mode residues in �KBB are in licorice. The BPTI inhibitor is labeled as brown ribbon. The index, eigenvalue, and residues of prominent modes are
listed.
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of �KBB, �KSS, or �KBS are calculated following the description in 2.5.
The eigenvectors that show a statistically prominent ka0 and ra0
over the RT trajectory are then identified in Fig. S3, and their
pointed patterns inform the participating residues, Figs. S4–S6.
For the 5 ls trajectory of RT bound with BPTI, the rigidity graph
includes the inhibitor residues and the Ca2+ ion in RT is also treated
as an additional residue. It is thus straightforward to adapt the
bsENM-graph framework for studying complex protein systems.
We focus on the modes of RT residues, and those of BPTI only are
not presented.

The trypsin fold of RT containing NT and CT barrels (Fig. 5A) is a
useful structural template for therapeutic design [54,55]. The high-
strength �KBB eigenvectors indeed have high ra0 values and Fig. 5B
shows the mechanical wiring of the 18 prominent modes. The
�KBB eigenvector components mBBIa0 of prominent modes often pick
up residue pairs with very strong hydrogen bonds, such as the
oxyanion hole G193 coupling to BPTI in �KBB

9 , yet more collective
patterns (a0=2, 7, and 14) are also observed. Most of the prominent
�KBB modes disperse in separate b strand-rich regions, and a notice-
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able pattern is the strongest coupling locating at the cluster center
with few nearby modes containing residues at secondary structure
peripheries (edge residues of a b strand or a helix) as boldfaced in
Fig. 5B. Out of the 34 hotspot residues in prominent �KBB modes, 20
are in secondary structures, 9 are at peripheries, and 5 are in loops,
Fig. 6B. The catalytic triad S195, H57, and D102 are within 2-3 resi-
dues to b11, b4, and b7, respectively, and are considered at their
peripheries. The backbone coupling of S195 with G43 as in �KBB

17

links the NT-barrel and CT-barrel.
Spectral analysis of �KSS illustrates a different network topology,

Fig. 6A and Fig. S6. In the SS prominent modes, dual-residue pat-
terns often appear at the interface between NT and CT barrels
due to very strong hydrogen bonds or salt bridges, such as �KSS

4

between H57 and D102. Polar and nonpolar side chains, though,
do not mix in the same prominent modes, demonstrating mechan-
ical coupling separation due to chemical differences. Mostly locat-
ing in b strands, the eigenvectors populated by hydrophobic
residues tend to involve more mechanically linked partners and

can still emerge as prominent modes even the individual kSSIJ values



Fig. 6. In RT, the prominent mechanical couplings during protein dynamics involving a side chain. The prominent modes in (A) �KSS and (B) �KBS rigidity graphs. The BPTI
inhibitor is in brown ribbon. The RT residues in hydrogen bonds and salt bridges are in licorice and those in hydrophobic couplings are in ball-and-stick. The index,
eigenvalue, and residues of prominent modes are listed. The prominent mode residues are hotspots in the mechanical coupling network, and the numbers within a secondary
structure, b=a interior, at a secondary structure periphery, b=a periphery, or in a loop are reported.
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may be lower. Comparing to �KBB, the �KSS prominent modes have
higher percentages of periphery and loop residues, Fig. 6B. As for
�KBS, the prominent modes are scattered hydrogen bonds primarily
in loops, some at secondary structure peripheries, but very few
within a secondary structure. In RT, the very strong �KBS couplings
primarily occur in the CT barrel that contains the activation
domain, Fig. 1A and Fig. 6B. Backbone and side-chain mechanical
couplings thus exhibit specific patterns in the structure.

The above results of backbone and side chains having distinct
mechanical coupling networks provide molecular basis for their
separate adjustability as empirically adopted in protein engineer-
ing and design [9–11]. Whether backbone or side chains are more
important in shaping the folding funnel is also an unresolved
debate [3–6]. Rather than lumping each residue as a single unit
[12–17], our strategy is explicit representation of backbone and
side chains. With their rigidity graphs computed from protein
dynamics, this framework provides a refined way for delineating
the free-energy landscape around the structure. Next, whether
the mechanical couplings would exhibit extended patterns for
understanding protein allostery is addressed.
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3.4. Emergence of extensive mechanical couplings

The RT rigidity graphs reveal that the prominent couplings
between RT and BPTI lie in the hydrogen bonding modes �KBB

9 ,
�KBS

5 , and �KSS
19 (Fig. 5 and Fig. 6). They are next to several prominent

modes within the trypsin fold, including �KSS
4 , �KSS

12, �K
BB
17 of the triad,

and the C42-C58 disulfide bond at the S1’ site. With such spatial
arrangement, the prominent modes �KSS

15 and �KSS
21 indeed come out

as long-range mechanical couplings containing BPTI A16, S1’ site
C42, the catalytic triad, oxyanion hole, A56, and S1 site S214 and
T229, Fig. 6A. From the activation domain to active site, Fig. 5B,
extensive prominent modes also emerge as �KBS

1 , �KBS
5 , and �KBS

10,
Fig. 6B. A mystery of the serine protease family is that substrate
variation or mutation at sites away from the triad still impact
the kcat=KM of cleavage [56–60]. Our result is a first demonstration
that under thermal noise, specific molecular interactions can inte-
grate into significant mechanical signals across distal sites.

During the 5 ls all-atom trajectory of PDZ3, the mechanical
hotspots are also captured as the significantly populated residues
in the prominent modes, Figs. S12–S15. Similarly, the backbone
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and side-chain mechanical coupling networks of PDZ3 exhibit dif-
ferent patterns, Figs. S16–S17. Most BB prominent modes are in the
b-sandwich with certain extensive patterns like �KBB

9 . The promi-
nent BS modes of PDZ3, on the other hand, are more scattered
and contain the extensive �KBS

1 , �KBS
3 , and �KBS

7 that link the b-
sandwich and CT-extension. Most of the prominent SS modes in
PDZ3 are hydrophobic and rather extensive, while the �KSS

1 salt
bridge at the b-sandwich facing CT-extension is exceeding strong,
Fig. S17. Similar to RT, the prominent mode residues of PDZ3 �KSS

have a significantly higher percentage at secondary structure
peripheries, such as the two residues of �KSS

1 , than those of �KBB

do. The mechanical hotspots of PDZ3 �KBS also very frequently occur
at secondary structure peripheries (Fig. S17) rather than in loops as
in the case of RT (Fig. 6B). While consistent overall patterns in
mechanical coupling networks are observed, the two protein sys-
tems exhibit specific features in their prominent modes of rigidity
graphs.

At the core of allosteric communication in proteins is the phys-
ical interactions that are persistent under thermal noise for con-
necting distal sites [4–6]. In attempting to capture such
functionally important long-range couplings, many approaches
are based on positional covariance [18–20], structural contacts
[21–23], or sequence co-evolution [38–42]. However, a fundamen-
tal difficulty is that the observed signals do not necessarily corre-
spond to molecular interactions. For example, in using low-
frequency vibrational modes to study intra-protein communica-
tion, positional fluctuations of unconnected, distal residues can
be highly correlated due to the structural topology [12–14]. From
Fig. 7. For RT, the residue rigidity score during protein dynamics in backbone (jB
I , x-axis)

have a side-chain score, they are provided with a minimal jS
I and hence locate at the bot

the prominent modes of rigidity graphs. Dashed lines are the hotspot boundary due to K

band except G69, H71, and S190 that contribute backbone to the prominent �KBS m
experimentally verified function or ultra high conservation in MSA. Filled orange as ‘‘pro
contain least one functional residue. Filled yellow as ‘‘prominently coupled, next” are the
next to a hotspot. A residue is labeled or for high co-evolution in SCA or DCA, res
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protein dynamics, our computational framework of identifying
the prominent modes of K rigidity graphs thus provides a way to
capture the molecularly specific patterns that can survive the
stochastic fluctuations. In both the RT and PDZ3 protein systems,
extensive mechanical couplings composed of physical interactions
are identified.
3.5. Residue rigidity scores in backbone and side chains during protein
dynamics as metrics for biological functions

Being the strong mechanical couplings persistent through pro-
tein dynamics, the prominent modes of �KBB, �KBS, and �KSS likely
have important implications in biological functions. They also rep-
resent the routes through which protein backbone and side chains
are wired in the mechanical coupling network. Based on this mech-
anistic insight, we propose to quantify the biological importance of
residues by deducing the residue rigidity scores in �KBB, �KBS, and
�KSS. Since their eigenvectors exhibit pointed patterns, each residue
is specifically populated in few modes. The residue rigidity score
for I in a particular rigidity graph thus comes from the characteris-
tic eigenvector I0 that the residue is most representative (see Eq. 1
discussed in 2.6). The residue rigidity score jI is then the mechan-
ical strength weighted by the averaged content of mode I0 during
protein dynamics, rI0h ikI0 . By putting together the results of �KBB,
�KBS, and �KSS, the residue rigidity score in backbone, jB

I , is the lar-
gest mechanical contribution from the backbone of residue I, and
jS

I is that from its side chain. Therefore, if residue I plays a signif-
icant role in a prominent mode in �KBB, �KBS, and/or �KSS, it would
and in side chain (jS
I , y-axis) for residues indexed by I. Since glycine residues do not

tom. Red circles denote mechanical hotspots: the significantly weighted residues in
� BB and �KSS prominent modes, and mechanical hotspots are mostly enclosed in the
odes. Labelled as ‘‘functional residue” are those listed in Table S2 that have
minently coupled” are the mechanical hotspots of a single rigidity graph mode that
hotspots next to a functional residue in sequence or non-hotspot functional residues
pectively. Grey circles are non-hotspot residues.
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have high jB
I and/or jS

I . On the other hand, if a residue only appears
in modes having low strength and/or averaged content, it would
have low residue rigidity scores. The residue rigidity scores of RT
backbone and side chains in the all-atomMD simulation are shown
in Fig. 7; glycine residues listed in the bottom are provided with a
minimal jS

I as they do have side chain and hence the correspond-
ing score.

In contributing to the mechanical coupling network, Fig. 7 illus-
trates that the protein amino acids have diverse residue rigidity
scores in backbone and side chains. Mechanical hotspots are the
significantly populated residues in the prominent mode of rigidity
graphs as defined in 2.6, and the dashed lines in Fig. 7 are the
boundaries due to �KBB and �KSS. The general importance of the tryp-
sin fold in RT has led to a variety of functional characterization
including mutagenesis at different sites. Combining the residues
with experimentally verified function and ultra high conservation
in MSA provides the functional residues of RT as summarized in
Table S2 and marked on Fig. 7. It can be seen that the mechanical
hotspots cover most of the functional residues as well as their
prominently coupled associates in the rigidity graphs. Although
glycine residues do not have a side chain are often flexible, few
of them still emerge as mechanical hotspots through backbone
such as the oxyanion hole G193. Even though several functional
glycines are not in a prominent mode of the rigidity graphs, their
signature in the networks is being sequence neighbors of mechan-
ical hotspots, Fig. 7. While the rigidity scores are based on non-
skeleton springs, sequence neighbors are prominently coupled
through skeleton connections. Therefore, the ”prominently cou-
pled, next” category that the aforementioned glycine residues
reside also includes the mechanical hotspots that are next to func-
tional residues. Moreover, many mechanical hotspots exhibit
strong signals in SCA and/or DCA [39,40]; Table S3 summarizes
the residues having high co-evolution as marked in Fig. 7. For
example, the residues in the aforementioned �KSS

15 and �KSS
21 promi-

nent modes that form a spatially extensive set of mechanical cou-
plings are all in a SCA sector, which also includes the mechanical
hotspots in �KBS

1 (Fig. 6 and Table S3).
From the 5 ls all-atom MD data of PDZ3, the mechanical hot-

spots covering most of its functional residues [38] is also observed
in its jB

I -jS
I plot, Fig. S18. The mechanical hotspot F325 important

for substrate recognition has been shown to co-evolve with
another hotspot H372 at a distal site with A347 and L353 on the
communication pathway, but the underlying physical interactions
are unclear [61]. As a molecular mechanism for this SCA-based pre-
diction, Fig. S17 shows that F325 is in a cluster of prominent
hydrophobic modes ( �KSS

2�5;7) that together with �KBS
6 mechanically

link the residue with H372. One of the mechanical hotspots in
these modes is I341, which has been proposed as an alternative
route in a thermal-diffusion MD study [62]. Our rigidity graph
analysis based on all-atom MD simulations thus offers a unified
mechanistic picture for the various data on intra-PDZ3
communication.

Although most of the characterized residues are in the b-
sandwich [38] of PDZ3, several mechanical hotspots are found at
the interface contacting CT-extension. For example, D357 coupling
to Y392 at the interface in �KBS

1 is the most conserved residues in the
b-sandwich [61]. It would thus be valuable to specifically examine
the functional roles of such residues in inter-domain communica-
tion [63,64]. Overall, the residue rigidity scores in backbone and
side chains are very useful metrics for the functional importance
of RT and PDZ3 sites. This establishment opens a new door for
using molecular simulation to study the mechanistic basis of bio-
logical activities and evolutionary restraints.
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4. Conclusions

Given a protein fold, residue contact numbers center around a
value due to the packing density. But then, what is the manifesta-
tion of sequence specificities in the structure? This question is
addressed here by developing a bsENM with structure-mechanics
statistical learning to compute the elastic parameters from 5 ls
all-atomMD simulation in explicit solvent. To analyze the network
behaviors of the complicated molecular interactions in structural
fluctuations, the newly devised graph-theoretic framework intro-
duces the concept of protein rigidity graphs. A key discovery is that
the chemical details during protein dynamics render scale-free
network properties in the mechanical coupling strengths of both
backbone and side chains. In the nano-scale network of a single
protein, exhibition of small-world-like features has not been
shown to the best of our knowledge. The significantly populated
residues in the statistically prominent modes of rigidity graphs
are thus recognized as mechanical hotspots.

Furthermore, our bsENM-graph approach enables the direct
comparison of backbone and side-chain mechanical couplings to
accentuate their differences. Such outcomes point to an important
notion that protein residues have diverse combinations of back-
bone and side-chain contributions to the mechanical coupling net-
work as seen in the jS

I -jB
I plot of RT (Fig. 7) and PDZ3 (Fig. S18).

Encouragingly, functional residues of the two protein systems are
largely mechanical hotspots themselves or next to one in sequence
as for glycine. While most functional residues have high residue
rigidity scores for their side chains, some also have prominent
backbone couplings as in the top-right corner of Fig. 7 and
Fig. S18. Only a specific set of sites having top residue rigidity
scores in both the side chains and backbone indicates sophisticat-
edly tuned interaction network and has implications in shaping the
folding funnel and in rendering proper conformational flexibilities
for function. Another finding is that a significant portion of side-
chain related mechanical hotspots locate at secondary peripheries
(Fig. 6 and Fig. S17), i.e., the edges of foldons [65], and are poten-
tially important factors in adopting the foldon inspired models
[65,66] for protein folding. Although the all-atom MD data depend
on empirical force fields, specific conditions, and duration, the
structure-mechanics statistical learning and graphical analysis
schemes as well as the concepts therein can be readily applied to
different cases. The mechanical hotspots and prominent rigidity
graph modes identified in molecular simulation also bear similar-
ities with the co-evolution in MSA, which also suffers from statis-
tical noises. For RT, the physically contiguous residues in �KSS

15;21 and
�KBS

1;10 also exhibit prominent co-evolution signals in MSA as a single
sector, Fig. 6 and Table S3. For PDZ3, the multiple prominent
modes involving F325 ( �KSS

2�5) primarily involve sector residues,
Fig. S18. This work thus suggests a molecular mechanism for the
coupled sequence variation due to evolutionary restraints, that it
be associated with having prominent patterns in the protein
mechanical coupling network.
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