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Nanoscale imaging of untreated 
mammalian cells in a medium with 
low radiation damage using  
scanning electron-assisted 
dielectric microscopy
Tomoko Okada & Toshihiko Ogura

Imaging of untreated living cells in a medium at a nanometre-scale resolution under physiological 
conditions is a significant challenge. Scanning electron microscopy (SEM) is widely used to observe 
cells in various atmospheric holders or special equipment. However, untreated biological specimens in 
aqueous solution generally incur heavy radiation damage from the direct electron beam (EB); and these 
images exhibit very poor contrast. Therefore, a new method for generating high-contrast images of 
living cells under physiological conditions without radiation damage has been strongly desired. Here, 
we demonstrate the first nanoscale observation of living cultured mammalian cells using our newly 
developed scanning-electron assisted dielectric microscopy (SE-ADM) method with a culture dish 
holder. Using the difference in relative permittivity between water and specimens, our SE-ADM system 
aids in the visualisation of untreated biological samples in aqueous solution. In addition, specimens 
incurred only a low level of radiation damage because the tungsten (W)-coated silicon nitride (SiN) film 
absorbs irradiated electrons. Untreated cells and organelles are clearly visible in high-contrast and high-
resolution images without staining and fixation. Furthermore, our method enables the detection of 
changes in organelle structures within cells via time-lapse imaging with minimal radiation damage.

Nanometre-scale visualisation of living cells can provide valuable insights into biological mechanisms1–3. Recent 
fluorescence microscopy techniques involving super-resolution technology with fluorescent labelling of cellu-
lar components enable resolutions of approximately 20 nm4–6, but these techniques only enable observation of 
labelled cellular regions. In contrast, conventional SEM yields spatial resolutions > 10 nm. However, SEM requires 
fixed and/or frozen or dried cells and does not reveal information under physiological conditions7–9. The EB used 
in electron microscopy studies of eukaryotic cells in medium, which involved atmospheric holders, caused heavy 
radiation damage to the cells, resulting in a requirement of glutaraldehyde fixation with negative staining or metal 
labelling10,11.

X-ray free-electron laser technology was recently established12–14. Using this technique, unstained and unfixed 
living biological samples can be visualised using diffraction patterns and electron densities reconstructed with 
femtosecond X-ray laser pulses15,16. Although this method has been successfully used to observe viruses and 
living prokaryotic cells12–14, the biological samples were completely destroyed after a single-shot X-ray pulse16. 
In addition, X-ray laser systems require huge equipment and involve high costs13,14. Therefore, a new method for 
observing living cells under physiological conditions without radiation damage has been strongly desired.

Recently, we developed a new imaging technology involving a SE-ADM system, which comprises a SEM, 
electric-field detection system, and aqueous sample holder17–19. Using this system, we can visualise untreated 
biological samples in aqueous medium using the differences in relative permittivity (RP) between the substances. 
The RP of water is approximately 8020 or 30-fold higher than that of biological specimens (RP =  2–3)21. Therefore, 
our system is capable producing high-contrast images of untreated biological specimens in aqueous solution17. 
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In this process, biological samples are enclosed in a liquid holder composed of W-coated SiN film and are not 
directly exposed to EB, thus minimizing electron radiation damage17. When the electron beam is used to irradiate 
the 15-nm W layer, the electrons are scattered and absorbed in this layer; hence, a negative potential arises in the 
irradiated position. This negative potential is detected from the bottom measurement terminal through the speci-
men in water17. Our system, which is based on high-resolution field emission (FE) SEM, has a spatial resolution of 
8 nm19. Moreover, our method enables the detection of changes in organelle structures within cells via time-lapse 
imaging with minimal radiation damage.

Results
Figure 1 presents a schematic outline of the SE-ADM system and the original culture dish with liquid sample 
holder (Fig. 1a,a’). The holder containing cultured cells was separated from the plastic culture dish (Fig. 1b,b’) 
and attached upside down onto another SiN film on a square acrylic plate equivalent in size to the Al holder 
(Fig. 1c,c’). These components were sealed with an O-ring and four screws (Fig. 1c). Cultured mammalian cells in 
the interspace between the SiN films were maintained at atmospheric pressure (Fig. 1d). The liquid sample holder, 
including the intact cultured cancer cells (4T1E/M3), was attached to a sample stage with a built-in pre-amplifier 
(Fig. 1c’). This assembly was placed in a FE-SEM chamber via a sample transfer system. W-coated SiN film on the 
cell-adherent side was irradiated by a scanning-EB at an acceleration voltage of 7–10 kV. A measurement terminal 
under the sample holder detected electrical field signals transmitted from EB-irradiated position on the W-coated 
SiN film to the cells in the medium (Fig. 1d). Electrical field signals are strongly transmitted through the medium 
to the underside. In contrast, cells strongly inhibit these signals. Finally, dielectric images were generated via cal-
culations involving the electrical-field and EB-scanning signals19.

We analysed the electron trajectories on W-coated SiN film and in the medium using the Monte Carlo (MC) 
simulation in CASINO ver. 2.4222. We estimated that the density and thickness of the W layer and SiN film 
were 19.3 g/cm3 and 15 nm and 3.12 g/cm3 and 50 nm, respectively. The calculated density of the culture medium 
was 1.012 g/cm3, because RPMI-1640 medium mainly included NaCl (6 g/L), NaHCO3 (1.5 g/L) and D-Glucose 
(4.5 g/L). The simulation parameters were set as follows: 100,000 electrons, 8 kV acceleration voltage, and 3-nm EB 
diameter. As a result, the trajectory of the irradiated electrons was found to reach a depth of approximately 1 μ m  
in medium (Supplementary Fig. 1a,b), whereas the mean thickness of the 4T1E/M3 cells is estimated at approx-
imately 3 μ m23. Next, we calculated the total electron doses to the cells in medium based on the EM condition 
and MC simulation. The electron dose just below the SiN membrane was 0.335 electron/Å2, which was calculated 

Figure 1. Experimental set-up and dielectric microscopy using a culture dish holder and SE-ADM system. 
(a,a’) Al holder with W-coated SiN film is attached in the bottom of a medium-filled culture dish. After 4–5 
days of culture, cells in the holder formed a confluent monolayer on the 50-nm-thick SiN film. (b,b’) The holder 
containing cultured cells was separated from the plastic culture dish after removing part of the medium.  
(c,c’) The Al holder was attached upside down onto another SiN film on a square acrylic plate. These 
components were sealed with an O-ring and four screws. The sample holder with cells in the medium was 
mounted on the pre-amplifier attached to the sample stage. (d) Schematic figure of our high-contrast imaging 
method with low-level radiation damage to untreated cells in the medium under W-coated SiN film. EB 
irradiation of the W-coated SiN film causes electron scattering and absorption in the film, and negative 
potential in EB-irradiated position. This negative electric potential is transmitted to the bottom SiN film 
through the cultured cells in the medium.
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using a MC simulation with EB current of 10 pA, EB scanning area of 12 ×  9.6 μ m and transmission rate of 0.774 
(Supplementary Fig. 1c,d). The electron dose to the cell gradually decreased according to depth from the SiN 
film (Supplementary Fig. 1d), reaching a value near 0 at a depth of 1.2 μ m, in comparison to the cell thickness of 
approximately 3 μ m23. Therefore, the cell appeared to sustain minimal radiation damage.

After 4–5 days in culture, cells in the holder formed a confluent monolayer on SiN film and were observed 
using an optical phase-contrast microscope (Supplementary Fig. 2a). We seeded the cells into the holder dish at 
a rather low density and allowed them to adhere and spread because we can obtain clearer dielectric images with 
our SE-ADM system with a thinner sample. We initially observed the SiN film under the cells using a dielectric 
microscope at low magnification. The upper sides of W-coated SiN films were visualised using secondary electron 
images, which detected flat film surfaces without cells (Supplementary Fig. 2b). In contrast, dielectric images 
revealed several cancer cells in the SiN film square window (Supplementary Fig. 2c). Furthermore, our system 
clearly visualised cancer cells at 2,000×  magnification (Supplementary Fig. 2d). Another representative image at 
2,500×  magnification (Fig. 2a), intracellular structures, including the nuclei, vesicles, and endoplasmic reticulum 
(ER), were clearly observed. Typically, the nucleus appeared as a large spherical structure with strong black con-
trast. Our SE-ADM system is able to observe specimens at a medium depth of approximately 10 μ m17.

The ER, which is located within the cytoplasm, is a membrane network composed of branching tubules and flat-
tened disc-like sacs24,25. ERs were found to localise near the nucleus in 4T1E/M3 cells stained with fluorescence dyes 
specific for the ER and Golgi complex and observed using optical fluorescent microscopy (Supplementary Fig. 3a).  
The phase contrast image and its merged picture are shown in Supplementary Fig. 3b,c. We used SE-ADM imag-
ing to view the intracellular structures of intact 4T1E/M3 cells in medium. ER under the nucleus exhibits complex 
membrane structures (Fig. 2a, boxed region). Figure 2b shows a region near the nucleus at 4,000×  magnification, 
with the nucleus appearing as a spherical area of dark contrast, surrounded by tubule-like structure of the ER and 
large vesicles. A similar complex membrane structure was observed in another area (Fig. 2c).

Figure 2. Observation of untreated 4T1E/EM3 cells in the medium using SE-ADM system. (a) Dielectric 
image of untreated culture cells in medium at 2,500×  magnification, with a 7-kV EB and − 32-V bias. ERs 
are visible as a complex membrane stack in the lower left (boxed region). (b) Dielectric image near the 
nuclear regions. The membrane and vesicle structure are shown at the lower left. Many vesicles are dispersed 
throughout the regions. The image was obtained with a 9-kV EB, 4,000×  magnification and − 32-V bias.  
(c) Dielectric image of other membrane and vesicle structure regions obtained at 8 kV and 2,500×  magnification.  
All scale bars represent 5 μ m.
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The ER plays important roles in the biosynthesis of proteins and lipids; these molecules are transported from 
the ER to the Golgi complex which process has been precisely studied26. The structures of the ER and Golgi 
complex have been observed using high-resolution TEM27. SE-ADM images of 4T1E/M3 cells (Fig. 3) indi-
cate various vesicles and/or ER (white contrast) near the nucleus and membrane structures (Fig. 3a,c, 5,000× ).  
High-magnification (10,000× ) scans of central areas revealed vesicles attached to membrane-like structures 
(Fig. 3b,d). Two enlarged vesicle and/or ER images of red-boxed areas from (b,d) (Supplementary Fig. 4a,b)  
clearly reveal a spherical shape with rough surface membrane. Furthermore, the vesicles were found to be 
interconnected.

Our dielectric microscopy system allowed observations of intact cells in the medium with minimal radiation 
damage, facilitating the detection of structural movement and/or contrast change through multiple scans of the 
same cells. We successfully scanned the same cells four times at an approximate 6-minute interval with very little 
radiation damage (Fig. 4a–d). Several cells were located in the area shown in the first scanned image (Fig. 4a). 
The four scanned images appeared quite similar (Fig. 4a–d), indicating that our imaging method causes low 
levels of radiation damage to untreated mammalian cells in the medium. After a precise analysis of the first and 
last images, we found that the same cells under the same conditions exhibited slight changes (Fig. 4a–d, red and 
blue arrows). These contrast shifts and structural changes were clearly confirmed in enlarged images (Fig. 4e and 
Supplementary Fig. 4c). A white particle (red arrow) in Fig. 4a clearly decreased across the four scanning time 
points (Fig. 4e). In contrast, the contrast levels of several vesicles (Fig. 4a, blue arrows) increased, and two central 
vesicles fused (Supplementary Fig. 4c). We assumed that the very small changes visible in time-lapse images 
(Fig. 4a–d) were indicative of changes in the condition of the cell in the liquid holder rather than radiation dam-
age. Radiation damage should be visible throughout the cell, and cells that incur greater damage will degrade. 
However, the detected changes were highly localized.

Discussion
During general SEM examination, biological samples in aqueous solution in a liquid sample holder exhibit very 
low contrast because of nearly the same EB interaction between water and biological specimens. Therefore, it 
is difficult to obtain high-resolution and high-contrast images of untreated cells in the medium using a tradi-
tional liquid holder (Supplementary Fig. 5). Moreover, EB used in standard methods causes significant radiation 
damage to biological samples2,28,29. In contrast, our new SE-ADM system enables the examination of untreated 
biological samples in aqueous solution with little radiation damage because EB does not directly irradiate the 
samples17–19.

Using our new SE-ADM system, we successfully observed not only intact culture cells in the medium but also 
intracellular organelles. Notably, our system has a spatial resolution of 8 nm19, which is sufficient for the detailed 

Figure 3. High-resolution imaging of vesicle structures using SE-ADM. (a) Dielectric image of a vesicle-
rich region. Clear vesicles are visibly attached to membrane structures. The image was obtained with a 9-kV 
EB, 5,000×  magnification, and − 32-V bias. (b) High-magnification image of the boxed area in (a) at 10,000×  
magnification. Vesicles are visibly attached to the membranes. (c) Dielectric image of another vesicle-rich region 
at 5,000×  magnification. (d) High-magnification image of the centre of (c) at 10,000×  magnification. The 
vesicles are clearly attached to membrane -like structures. The scale bars represent 2 μ m in (a,c) and 1 μ m in (b,d).
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analysis of cell organelle structures. Using a traditional electron microscope, whole-cell observations based on 
transmitted images are very challenging because it is difficult to transmit electrons to the cells in a sample thick-
ness > 1 μ m. In contrast, our SE-ADM system can clearly visualise the intracellular structures of untreated whole 
mammalian cells in the medium (Figs 2 and 3). Moreover, living cells incurred only low levels of radiation dam-
age from EB, even after several scans (Fig. 4), indicating the ability of our system to detect changes in living cells 
in medium. Notably, our SE-ADM system is the first to successfully detect changes in intracellular structures 
(Fig. 4a–d), such as decreasing vesicle contrast (Fig. 4e) and vesicle fusion (Supplementary Fig. 4c). However, 
very rapid and dramatic changes of cell structures may be difficult to detect because the present system requires 
80 s for each scan. Furthermore, in our system, cells incur slight damage during the processes of dish holder 
application and observation. Therefore, to detect the quick and precise change of the cell structure, development 
and improvement of new detection system is still required. Because AFM and EM have been used to observe 
vesicle fusion and Golgi complex budding30, it might be interesting to analyse these phenomena using our system 
together. Further, we plan to keep the temperature in the sample stage holder at 37 °C for the long-term time-lapse 
imaging of living cells in the future.

Using our SE-ADM system, the spatial resolution of the cells gradually decreased in deep regions from the 
W-coated SiN film. Presumably, the electric field signal gradually spread and decreased in these deep regions, 
causing decreases in spatial resolution and contrast. To avoid an expansion of the electric potential signal range, 
we could generate an electric field in the holder and create an electrostatic lens using electric potential, thus 
condensing the range in the deep area. Therefore, we plan to include several bias-electrodes in the holder, apply 
voltage and form a virtual electrostatic lens. Observation of macro-proteins can be possible if we could achieve a 
spatial resolution < 5 nm in our system. This achievement would further expand the new field of true visualisation 
of macromolecules in living cells. Finally, our method could be applied to visualise various liquid samples in a 
broad range of scientific fields, including nanoparticles, organic materials and other biological specimens.

Figure 4. Examination of structural changes within cells using multi-scanned SE-ADM images. (a) Initial  
image of untreated cultured cells in medium using an 8-kV EB and 2,500×  magnification. (b) Second 
observation image of the same area as in (a). (c) Third observation image. (d) Fourth scanned image of the same 
cells in medium. Red and blue arrows correspond to moving structures and/or changes in contrast.  
(e) Enlarged images of a vesicle that exhibited contrast changes throughout the four observations, as indicated 
by the red arrows in the upper parts of (a–d). The scale bars represent 5 μ m in (a) and 1 μ m in (e).
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Methods
4T1E/M3 cell culture and sample preparation. We established 4T1E/M3 mouse breast cancer cells from 
4T1 cells (ATCC, Manassas, VA, USA) as described previously31–33. Cells were cultured in high glucose RPMI-
1640 medium containing 10% fetal calf serum (FCS) and 20 mM HEPES at 37 °C under 5% CO2.

After adding culture medium (described above, 1.5 ml/dish) to the culture dish attached under the 
SiN-aluminium (Al)-holder, cells (4 ×  104; 20 μ l/dish) were seeded and cultured at 37 °C under 5% CO2. The 
medium was changed after 2–3 days, and cells formed a sub-confluent or complete confluent monolayer on the 
SiN membrane in the holder after 4–5 days. Further, the Al holder with cells was separated from the plastic cul-
ture dish, attached upside down to another SiN film on an acrylic plate (15 ×  15 mm) and sealed with an O-ring 
and four screws. The liquid sample holder containing the intact culture cells was finally attached to a sample stage 
with built-in pre-amplifier.

Metal deposition on the upper SiN film. A 50-nm-thick SiN film supported by a 0.4 ×  0.4-mm window 
in a Si frame (4 ×  4 mm, 0.38-mm thick; Silson Ltd., UK) was coated with tungsten using a magnetron sputtering 
device (Model MSP-30T, Vacuum Device Inc., Japan). Tungsten was spattered for 15 s at 0.8-Pa argon pressure 
and 200 mA to produce a 15-nm-thick coating. The distance between the sputter target and SiN film was 50 mm.

Dish sample holder and stage. Our dish sample holder comprised upper Al and lower acrylic resin 
portion that maintained the sample solution at atmospheric pressure between the SiN films (Fig. 1). The upper 
W-coated SiN film was attached to the Al holder using two-sided sticky tape (No. 7602, Teraoka Seisakusho 
Co., Ltd, Tokyo, Japan). The W layer on SiN film was connected to the Al holder using silver conductive ink 
(CW2900, ITW Chemtronics, Kennesaw, GA, USA). A hand-made Al holder (15 ×  15 mm square) was attached 
under a 35-mm culture dish adhered with double-sided tape to a 4 ×  4 mm square hole in the centre (Fig. 1a,a’). 
A 50-nm-thick SiN film in the 0.4 ×  0.4 mm square window of a Si frame (4 ×  4 mm) was fixed to the square hole 
in the culture dish bottom. The dish was subsequently UV sterilised for 17–18 h.

4T1E/M3 mouse breast cancer cells31,32 were cultured in the holder dish for 4–5 days as described above. Next, 
the Al holder containing cells and second SiN film on an acrylic plate were attached and sealed as described above 
(Fig. 1c,c’). The Al holder received voltage bias from four nickel–hydrogen batteries (approximately 8 V each), 
with a total bias voltage of approximately − 32 V. The resin holder, which had high electrical resistivity, insulated 
the terminal underside of the holder from the metal-coated SiN film (Fig. 1d).

High-resolution SE-ADM system and FE-SEM setup. The FE-SEM (JSM-7000F, JEOL, Tokyo, Japan) 
based high-resolution SE-ADM imaging system shown in Fig. 1d. The liquid-sample holder was mounted onto 
the SEM stage, and the detector terminal was connected to a voltage direct current (DC) pre-amplifier (1,000×  
gain) under the holder (Fig. 1c’). The temperature in the stage was approximately 28.2 °C, which was measured 
by a digital temperature indicator (CT-220, Custom Co., Tokyo, Japan). When the EB is used to irradiate the 
W-coated SiN, the negative potential increases in that area and is detected by the voltage DC amplifier through 
the measurement terminal. The electrical signal from the pre-amplifier was fed into the AD converter (AIO-
163202FX-USB, CONTEC Co., Japan) after low-pass filtering (LPF; cut-off frequency 100 kHz). The LPF signal 
and EB scan signal were logged by a PC through an AD converter at a sampling frequency of 50 kHz SEM images 
(1,280 ×  1,020 pixels) were captured at 2,000–10,000×  magnification with a scanning time of 80 s, working dis-
tance of 7 mm, EB acceleration voltage of 7–10 kV and current of 10 pA.

Optical phase microscopy and fluorescence imaging. Cultured 4T1E/M3 cells in 35 mm diameter 
glass bottom dish (Matsunami Glass Ind., Ltd., Osaka, Japan) were visualised at 400×  magnification using an 
optical phase microscope (AXIO Observer A1; Carl Zeiss, Oberkochen, Germany). Fluorescent images of the 
ER and Golgi apparatus in culture cells were observed using a fluorescence filter of the excitation/emission wave-
length of 480/534 nm after staining with the CytoPainter Golgi/ER staining kit (Abcam, Cambridge, MA, USA) 
according to the manufacturer’s protocol.

Image processing. SE-ADM signal data from the AD converter were transferred to a personal computer 
(Intel Core i7, 2.8 GHz, Windows 7), and high-resolution SE-ADM images were processed from the LPF signal 
and scanning signal using Matlab R2007b software with an image processing toolbox (Math Works Inc., Natick, 
MA, USA). We initially observed a 3,840 ×  1,020 pixel image using the AD converter of the SE-ADM system and a 
sampling frequency of 50 kHz. This initial image was converted to the correct size of 1,280 ×  1,020 pixels or that of 
the corresponding SEM image. Corrected SE-ADM images were filtered using a two-dimensional (2D) Gaussian 
filter (GF) with a kernel size of 7 ×  7 pixels and radius of 1.2σ . Background subtraction was achieved by subtract-
ing SE-ADM images from the filtered images using a broad GF (400 ×  400 pixels, 200σ ).

Monte Carlo simulation. Electron scattering in the W-coated SiN film was calculated via MC simulation 
using CASINO ver. 2.4222. The density and thickness of the W layer were 19.3 g/cm3 and 15 nm, respectively; the 
corresponding parameters of the SiN film were 3.12 g/cm3 and 50 nm, respectively. We estimated the density of 
culture medium was 1.012 g/cm3, because RPMI-1640 medium mainly included NaCl (6 g/L), NaHCO3 (1.5 g/L) 
and D-Glucose (4.5 g/L). The simulation parameters were set at 100,000 electrons, acceleration energy of 8 kV, 
and EB diameter of 3 nm. All MC simulations were performed on a personal computer (Intel Core i7 2.8 GHz, 8 G 
bytes RAM, Windows 7 operating system).
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