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Abstract

Apoptosis in HIV-1-infected CD4+ primary T cells is triggered by the alteration of the PI3K and p53 pathways, which
converge on the FOXO3a transcriptional activator. Tat alone can cause activation of FOXO3a and of its proapoptotic target
genes. To understand how Tat affects this pathway, we carried out ChIP-Chip experiments with Tat. Tat associates with the
promoters of PTEN and two PP2A subunit genes, but not with the FOXO3a promoter. PTEN and PP2A encode phosphatases,
whose levels and activity are increased when Tat is expressed. They counteract phosphorylation of Akt1 and FOXO3a, and
so activate transcriptional activity of FOXO3a. FOXO3a promotes increased transcription of Egr-1, which can further
stimulate the transcription of PTEN, thereby reinforcing the pathway that leads to FOXO3a transcriptional activation. RNAi
experiments support the role of PTEN and PP2A in the initiation of the Tat-mediated cascade, which is critical to apoptosis.
The increased accumulation of PTEN and PP2A subunit mRNAs during Tat expression is more likely to be the result of
increased transcription initiation and not relief of promoter-proximal pausing of RNAPII. The Tat-PTEN and -PP2A promoter
interactions provide a mechanistic explanation of Tat-mediated apoptosis in CD4+ T cells.
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Introduction

HIV-1-infected CD4+ primary T cells progress to the G0 phase

of the cell cycle and to cell death [1]. Apoptosis in these cells is

triggered by the alteration of transcriptional pathways that

converge on the Forkhead box O3 (FOXO3a) transcriptional

activator. The induction of FOXO3a target genes, such as Bcl-2-

like 11 (BCL2L11 or Bim), TNF-related apoptosis-inducing ligand

(TRAIL) and Fas ligand (FasL or CD95L), activates apoptotic

intrinsic (via Bim) and extrinsic pathways [2,3], indicating that

HIV infection leads to apoptosis by the engagement of multiple

apoptotic pathways. The induction of phosphatase and tensin

homolog (PTEN) and FOXO3a was observed in cells that express

only the Tat protein, suggesting that Tat may be a key player in

the activation of these pathways.

PTEN reduces the phosphorylation of Akt1 and expression of

PTEN is transcriptionally regulated by the Early Growth Response

Protein 1 (Egr-1) [4,5,6]. Egr-1 is expressed at higher levels in HIV-

infected T cells [1]. Increased expression of PTEN reduces serine/

threonine protein kinase pAkt1 levels, which cause reduced

phosphorylation of FOXO3a. Unphosphorylated FOXO3a trans-

locates to the nucleus and becomes transcriptionally active [7].

Transcription of HIV genes from the HIV long terminal repeat

(LTR) is strictly dependent on Tat, which interacts with the Positive

Transcription Elongation Factor b (P-TEFb) and histone acetyl-

transferases [8]. The interaction with P-TEFb occurs at the

trans-activation-responsive (TAR) element of the nascent RNA

and mediates the relief of RNA polymerase II (RNAPII) pausing

that occurs at TAR. Tat transcriptional activity is also dependent on

lysine acetylation mediated by nuclear histone acetyltransferases

p300/CBP (E1A binding protein p300/CREB binding protein) and

PCAF (P300/CBP-associated factor). The p300/CBP complex is a

transcriptional coactivator of Egr-1 [9,10,11,12]. Tat may enhance

the transcriptional activity of p300/CBP by increasing the histone

acetyl transferase (HAT) activity on the PTEN promoter, as for

histone H4 and the HIV LTR [13]. Inhibition of Sirtuin 1 (SIRT1)

deacetylase activity by Tat [14], might also increase transcription of

PTEN. Tat can be found in patients’ serum [15,16] and can cross

the cell membrane to enter cells [17]. Tat could thus play a role in

the apoptosis of uninfected cells by activating the PTEN-FOXO3a

pathway after entry. The survival of memory CD4+ T cells

correlates with the phosphorylated levels of FOXO3a. The levels of

phospho-FOXO3a are reduced in HIV-infected individuals and are

higher in elite controllers, who control viral replication to

undetectable viremia in the absence of therapy [18,19]. Activation

of the PTEN-FOXO3a pathway via the Tat protein could be the

mechanism by which apoptosis is triggered in HIV- infected and

non-infected cells and explain the significant decline of the CD4+ T

cell memory population in HIV-1-infected individuals [1].

Here we show that the Tat protein triggers apoptosis by altering the

Akt-FOXO3a-Egr-1 pathway via its interaction with the promoters of

two phosphatases, PTEN and Protein phosphatase 2 (PP2A).
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Results

Tat-mediated cellular modulation of gene expression in
Jurkat T cells

We reported that HIV-1 Tat-induced FOXO3a is a key

mediator of apoptosis in HIV-1-infected primary human CD4 T

lymphocytes [1]. To gain insight into the molecular mechanism by

which Tat protein affects the PTEN-FOXO3a-Egr-1 signaling

pathway, we investigated the impact of the HIV-1 Tat protein on

the regulation of FOXO3a in Jurkat T cells. Jurkat T cells are

susceptible to adenovirus infection due to high surface levels of the

Coxsackie adenovirus receptor (CAR) [20]. Because retroviral

transduction of primary CD4+ lymphocytes is inefficient, the use

of adenovirus-mediated tat gene transfer in Jurkat T cells is a more

amenable model for mechanistic studies. We investigated whether

Tat expression in Jurkat cells resulted in modulatory effects on

expression of proapoptotic genes, similar to those we observed in

primary CD4+ T cells infected with HIVD2GFP, HIVD3GFP,

and wild-type viruses [1]. Jurkat T cells were infected with an Ad-

Tat vector expressing Tat in combination with the transactivator

Ad-tTA, required to induce Tat expression, or Ad-tTA alone as a

control. We conducted real-time RT-PCR using RNA obtained

from Jurkat T cells infected with Ad-TatSF2 (a 101 amino acid wild

type Tat protein from HIVSF2), Ad-TatSF2K28A,K50A, a mutant

that does not associate with p300 [21–22]), Ad-TatSF2C25,30,35S,

a mutant that does not interact with P-TEFb [23], and Ad-

TatSF2G48-R57A, a mutant lacking the nuclear localization signal

(NLS), in which the key residues of the NLS are substituted by

alanines [24]. RNA was isolated from infected cells 24 48, and

72 hours post-infection at different MOI. Real-time RT-PCR was

carried out with primers for glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH) for normalization. Tat mRNA expression

and Tat protein level accumulation was comparable for all

cultures examined (Figure 1A and 1B). Intracellular staining for

Tat on samples obtained 24 and 48 hrs after Ad-TatSF2 infection

ranged between 40 and 60 percent positive cells (data not shown)

and was found both in the cytoplasm and in the nucleus in the case

of the wild type and the mutants excepts for TatSF2G48-R57A,

with was detected virtually exclusively in the cytoplasm (Figure 1C).

Levels of Tat expression obtained with different vectors were

evaluated by flow cytometry. The Mean Fluorescence Intensity

(MFI) for Tat expression after infection with Ad-Tat, eGFP-Tat (a

retroviral vector expressing Tat) and HIV-Flag Tat (a HIV

infectious virus in which Tat has been tagged with the FLAG

epitope) is reported in Figure 1D. Tat MFI was approximately the

same after retroviral expression vector or HIV infection and two-

fold higher after Ad-TatSF2 infection (Figure 1D). Rates of early

and late apoptosis were measured by evaluating the number of

Annexin V+/7AAD- and Annexin V+/7AAD+ cells. A significant

(p,0.05) increase in apoptosis was observed in Jurkat cells infected

with Ad-TatSF2 (Figure 1E) compared to control or Tat mutants.

We found that genes up-regulated in primary CD4+ T cells

infected with HIVD2GFP and HIVD3GFP or in HeLa cells

infected with Ad-Tat [1] were similarly modulated in Jurkat T cells

infected with Ad-TatSF2 (Figure 2A). The Tat mutants had

substantially less effect on the expression of these genes. FOXO3a,

Egr-1, and PTEN, and TRAIL, critical to apoptosis in primary

CD4+ T cells [1], were also induced by Tat expression in Jurkat

cells. We found increased accumulation of FOXO3a, Egr-1, and

TRAIL as assessed cytofluorimetrically (Figure 2B). The pattern of

protein expression was similar when Jurkat cells were infected with

adenoviruses expressing two different Tat alleles, TatSF2 and

TatHXB2 (a 86 amino acid Tat protein, which misses 15 residues at

the carboxyl-terminus) and was not significantly altered after

infection with the mutants. The subcellular localization of

FOXO3a was assessed by immunofluorescence microscopy using

antibodies against FOXO3a and pFOXO3a (Figure 2C and 2D).

In the Ad-tTA control, the majority of FOXO3a was phosphor-

ylated (inactive form) and distributed in the cytoplasm (Figure 2D,

first column). In contrast, there was significantly less cytoplasmic

pFOXO3a in cells infected with Ad-TatSF2 (Figure 2D, second

column). We observed different results using anti-FOXO3a

antibody. FOXO3a was mostly in the cytoplasm when cells were

infected with Ad-tTA alone (Figure 2C, first column). However,

Tat expression increased the amount and the translocation of

FOXO3a from the cytoplasm to the nucleus (active form),

indicating that FOXO3a was no longer phosphorylated

(Figure 2C, second column). The intensity of nuclear FOXO

fluorescence was higher in cells infected with Ad-TatSF2 than in

those infected with Ad-tTA alone. Cells infected with the Tat

mutants showed a patter similar to those infected with Ad-tTA.

HIV-1 Tat thus increases intracellular levels of FOXO3a, as

suggested by RT-PCR for the FOXO3a RNA.

These data confirm the role of Tat in the activation of FOXO3a

and in the induction of its target genes involved in apoptosis in

Jurkat cells and validate its use to investigate the mechanisms by

which HIV-1 Tat affects the PTEN-FOXO3a pathway in primary

CD4+ T cells.

Tat associates with the PPP2R1B and PPP2R5E promoters
to increase PPP2R1B and PPP2R5E RNA and protein levels
as well as PP2A activity in Jurkat cells

How does Tat modulate cellular gene expression during HIV-1

mediated apoptosis? We used ChIP coupled with promoter DNA

microarray analysis (ChIP-Chip) [25] to identify genes whose

promoters may associate with Tat. We infected Jurkat cells for

6 hours with an adenovirus expressing FLAG-tagged TatSF2 or the

mutant Ad-TatSF2G48-R57A lacking the NLS as a negative

control. An anti-FLAG antibody suitable for use in ChIP

experiments was used because of its lack of background [26,27].

Two independent experiments were analyzed. We selected a

stringent P value threshold of 0.001 to identify genes bound by Tat

(Figure 3A). In cells expressing TatSF2, we identified 450

promoters that were occupied by Tat (P,0.001). Control

Author Summary

HIV infection leads to the depletion of CD4+ T cells, the
major viral cell target. The destruction of these cells can
occur because of cytopathic effect or apoptosis. HIV Tat is
one of the proteins that can contribute to the apoptotic
process of both infected and uninfected cells, as it is
released in the plasma and enter uninfected cells. Tat
expression in CD4+ T-cells is linked to increased transcrip-
tional activity of FOXO3a, a factor that targets the
transcription of pro-apoptotic genes. The mechanism by
which Tat leads to activation apoptotic pathways is by
associating with the promoters of the phospatases PTEN
and PP2A and by increasing their levels. The increased
amount of these proteins leads to a decreased amount of
pAKt1 and increased amount of non-phosphorylated
FOXO3a, which migrates from the cytoplasm to the
nucleus and increases the transcription of its proapoptotic
target genes. These results, together with experiments
that silence PTEN and PP2A and measure their activities,
identify the association of Tat with PTEN and PP2A
promoters as the initiating event of Tat-mediated
apoptosis.

HIV Tat Association with PP2A and PTEN Promoters
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experiments in cells expressing the negative control TatSF2G48-

R57A showed only 12 positive signals, which is an acceptable

background for ChIP-Chip experiments, supporting the specificity

of the results observed with Ad-TatSF2. The 450 genes whose

promoters associate with TatSF2 encode proteins that affect many

cellular processes, including transcriptional regulation, apoptosis,

cell cycle, and immune response. They are listed in Supplemental

Table S1, with the P value and the fold enrichment of their

association to the promoter compared to input DNA.

To identify the cellular functions affected by the Tat protein, we

compared the list of genes occupied by Tat with the biological

pathways annotated by the Ingenuity Pathway Analysis (IPA). We

found that Tat target genes are significantly associated with

promoters of genes that are part of a few pathways (Table 1). A

Figure 1. Tat and Tat mutants expression and apoptosis in Jurkat T cells. A. mRNA levels of Tat in Jurkat T cells expressing TatSF2 at 24, 48,
and 72 hrs after infection at MOI of 1, 10, and 20 (first panel) or wt and Tat mutants at 48 hrs after infection at MOI of 1, 10, and 20 (second panel),
analyzed by qRT-PCR. Results are normalized to GAPDH and reported as fold induction relative to Ad-Tat samples infected at MOI of 1. The means 6
SEM derived from three independent experiments are reported. B. Western blot analysis of Tat expression in Jurkat cells. C. Detection of wild type and
mutant Tat in Jurkat cells. Nuclei are counterstained with DRAG5. D. Tat protein mean fluorescence intensity (MFI) of three independent flow
cytometric analyses of Jurkat cells, after infection with different Tat expressing viruses. E. Apoptosis in Tat-expressing Jurkat T cells. Levels of early and
late apoptosis are reported as percentage of Jurkat T cells that stain for Annexin V only (left panel) or Annexin V and 7AAD (right panel). The means 6
SEM of three experiments are shown. *, p,0.05 when TatSF2 is compared to tTA control.
doi:10.1371/journal.ppat.1001103.g001
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subset of these genes belongs to the PI3K signaling pathway

(p = 3.39E-03) (Figure 3A). Among these genes were PTEN, a gene

that encodes a truncated, non-functional phosphatase in Jurkat

cells [28,29], and PPP2R1B and PPP2R5E, regulatory subunits of

protein phosphatase 2A (PP2A). PPP2R1B (PR65b) is a regulatory

subunit A b isoform, tightly associated with the PP2A catalytic

subunit C, to form a scaffold onto which the appropriate B subunit

can bind. PPP2R5E (B56e) is a member of the B56 regulatory

subunit e isoform involved in multiple signaling pathways

[30,31,32,33,34,35,36,37]. PP2A affects the phosphorylation

status of Akt1 and FOXO3a [38,39,40,41,42]. High levels of

PP2A correlate with reduced phosphorylation of FOXO3a and

consequently increase its transcriptional activity [43,44]. The

ChIP-Chip results of Tat binding to the promoters of PPP2R1B

and PPP2R5E were further validated by conventional ChIP,

performed using site-specific primers on chromatin precipitated

from uninfected cells and cells expressing TatSF2 or tTA alone.

Primers were designed near the site represented by the

oligonucleotides on the promoter arrays that provided a positive

signal and were used for qPCR amplification of the corresponding

sequences present in the immunoprecipitation-captured chroma-

tin. When the immunoprecipitated DNA samples were evaluated

Figure 2. Tat-mediated cellular gene modulation in Jurkat T cells. (A) mRNA levels of selected cellular genes 24 and 48 hours after infection
with adenoviral vectors expressing wild type Tat and Tat mutants. B. Protein levels of cellular genes analyzed by flow cytometry analysis. Results are
reported as fold increase of mean fluorescence intensity (MFI) relative to the tTA control. C. HIV-1 Tat increases FOXO3a nuclear localization in Jurkat T
cells. Jurkat T cells infected with Ad-tTA or Ad-tTA+Ad-TatSF2 were analyzed by confocal microscopy 24 hrs after infection. Cells were stained with
DRAG5 to visualize the nucleus (blue), and FOXO3a cellular localization (red) was detected using antibodies against FOXO3a (C) or p-FOXO3a (D). A
quantitative analysis of nuclear and cytoplasmic FOXO3a or p-FOXO3a fluorescence intensity is provided at the right of each panel.
doi:10.1371/journal.ppat.1001103.g002
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Figure 3. Tat associates with the PPP2R1B and PPP2R5E promoter and increases protein levels of PPP2R1B and PPP2R5E and PP2A
activity in Jurkat cells. A. Genes enriched in the Tat-immunoprecipitated DNA and associated with the PI3K pathway show a hybridization intensity
with a P value lower than 0.001 (hybridization intensities with higher P values fall within the red lines). PPP2R1B, PPP2R5E, and Caveolin 1 (CAV1, negative
control) promoter enrichment ratio (ChIP versus total input DNA in ChIP-on-Chip analysis) in Jurkat cells expressing TatSF2. B. ChIP analysis of the PPP2R1B

HIV Tat Association with PP2A and PTEN Promoters
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by qPCR, PPP2R1B and PPP2R5E promoter sequences were

enriched in IP-captured chromatin from cells expressing TatSF2

compared to the control cells (Figure 3B). To determine whether

association of Tat with the PPP2R1B and PPP2R5E promoters

affects gene expression, we carried out qRT-PCR with RNA from

Tat-expressing cells. mRNA levels of PPP2R1B and PPP2R5E

were elevated in cells that express TatSF2, compared to untreated

cells or cells that express tTA alone (Figure 3C).

These results confirmed the association of Tat with the

PPP2R1B and PPP2R5E promoters identified by the ChIP-Chip

analysis and support a role for this association in increased gene

expression of PPP2R1B and PPP2R5E seen in Tat expressing

Jurkat cells.

We further evaluated the effects of Tat on the protein levels of

PPP2R1B and PPP2R5E by immunoblot. PP2A is a ubiquitous

enzyme with pleiotropic functions. PP2A is a heterotrimer that

consists of a catalytic C subunit, a regulatory A subunit, and a

variable regulatory B subunit. Regulation is accomplished mainly

by members of a family of regulatory subunits, which determine

the substrate specificity. The protein content of PP2A-C was not

altered in cells infected with Ad-TatSF2 or Ad-tTA (Figure 3D). In

contrast, an approximately two-fold increase in the amount of

PPP2R1B and PPP2R5E protein was observed in cells infected

with Ad-TatSF2 (Figure 3D).

Does the increase in PPP2R1B and PPP2R5E protein levels

correlate with increased PP2A activity and serine/threonine

phosphatase activity? We carried out an immunocomplex protein

phosphatase assay and a malachite green assay on lysates from

cells infected with Ad-TatSF2 or Ad-tTA alone, and treated with a

non specific siRNA, a PPP2R1B siRNA, or a PPP2R5E siRNA

(Figure 3E, left panel). Cells that express TatSF2 showed an

approximately 2-fold increase in PP2A activity compared to cells

that were infected with Ad-tTA only or were treated with PP2A

subunit specific siRNAs, and a similar two-fold increase in total

serine/threonine phosphatase activity (Figure 3E, middle panel),

linking increased PP2A activity to the increase in PPP2R1B and

PPP2R5E. When we measured total phosphatase activity, we

found an approximately 4-fold increase in cells infected with Ad-

TatSF2+Ad-tTA compared to the Ad-tTA alone control. Total

phosphatase activity in cells that express Tat was reduced to

approximately two-fold when cells were treated with okadaic acid,

an inhibitor of PP2A, but not when treated with sodium vanadate,

a generic inhibitor of tyrosine phosphatases (Figure 3E, right

panel). The increase in PPP2R1B and PPP2R5E protein induced

by Tat is therefore the critical determinant of the increased serine/

threonine phosphatase activity observed in Tat-expressing cells.

We examined the cellular localization of PP2A and FOXO3a in

the presence or absence of Tat. Jurkat T cells were infected for

Table 1. Analysis of promoters found associated with HIV-Tat in jurkat cells.

Ingenuity Signaling Pathway p-Value

Hormone Receptor Regulated Cholesterol Metabolism 2.36E-03

PI3K Signaling* 3.39E-03

G2/M Transition of the Cell Cycle 2.05E-02

Mitochondrial Dysfunction 2.92E-02

PPARa/RXR Activation 3.26E-02

(*) PI3K pathway related genes bound by HIV-1 Tat

Gene Description

PPP2R1B protein phosphatase 2, regulatory subunit A, beta isoform

PPP2R5E protein phosphatase 2, regulatory subunit B’, epsilon isoform

PTEN phosphatase and tensin homolog

RPS6KB1 ribosomal protein S6 kinase, 70 kDa, polypeptide 1

p53 tumor protein p53

doi:10.1371/journal.ppat.1001103.t001

and PPP2R5E promoters in Jurkat T cells expressing TatSF2. DNA from input (90, 30, 10 ng of DNA) and immunoprecipitated samples (3 ng of DNA) was
amplified by standard PCR (P2 set of primers, see Supplemental Table S2) and run on 2% agarose gel (second and third panels). One representative
experiment is shown in the 3 left panels. In the right panel, the average fold enrichment of a certain promoter in the immunoprecipitated DNA relative to
input DNA 6 SEM from three independent qPCR experiments is reported. All cycle threshold (Ct) values obtained with 10 ng of immunoprecipitated
DNAs were compared with the Ct value obtained with 10 ng of the corresponding input DNA. C. mRNA levels of PPP2R1B and PPP2R5E in Jurkat T cells
expressing TatSF2 or the mutant TatSF2G48-R57A, analyzed by qRT-PCR. Results are normalized to GAPDH and reported as fold induction relative to
uninfected samples. The means 6 SEM of three experiments are shown. D. Western blot analysis of PPP2R1B, PPP2R5E, and the catalytic subunit PP2A-C.
Fold-increase compared to the uninfected control (UI) is indicated above the band. E. PP2A enzyme activity in lysates from Jurkat cells expressing TatSF2

alone or in the presence of siRNAs (left panel); serine/threonine phosphatase activity (middle panel), and total phosphatase activity (right panel) in lysates
from Jurkat cells infected with Adeno-TatSF2 or with the Adeno-tTA control. Inhibition of tyrosine phosphatases and serine/threonine phosphatases was
carried out by incubation of the lysate with sodium vanadate (1 mM) or okadaic acid (0.25 mM) in the phosphatase assay buffer. F. Tat increases PP2A
expression and FOXO3a nuclear localization in Jurkat T cells. Jurkat T cells expressing tTA alone, TatSF2+tTA, or TatSF2G48-R57A +tTA were stained with
antibodies against PPP2R1B (first and forth columns of panels, green), pFOXO3a (second column, red), and FOXO3a (forth column, red) and analyzed by
confocal microscopy. Merged images are shown in the panels in the third and sixth columns. G. Quantitative analysis of the fluorescence intensity of
cytoplasmic PPP2R1B, and of cytoplasmic and nuclear FOXO3a and pFOXO3a in Jurkat T cells expressing or tTA alone, TatSF2+tTA, or TatSF2G48-R57A +tTA.
PPP2R1B and FOXO3a fluorescence was expressed as total intensity per cell (pixels above threshold x fluorescence intensity). Bars indicate the mean 6

SEM of triplicate assays from two separate experiments. At least 100 cells were counted for each condition.
doi:10.1371/journal.ppat.1001103.g003
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24 hours with Ad-TatSF2 + Ad-tTA or Ad-tTA alone. The

subcellular localization of FOXO3a and PPP2R1B was assessed

by immunofluorescence microscopy using antibodies against

pFOXO3a, FOXO3a, and PPP2R1B (Figure 3F). Cells infected

with Ad-TatSF2 revealed stronger fluorescence intensity of

PPP2R1B compared to those infected with Ad-tTA alone. This

observation confirmed the effect of Tat on the PPP2R1B protein

levels detected by Western blot analysis (Figure 3D). Tat

expression was associated with increased amounts of nuclear

FOXO3a (Figure 3F and 3G). In contrast, FOXO3a was detected

predominantly in the cytoplasm in cells infected with Ad-tTA

alone or the Tat mutant (Figure 3F, 3G). These observations

further confirm that HIV-1 Tat increases PP2A expression and

FOXO3a nuclear translocation.

siRNA-mediated PP2A knockdown reduces Tat-induced
apoptosis in Jurkat cells

We next investigated the contribution of PP2A to Tat-induced

apoptosis using siRNA-mediated knockdown of the PP2A

subunits. Jurkat cells were transfected with short interfering

RNA (siRNA) targeting PPP2R1B, PPP2R5E or nonspecific

siRNA and then infected with Ad-tTA or Ad-TatSF2+Ad-tTA.

mRNA levels of PPP2R1B and PPP2R5E were reduced by the

PPP2R1B and PPP2R5E-specific siRNAs, respectively, but not by

the control siRNA 24 hrs after infection (Figure 4A). The siRNAs

targeting the PPP2R1B and PPP255E transcripts also reduced the

corresponding protein levels (Figure 4C). Control siRNA had no

effect. Levels of both PP2A subunits and of FOXO3a increased

after Ad-TatSF2 infection (Figure 3D and 4C). Reduction of PP2A

subunits induced by the siRNAs resulted in reduced FOXO3a

mRNA and protein (Figure 4A and 4C). Transfection of PP2A

subunit siRNAs reduced expression of some of the FOXO3a

target genes upregulated after Ad-TatSF2 infection (Figure 4B).

Furthermore, the reduction of PPP2R1B and PPP2R5E subunits

also resulted in an increase of phosphorylated Akt1 and

phosphorylated FOXO3a, supporting the role of the PP2A

subunits in the accumulation of transcriptionally active, non

phosphorylated FOXO3a and of its target genes (Figure 4C). We

evaluated the role of the inhibition of PP2A on the expression of

Egr-1, GADD45A and TRAIL, three FOXO3a target genes in

Tat-expressing cells [1]. Treatment with siRNAs that target

PPP2R1B and/or PPP2R5E reduced expression of Egr-1,

GADD45A and TRAIL. The PPP2R1B siRNA had a more

pronounced effect on the levels of FOXO3a and pFOXO3a

proteins and of Egr-1 mRNA than did treatment of cells with

PPP2R5E siRNA. (Figure 4A, 4B, and 4C).

As we previously linked the Tat-mediated increase of FOXO3a

to apoptosis, we evaluated the impact of PP2A subunit siRNAs on

Tat-induced apoptosis. siRNAs that target PPP2R1B and/or

PPP2R5E in Jurkat cells after Ad-TatSF2 infection caused a

statistically significant decrease in apoptosis (Figure 4D). The same

result was observed with okadaic acid, a PP2A inhibitor, but not

with Akt1-1/2 or LY294002, an Akt and a PI3K inhibitor

(Figure 4E). These experiments support a direct role of the PP2A

subunits, but not of the above kinases, in Tat-mediated apoptosis.

The effect of siRNA-mediated inhibition of PPP2R1B in cells

that do or do not express Tat was also evaluated by FOXO3a

ChIP and amplification of promoters usually targeted by

FOXO3a. Cells were transfected with PPP2R1B siRNA or control

siRNA and then infected with Ad-TatSF2. Egr-1, TRAIL, and

GADD45A promoters were amplified by PCR using the DNA

recovered after FOXO3a ChIP. As expected, the amounts of

promoter sequence DNA detected by PCR were increased when

the anti-FOXO3a immunoprecipitations of chromatin lysates

were performed using Tat-expressing cells compared to cells

infected with tTA alone and transfected with ns siRNA (Figure 4F)

In contrast, PPP2R1B siRNA treatment was associated with

reduced recovery of the same promoter DNAs. Taken together,

these data indicate that Tat-induced PP2A subunits can affect

transcriptional upregulation of FOXO3a-dependent genes by

increasing the amount of transcriptionally active FOXO3a and its

binding to the promoters of target genes.

To further evaluate whether the detection of FOXO3a at the

Egr-1 promoter plays a role in the transcriptional regulation of

Egr-1, we used a dual luciferase reporter assay. HeLa cells were

transfected with an Egr-1-luciferase vector with or without

FOXO3a siRNA for 24 hours, followed by infection with Ad-

TatSF2. TatSF2 expression increased activity of the Egr-1 promoter

by approximately four-fold compared to the control (Figure 4G).

In contrast, transfection with FOXO3a siRNA reduced Tat-

induced Egr-1 promoter activity in HeLa cells (Figure 4G). Similar

results were observed when the experiment was carried out with

293T cells transfected with FOXO3a siRNA. Treatment with

FOXO3a siRNA reduced expression of both Egr-1 and PTEN

mRNA in HIV-infected HeLa cells [1]. Thus Tat can indirectly

stimulate Egr-1 promoter activity by increasing the levels of

transcriptionally active FOXO3a, which in turn can associate with

the Egr-1 promoter. Increased trascription of Egr-1 further

stimulated PTEN gene expression.

Tat association with the PTEN promoter
PTEN mRNA is upregulated in HIV-1 infected primary CD4+

T lymphocytes and in Tat-expressing Jurkat T cells [1]. PTEN is a

key regulator of the PI3K/Akt1 pathway and controls the

phosphorylation status of Akt1 and, indirectly, FOXO3a

[45,46]. High levels of PTEN reduce Akt1 phosphorylation with

consequent reduced phosphorylation of FOXO3a. Non-phos-

phorylated FOXO3a translocates into the nucleus where it is

transcriptionally active and increases the expression of FOXO3a

transcription-dependent genes involved in either the extrinsic or

the intrinsic apoptosis pathway. Furthermore, FOXO3a can also

stimulate its own transcription [47]. TatSF2 association with the

PTEN promoter was detected by the ChIP-Chip analysis

(Figure 3A, 5A left panel) and by conventional ChIP analysis

(Figure 5A, right panels) in Jurkat cells. Cells were infected with an

Ad-TatSF2 with or without a FLAG tag fused to the tat gene and

PCR was used to detect the PTEN promoter in chromatin

immunoprecipitated with an anti-FLAG antibody. An enriched

PTEN promoter DNA fragment was detected in cells expressing

FLAG-TatSF2 but not in cells expressing TatSF2 without FLAG

(Figure 5A, right panels). No PTEN amplification was found either

in DNA from cells expressing tTA alone or from cells expressing

the mutant TatSF2G48-R57A that lacks the NLS. Therefore Tat

expression is associated with the PTEN promoter and with an

increase in its transcription activity.

The PTEN coding sequence is mutated and the corresponding

protein is inactive in Jurkat cells due to the frame-shift mutations

in both PTEN alleles, which result in the truncation of PTEN

within the C-terminal C2 domain and the rapid degradation of the

truncated protein [29]. Therefore we would not expect that the

lack of phosphorylation of FOXO3a in Jurkat is dependent on

PTEN but only on PP2A, even though an increase of PTEN RNA

is observed in these cells. However, association of Tat with the

PTEN promoter may be relevant in other cell types where this

protein is functional. PTEN mRNA expression is increased in

primary CD4+ T cells infected with HIV [1] and in these cells

PTEN is functional. Indeed, when the association was investigated

by conventional ChIP in primary CD4+ T cells infected with a
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Figure 4. siRNA-mediated knockdown of PP2A reduces Tat-induced apoptosis in Jurkat T cells. mRNA expression levels of (A) PPP2R1B
and PPP2R5E and FOXO3a and (B) Egr1, GADD45A, and TRAIL [1] in Jurkat T cells expressing TatSF2+tTA or tTA alone. Results are normalized to
GAPDH and reported as fold induction relative to tTA expressing cells treated with ns siRNA. C. Western blot analysis of cell lysates treated with
PPP2R1B and/or PPP2R5E siRNA or ns siRNA. D. Levels of apoptosis in the same cells 48 h after siRNA transduction, measured by staining for Annexin
V and 7AAD. The means 6 SEM of three independent experiments are reported. E. Levels of apoptosis in Jurkat cells infected with Ad-tTA or Ad-Tat
and treated with an Akt inhibitor (50 mM Akt1-1/2), a PI3K inhibitor (10 nM LY294002), or a PP2A inhibitor (100 nM okadaic acid), measured by
staining for Annexin V and 7AAD. F. ChIP analysis of the promoters of three FOXO3a target genes. ChIP was carried out with an anti-FOXO3a
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HIV virus in which the tat gene was tagged with a FLAG epitope

(Figure 5B), or a Tat expressing retrovirus (not shown), Tat could

be found associated with the PTEN, PP2R1B, PPP2R5E, and

TP53 promoters as detected by ChIP-Chip analysis in Jukat cells

(Figure 5B). As in Jurkat cells, Tat did not associate with the

FOXO3a promoter, excluding a prominent role for Tat in the

direct transcriptional activation of FOXO3a observed in HIV-

infected and Tat-expressing cells [1], or CAV1 promoter, used as a

negative control.

To evaluate the role of PTEN in FOXO3a phosphorylation in

primary CD4+ T cells, we investigated the effects of inhibition of

PP2A and PTEN on FOXO3a and its target genes. We

transfected primary CD4+ T cells with siRNA for PPP2R1B

and/or PTEN for 24 hours and then infected them for 48 hours

with a retrovirus expressing Tat and eGFP or eGFP alone as a

control (Figure 5C). This treatment reduced expression of

PPP2R1B and PTEN to approximately 60% of its original level.

Reduction of PPP2R1B and PTEN expression resulted in reduced

FOXO3a and Egr-1 mRNAs and protein expression and in an

increase of p-FOXO3a (Figure 5C and 5D). Treatment with

PTEN siRNA or the combination of PTEN and PPP2R1B

siRNAs showed a significant reduction of apoptosis (p,0.001) in

Tat expressing primary CD4+ T cells (Figure 5E). Treatment with

PPP2R1B siRNA alone reduced apoptosis to approximately 46%

(non statistically significant). This partial result was not surprising,

considering that the siRNA treatment did not result in a complete

knockdown of PPP2R1B and that PTEN remained active under

these conditions. No synergy was apparent when PTEN and

PPP2R1B siRNAs were introduced together, compared to

transfection of PTEN siRNA alone. Tat-mediated PTEN

activation may play a more significant role than PP2A in

FOXO3a transcriptional activation in primary CD4+ T cells

compared to Jurkat cells. Primary CD4+ T cells and Jurkat cells

show concordant responses. PTEN, in addition to PP2A, is critical

for Tat-mediated apoptosis of primary CD4+ T cells. When cells

are exposed to a PP2A activator (ceramide or FTY720) apoptosis

is induced (Figure 5E, grey bar). Subsequent treatment of these

cells with okadaic acid (a PP2A inhibitor) showed a significant

reduction of apoptosis (p,0.05) (Figure 5E, yellow bar). Level of

apoptosis 48 hr after HIV infection in CD4+ T-cells transduced

with PPP2R1B and/or PTEN siRNAs, or treated with a PP2A

inhibitor or a PTEN inhibitor were significantly reduced

compared to HIV infected cells treated with ns siRNA or not

treated with any compound (Figure 5F, p,0.05).

Effect of exogenous Tat on the regulation of the PI3K-
PTEN-Akt pathway in primary CD4+ T cells

Exogenous Tat can be taken up by cells in cultures and

transactivates HIV-1 LTR, if present in the cells, or induce

apoptosis when the cultured cells are CD4+ T [17,48]. Because of

these observations, the possibility has been raised that HIV

infected cells could release Tat, which has been detected in the

serum of infected individuals [15,16], and affect uninfected cells.

To test the effect of exogenous Tat on the apoptosis of primary

CD4+ T cells, recombinant Tat was added to the cultures of

PBMC (Figure 6). Levels of early apoptosis were measured by

evaluating the number of Annexin V+/7AAD- cells. An increase

in apoptosis was observed in CD4+ T cells exposed to

recombinant Tat in a dose- and time- dependent manner

compared to the untreated control culture (Figure 6A). We also

evaluated whether the exposure to recombinant Tat induced

apoptosis by altering the PI3K-PTEN-Akt pathway (Figure 6B).

PBMC were pretreated with inhibitors of PTEN (10 nM

bpV(HOpic)), PP2A (100 nM okadaic acid), Akt (50 mM Akt1-

1/2), and PI3K (10 nM LY294002) for 30 min before exposure to

5 mg/ml of recombinant Tat for 24 hr. Treatment with either

PTEN or PP2A inhibitors showed a significant reduction of

apoptosis in CD4+ T cells exposed to recombinant Tat (Figure 6B).

In contrast, treatment with either the Akt or PI3K inhibitor in the

absence of Tat increased apoptosis of CD4+ T cells, confirming

the critical role of PI3K-Akt pathway in regulating cell growth and

survival. Inhibition of Akt or PI3K in Tat expressing cells did not

further increase the amount of apoptosis observed with Tat

expression alone of CD4+ T cells, excluding the possibility of the

involvement of other pathways in Tat-mediated apoptosis. These

experiments support the concept that uninfected CD4+ T cells can

undergo apoptosis when exposed to Tat released by HIV infected

cells and that Tat induces apoptosis in a similar manner, whether

expressed endogenously or present exogenously.

We next validated if exposure to exogenous recombinant Tat

modulates the same cellular genes that were found up-regulated in

CD4+ T cells expressing Tat endogenously (Figure 6C and 6D).

PTEN, PPP2R1B, PPP2R5E, FOXO3a, Egr-1, and TRAIL

RNAs were induced by exposure to recombinant Tat (Figure 6C).

We also found a corresponding increased accumulation of PTEN,

PPP2R1B, PPP2R5E, FOXO3a, Egr-1, and TRAIL proteins in

the same cells (Figure 6D and 6E). These data confirm that

exposure to exogenous Tat modulates the PI3K-PTEN-Akt

pathway in primary CD4+ T cells in the same fashion as in

CD4+ T cells expressing Tat endogenously.

PTEN, PPP2R1B and PPP2R5E promoter sequences confer
Tat-stimulated transcription on reporter gene

To investigate whether the PTEN, PPP2R1B and PPP2R5E

promoter sequences bound by Tat would confer Tat-dependent

stimulation of transcription on a reporter gene, ,1000 bases of the

PTEN (-1015 to-1), PPP2R1B (-1074 to-1), or PPP2R5E (-1000 to

-1) promoters located 59 of the transcriptional start site were

introduced upstream of the luciferase gene. With all three

promoters, the presence of wild type Tat increased luciferase

activity relative to that obtained in the absence of Tat or

TatSF2G48-R57A (Figure 7B). Luciferase activity was intermediate

when measured in cells expressing TatSF2C25,30,35S or TatSF2-

K28A,K50A (Figure 7B). These results confirm that the

transcriptional activity of these promoters can be stimulated by

Tat, and suggest that both Tat cofactor-binding domains are

necessary for full activity.

When initiating transcription at the HIV promoter RNA

polymerase II generates short RNA species and then pauses at

the TAR element of the RNA transcript. Tat recruitment of P-

TEFb at TAR releases paused polymerase and allows for

accumulation of full length HIV mRNAs. [8,9,10,11,12]. We

searched for evidence that RNAP polymerase II may pause in

newly initiated PTEN, PPP2R1B and PPP2R5E transcripts by

antibody in lysates of Jurkat T cells treated with ns siRNA or PPP2R1B siRNA and expressing TatSF2 or TatSF2K28A,K50A. Recovered DNA was analyzed
by qPCR using primers specific for the Egr1, TRAIL, and GADD45A promoters. The average fold enrichment relative to tTA control from two
independent experiments is reported. G. Luciferase activity of lysates from cells expressing tTA or TatSF2 and transfected with an Egr1-luciferase
reporter vector. Firely luciferase activity was normalized to Renilla luciferase activity and results are reported as fold induction relative to cells treated
with ns siRNA in the presence of tTA.
doi:10.1371/journal.ppat.1001103.g004
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Figure 5. Tat association with the PTEN promoter. A. PTEN promoter enrichment ratio (ChIP DNA versus total genomic DNA in ChIP-Chip
analysis) in Jurkat cells expressing TatSF2 (first panel). ChIP analysis of the PTEN promoter in Jurkat T cells: two fold dilutions, starting from 5 ng, of
DNA immunoprecipitated with anti-Flag antibody from samples expressing TatSF2 with or without FLAG or 10 ng of input DNA, used as positive
control, were amplified by PCR (first gel). In the second and third gel the signals obtained by PCR carried out with input DNA (90, 30, 10 ng of DNA) or
with 3 ng of DNA extracted from immunoprecipitated samples are shown. TatSF2G48-R57A was used as an additional negative control. P1 and P2
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using RT-PCR to examine the steady-state levels of RNA species

within the first 100 bases from the transcriptional start site (E1)

and within the coding region of these genes (E2) (Figure 7C). The

results did not reveal significant differences in the ratio of

accumulation of short compared to long mRNAs in the presence

or absence of Tat (Figure 7C, right panel). These results suggest

that the increase in PTEN, PPP2R1B and PPP2R5E levels

stimulated by Tat is unlikely to be caused by the release of RNA

PolII that pauses after generating a short transcript, as it occurs

during HIV transcription. Nonetheless, it is possible that Tat does

facilitate pause release at the initiation start site or at a site within

the first 80 nucleotides of the RNA transcript of PTEN, PPP2R1B

and PPP2R5E genes. The lower amounts of Luciferance activity

detected when transcription is dependent from the PTEN,

PPP2R1B, or PPP2R5E promoters and of accumulated PTEN,

PPP2R1B, or PPP2R5E RNA transcripts detected in the presence

of TatSF2C25,30,35S or TatSF2K28A,K50A compared to wild

type Tat support a role for Tat in recruiting factors that affect the

processivity of PolII at the transcription start site of these

promoters.

In summary, Tat-mediated activation of apoptotic pathways in

T cells starts with the association of Tat with promoters of

phosphatase-encoding genes such as PTEN and PP2A. Increased

transcription of phosphatase genes leads to reduced phosphoryla-

tion of Akt1 and of FOXO3a, its nuclear translocation, followed

by the transcriptional activation of its own promoter and of

FOXO3a target genes that affect of both the intrinsic and extrinsic

apoptotic pathways. FOXO3a increases the transcription of Egr-1,

one of its target genes, which further stimulates the transcription of

PTEN, thereby reinforcing the pathway that leads to FOXO3a

transcriptional activation (Figure 8).

Discussion

Association of Tat with the PTEN and PP2A regulatory subunit

promoters in T cells is the Tat-mediated event that leads to the

activation of FOXO3a and its target genes, many of which are

proapoptotic. Inhibition of these phosphatases leads to reduce

apoptosis in T cells expressing Tat. A role for PP2A and PP1 in

Tat-mediated regulation of HIV transcription was previously

reported, but these reports did not investigate the role of Tat-

phosphatase interactions in activation of cellular gene expression

[49,50,51]. A previous investigation proposed that apoptosis in

HIV infected CD4+ T cells results from the microtubule

perturbation induced by the increased expression of Bim [52].

This mechanism is consistent with our observations, as Bim

upregulation was detected during HIV infection in CD4+ T cells

and in Tat expressing Jurkat cells [1]. This modulation resulted

from the Tat mediated upregulation of trascriptionally active

FOXO3a, which regulates Bim gene expression.

We failed to detect association of Tat with the FOXO3a or the

Egr-1 promoters. However the level of expression for these genes

falls when siRNA for PTEN and/or PP2A are introduced into

Tat-expressing cells and partially inhibit expression of these genes.

Transcriptionally active FOXO3a, which is also known to

stimulate its own transcription [47], is thus linked to the activity

of the phosphatases rather than to a closer interaction of Tat with

the FOXO3a promoter. However, inhibition of SIRT-1 by Tat

[14] might also increase the activity of FOXO3a, as SIRT-1

deacetylase activity can repress the activity of FOXO3a [53]. The

detection of FOXO3a at the Egr-1 promoter indicates that Egr-1

is also a transcriptional target of FOXO3a and its increased

transcription levels are likely to be directly dependent on the

increase of transcriptionally active FOXO3a. The increased levels

of Egr-1, which regulates transcription of PTEN [4,5,6] and is

present at the PTEN promoter as shown by ChIP/PCR analysis,

may further elevate the levels of PTEN, and so reinforce the circuit

that leads to FOXO3a-mediated transcription.

Inhibition of expression of PTEN and PP2A in primary CD4+
T cells and of PP2A in Jurkat cells in the course of Tat expression

reduced transcriptionally active FOXO3a and afforded protection

from Tat-induced apoptosis (Figure 5 and 6). This confirms their

role in apoptosis, as seen also for FOXO3a and Egr-1 inhibition

[1]. Because we failed to detect a direct association of Tat with the

promoters of these genes, these experiments point at PTEN or, in

its absence, to PP2A, as a Tat target and initiatior of the apoptotic

cascade. Inhibition of PPP2R1B did not reach statistical

significance in reducing apoptosis in primary CD4+ T-cells, while

statistical significance was attained when a siRNA against PTEN

was used. It is possible that the activity of PTEN by itself is

sufficient to initiate the apoptotic cascade and therefore inhibition

of the PP2a subunit alone is not sufficient to drastically reduce

apoptosis. Perhaps PTEN expression is more efficiently attenuated

by siRNA compared to PPP2R1B, or PTEN governs the

regulation of FOXO3a in these cells.

In regulating transcription from the HIV LTR, Tat’s major role

is in relieving RNAPII pausing at the TAR element by recruiting

P-TEFb [8]. Because PTEN and PP2A transcription occurs in the

absence of Tat in normal cells, we did not expect that Tat would

significantly increase the transcription of these genes by relieving

RNAPII pausing at the RNA level. Our data argue that the levels

of transcripts that include the first 80 nucleotides occur at the same

level as transcripts that are extended through the body of the gene

(Figure 7C), but do not exclude the likely possibility that much

shorter and unstable transcripts are produced by RNA polymerase

II pausing. Because RNA polymerase II pausing now appears to

occur very near the start site at all genes [54], it seems likely that

Tat binding to these genes increases pause release and RNA

polymerase II processivity by recruiting P-TEFb. Furthermore,

other transcription factors that bind P-TEFb, such a c-Myc,

increase transcript levels by using this mechanism [54]. In

addition, the ability of Tat to increase transcription from PTEN

and PP2A subunit promoters may depend on Tat facilitating P-

indicate 2 different sets of primers (Supplemental Table S3). B. ChIP analysis of the different cellular promoters in primary CD4+ T cells infected with a
replication competent HIV expressing a flagged Tat. The signals obtained by standard PCR carried out with input DNA (90, 30, 10 ng of DNA) or with
1–5 ng of DNA extracted from immunoprecipitated samples are shown. The results obtained with two sets of primers, P1 and P2, are shown for the
PTEN promoter. C. siRNA-mediated knockdown of PPP2R1B and PTEN reduces PPP2R1B, FOXO3a and FOXO3a-dependent gene expression in
CD4+primary T cells infected with eGFP or eGFP-Tat retroviruses. RT-PCR results are normalized to GAPDH and reported as fold induction relative to
cells treated with ns siRNA. Two independent experiments are reported. D. Protein expression analysis of PPP2R1B, PTEN, FOXO3a, or pFOXO3a by
flow cytometry in CD4+ T cells treated with PPP2R1B and/or PTEN siRNAs and infected with a retrovirus expressing GFP only or Tat and eGFP. Results
are reported as MFI. E. Level of apoptosis 48 h after Tat expression in CD4+ T-cells transduced with ns siRNA or PPP2R1B and/or PTEN siRNAs, or in
CD4+ T-cells exposed to no inhibitor or 100 nM okadaic acid (a PP2A inhibitor) and then treated with PP2A enhancers (ceramide or FTY720). The
mean 6SEM of two independent experiments is reported. (*) indicates p,0.05, (**) indicates p = 0.001. F. Level of apoptosis 48 h after HIV infection
in CD4+ T-cells transduced with ns siRNA, PPP2R1B and/or PTEN siRNAs, untreated, treated with 100 nM okadaic acid (a PP2A inhibitor) or 10 nM
bpV(HOpic) (a PTEN inhibitor). The mean 6SEM of two independent experiments is reported, (*) indicates p,0.05.
doi:10.1371/journal.ppat.1001103.g005
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Figure 6. Apoptosis and PI3K pathway modulation in primary CD4+ T cells exposed to exogenous Tat. A. Levels of apoptosis 24 and
48 hours after exposure to different Tat concentrations in the medium. B. Levels of apoptosis 24 and 48 hours after exposure to 5 mg/ml of Tat and
inhibitors of PTEN (10 nM bpV(HOpic)), PP2A (100 nM okadaic acid), Akt (50 mM Akt1-1/2), and PI3K (10 nM LY294002). The means 6 SEM of three
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TEFb transition form the inactive to the active form [55,56].

Transcription of luciferance form PTEN and PP2A subunit

promoter sequences located upstream of the transcription start site

was not as significantly enhanced when a Tat mutant that does not

bind P-TEFb was cotransfected with the reporter construct. The

same was true when a Tat mutant that does not bind p300/was

used in a similar experiment (Figure 7). It has been previously

shown that Tat competes with HEXIM1, an inhibitor of P-TEFb

activity [57], to increase the active pool of P-TEFb [58]. Tat

therefore may act as a factor that increases RNAPII processivity

experiments are shown. (*) indicates p,0.05, (**) indicates p = 0.001. C. RNA expression levels of different genes part of the PI3K pathway in primary
CD4+ T cells exposed to exogenous Tat. D. Corresponding protein levels for the same genes that are part of the PI3K pathway in primary CD4+ T cells
24 hours after exposure to exogenous Tat. RT-PCR results are normalized to GAPDH and reported as fold induction relative to cells untreated control.
The average and SEM of three independent experiments is reported. E. One representative flow cytometric protein analysis related to the data
reported in D. Results are reported as fold increase of mean fluorescence intensity (MFI) relative to the untreated control.
doi:10.1371/journal.ppat.1001103.g006

Figure 7. Analysis of transcription initiation and elongation at the PTEN, PP2R1B and PPP2R5E promoters. A. Schematic illustration of
the location of amplified DNA (P1, P2, and P3) and RNA (E1, E2) fragments in the linear sequence of PTEN, PP2R1B and PPP2R5E genes. The
transcriptional start site (TSS) is marked with a black box. Numbers in red mark the first nucleotide of the initiation codon. The promoter fragments
used in B. start at the beginning of the individual lines and go to nucleotide 21. B. Luciferase activity in cells expressing Tat or Tat mutants and a
luciferase gene under the control of PTEN (21015 to21), PPP2R1B (21074 to21), or PPP2R5E (21000 to 21) promoters. C. Detection of PTEN,
PP2R1B and PPP2R5E mRNA transcripts using primers in close proximity of (E1) or distant from (E2) the transcription start site. D. mRNA fold induction
ratios between E1 and E2.
doi:10.1371/journal.ppat.1001103.g007
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by facilitating the transition of P-TEFb to its transcriptionally

active form. Investigation of the details of this step will be the focus

of future investigation.

Tat was found associated with 450 promoters during its expression

in T cells. We do not know what specifically directs Tat to a subset of

all promoters or if Tat associates with all of these promoters also in the

context of HIV infection. Our current models are 1) the 450

promoters share one or more transcription factors that bind and

recruit Tat to these promoters, and 2) Tat-bound P-TEFb is

preferentially recruited to the 450 promoters by various transcription

factors. These models will be investigated in future studies.

Levels of phosphorylated FOXO3a correlate with the survival

of memory CD4+ T cells pFOXO3a is reduced in HIV-infected

individuals and is higher in untreated, infected subjects with

undetectable viremia [19]. These data support the in vivo relevance

of our data, and suggest that regulating FOXO3a transcriptional

activity may provide a target to control CD4+ T-cell apoptosis in

vivo. Inhibition of PTEN and PP2A could in principle be

beneficial to prevent HIV-mediated T cell apoptosis. However

the role of inactive PTEN in many types of cancer is a serious

impediment to this approach [6,45]. Instead, inhibition of Tat

may be a viable option to reduce HIV-induced apoptosis,

especially in non-infected cells. Efforts aimed at Tat inhibitor

discovery have met with limited success, because the primary

endpoint was inhibition to reduce viremia. This is probably a poor

endpoint because the role of Tat activity in HIV transcription is

somewhat redundant and can be replaced by other factors.

However, Tat remains a valuable drug target to reduce its

deleterious effects on T cell survival. Antibodies against Tat,

developed in vaccinated or infected patients, or drugs blocking Tat

activity could neutralize Tat released from infected cells and

prevent the protein to enter non-infected cells or to block its

activity inside uninfected cells and prevent apoptosis of this

population. While it is not known how much of the CD4+ T cell

death in uninfected cells is due to this mechanism, it would be

important to investigate in an experimental setting if these

strategies offer some benefit.

Materials and Methods

Plasmids and transfection
Vectors for production of retroviruses (pCMMP-eGFP, pMMP-

Tat1b-IGFP, pHDM-G/VSV-G envelope, and pMD.MLVgp)

were generously provided by Dr. Jeng-Shin Lee from the Harvard

Gene Therapy Initiative. Recombinant adenoviruses: Ad-tTA,

Ad-TatSF2, Ad-FLAG-TatSF2, Ad-FLAG-TatSF2G48-R57A, Ad-

FLAG-TatSF2C25,30,35S, and Ad-FLAG-TatSF2K28A,K50A

were constructed according to previously published procedures

[59]. The Tat coding region was cloned into the vector pAd-TRE-

MCS1. Tat is under a tetracycline-inducible promoter and co-

infection with Ad-tTA, which expresses the tetracycline responsive

transactivator, is required. DNA transfection in 293T cells was

carried out by calcium phosphate precipitation. Supernatants

containing viruses were prepared as described before [1].

Cell lines, primary cells, treatments, Abs, and reagents
Human PBMCs were obtained from healthy donors from the

Children’s Hospital Boston blood bank. The purity of CD4+
lymphocytes isolated using a CD4+ T cell negative selection kit

(Miltenyi Biotec) was more than 95%. All antibodies and siRNAs

were previously described [1], except the human anti-PPP2R1B,

anti-PPP2R5E antibodies (Santa Cruz Biotechnology), the

PPP2R1B, PPP2R5E, siRNAs (Santa Cruz Biotechnology), and

the PTEN siGENOME SMARTpool siRNA (Dharmacon).

Transduction of T lymphocytes, infection of cell lines and
siRNA treatments

T cells were exposed to the virus-containing supernatants of

different vesicular stomatitis virus-G protein (VSV-G)-pseudo-

Figure 8. Tat-mediated alteration of apoptotic pathways regulated by FOXO3a. Red lines indicate the association of the protein in the
circle at the beginning of the line with the promoter of the factor at the end of the line and its increased transcription. Red arrows connect proteins
whose level is increased by the factor indicated at the beginning of the line. The green line that connects PAK1 to FOXO3a indicates reduced levels of
PAK1. A red X marks a step that is significantly reduced.
doi:10.1371/journal.ppat.1001103.g008
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typed vectors [enhanced GFP (eGFP) or Tat-GFP] at multiplicity

of infection (MOI) of 5 supplemented with 4 mg/ml protamine

sulfate for 2 h. Jurkat T cells were exposed to adenoviruses at MOI

of 20. Forty-eight hours after transduction T cells were sorted and

GFP-positive cells were collected for PCR analysis of the RNA. All

siRNAs were transfected into exponentially growing cells or

electroporated at a final concentration of 3 mg into stimulated

CD4+ T lymphocytes as previously described [1]. For luciferase

reporter assay, HeLa and 293T cells were transiently transfected

with nonspecific control or FOXO3a siRNA for 24 h and then

infected with adenoviruses expressing tTA or TatSF2 for 24 h. Cell

lysates were used for luciferase reporter assay according to

manufacturer’s instructions.

RNA isolation and quantitative real-time RT-PCR
The isolated RNA (100 ng) was reverse transcribed using an

iScript cDNA kit (Bio-Rad) followed by amplification of HIV-1

Tat or cellular genes using SYBR Green SuperMix with ROX kit

(Bio-Rad) and primers specific for the genes of interest and

GAPDH as a control. Supplemental Table S2 reports the list of

primers used in the amplification.

Immunofluorescence staining and flow cytometry
Isolated CD4+ T lymphocytes (16106 cells) were prepared for

intracellular staining as described before [1]. For intracellular

staining, antibodies against PPP2R1B, pFOXO3a, and FOXO3a,

were directly labeled with APC-Cy7, APC, or PE-Cy5 Tandem

Conjugation Kit (Innova Biosciences). Flow cytometric acquisition

was performed on MoFlow (Dako). Cell analysis was performed on

the gated live-cell populations using Summit software (Dako). For

apoptosis staining, CD4+ T lymphocytes or Jurkat cells were

stained with Annexin V-APE and 7AAD and analyzed by flow

cytometry as previously described.

Confocal microscopy analysis
Ad-tTA or Ad-TatSF2 infected cells were fixed and incubated

first with a mouse monoclonal anti-PPP2R1B (Santa Cruz

Biotechnology), or a rabbit polyclonal anti-FOXO3a, or anti-

phospho-FOXO3a antibodies (Cell Signaling Biotechnology), and

then with a FITC-conjugated goat anti-mouse IgG or TR-red-

conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology). Cells

were stained with DRAG5 to visualize the nucleus (blue). The

coverslips were mounted using ProLong Gold antifade reagent

with DAPI (Molecular probes).

Chromatin immunoprecipitation (ChIP) and DNA
microarray analysis (ChIP-Chip)

ChIP was performed as previously described [60]. Briefly,

56107 cells were infected with adenoviruses, subsequently cross-

linked, and sonicated to yield an average DNA fragment of

500 bps. The sheared chromatin was incubated with protein G

magnetic beads (Invitrogen) coupled to anti-FLAG (Sigma M2),

anti-p300 polyclonal, anti-FOXO3a polyclonal, and anti-Egr-1

polyclonal antibodies (Santa Cruz Biotechnology). These antibod-

ies have been previously used in ChIP and do not have significant

background [61,62,63]. Amplified DNA was labeled and purified

using Bioprime random primer labeling kits (Invitrogen, immu-

noenriched DNA was labeled with Cy5 fluorophore, whole cell

extract DNA was labeled with Cy3 fluorophore). Labeled DNA

was mixed and hybridized to Agilent Human Promoter ChIP-on-

chip Microarray Set for 20 hours at 40uC. The microarrays

(Design ID - 014706 and 014707) have probes for about 17,000

human promoters. Arrays were then washed using standard

Agilent protocols and scanned using an Agilent DNA microarray

scanner BA. Scans were manually examined for abnormal features

and intensities were extracted for each spot automatically using

Agilent feature extraction software. We calculated the log of the

ratio of median normalized intensity in the IP-enriched channel to

median normalized intensity in the genomic DNA channel for

each probe and used a whole chip error model [64] to calculate

confidence values for each spot on each array (single probe p-

value). This error model functions by converting the intensity

information in both channels to an X score which is dependent on

both the absolute value of intensities and background noise in each

channel. The X scores for an array are assumed to be normally

distributed which allows for calculation of a p-value for the

enrichment ratio seen at each feature. To determine bound

regions in the datasets, we calculated the average X score of the

60-mer and its two immediate neighbors. If a feature was flagged

as abnormal during scanning, we assumed it gave a neutral

contribution to the average X score. Similarly, if an adjacent

feature was beyond a reasonable distance from the probe (based

on the maximum size of labeled DNA fragments hybridized to the

array), we assumed it gave a neutral contribution to the average X

score. This set of averaged values gave us a new distribution that

was subsequently used to calculate p-values of average X (probe set

p-values). If the probe set p-value was less than 0.001, the three

probes were marked as potentially bound. In addition, the three

probes in a probe set must each have single probe p-values,0.05

or the center probe in the probe set has a single probe p-

value,0.01 and one of the flanking probes has a single point p-

value,0.1. Association with promoters was identified if the bound

regions were 8 kb upstream or 2 kb downstream of the

Transcription Start Site [64]. For conventional ChIP analysis

the purified DNA was quantified by qPCR. The primers used in

qPCR are described in Supplemental Table S3. For the qPCR

reaction, 10 ng of immunoprecipitated material was used, and for

whole cell extract DNA samples (or input) a range of DNA

amounts (10–90 ng of DNA) were used. PCR products obtained

by standard PCR for qualitative analysis were visualized on

agarose gel with ethidium bromide.

Protein phosphatase and protein phosphatase 2A (PP2A)
activity

Protein phosphatase activity was measured using a commer-

cially available Ser/Thr phosphatase assay kit (Upstate Biotech-

nology). Cell lysates were used to measure phosphatase activity

using p-nitrophenyl phosphate (pNPP) or free phosphate released

by the phosphatase from a specific peptide substrate KRpTIRR

using the malachite green system. For protein phosphatase 2A

(PP2A), total cellular protein lysate was incubated with protein A-

agarose slurry with anti-PP2A-C (2 mg/ml, Upstate Biotechnolo-

gy). A commercially available PP2A immunoprecipitation phos-

phatase assay kit (Upstate Biotechnology) was used to measure

phosphate release as an index of phosphatase activity.

Treatments with inhibitors
PBMC (16106 cells) were infected with HIV-Flag Tat (viral

amount corresponding to 20 ng of p24) for 6 hours and then

resuspended with fresh medium in the presence or absence of

PP2A inhibitor (100 nM okadaic acid) or PTEN inhibitor (10 nM

bpV(HOpic). A second dose of the inhibitors was added to the

cultures after 48 h. The percentage of TUNEL+ or Annexin V+
cells was determined by fluorescence-activated cell sorter analysis

on day 3 or 5. Jurkat T cells were exposed to adenoviruses at MOI

of 20 in the presence or absence of inhibitors. After 2 h, cells were

washed and fresh media was replaced. Level of apoptosis was

HIV Tat Association with PP2A and PTEN Promoters

PLoS Pathogens | www.plospathogens.org 15 September 2010 | Volume 6 | Issue 9 | e1001103



expressed as the percentage of Annexin V+7AAD- 24 h after

transduction. PBMC were incubated without or with PP2A

inhibitor (100 nM okadaic acid) for 1 h and then treated with

two PP2A enhancers, sphingolipid ceramide N-Deacyclase

(Calbiochem, cat. #567704) (10 mM) or FTY720 (EMD, Gibbs-

town, NJ) (10 nM), for 48 h. Level of apoptosis was expressed as

the percentage of Annexin V+CD4+. Recombinant TatHIV-Bal was

added at the indicated concentrations into the cultures of PBMC

in the presence or absence of PTEN, PP2A, Akt, and PI3K

inhibitors (10 nM bpV(HOpic, 100 nM okadaic acid, 50 mM

Akt1-1/2, 10 nM LY294002, respectively), which were added 30

minutes before the addition of Tat.

Luciferase assays
HeLa and 293T cells were transfected with nonspecific siRNA

or siRNA targeting FOXO3a with SureFECT transfection

(SABiosciences). Luciferase activities were assessed using the

dual-luciferase reporter assay system (Promega, Madison, WI).

Firefly luciferase activity was normalized to the activity of the

Renilla luciferase control.

Immunoblots
Total proteins were separated by SDS-PAGE, transferred onto

the nitrocellulose membrane, and incubated with Abs raised

against FOXO3a, phospho-FOXO3a (Ser318), PTEN, phospho-

Akt1 (Ser473), PPP2R1B, PPP2R5E, and PPP2C (Santa Cruz

Biotechnology). The secondary Ab was detected with Pierce ECL

substrate. The blots were exposed to Hyperfilm, and the signals

were quantified by scanning densitometry with Molecular Analyst

1.5 software (Biorad). To account for any differences in loading,

target band densitometries were divided by actin densitometry

obtained in the same lane. These corrected densitometries were

normalized to controls in each experiment.

Statistical analysis
A two-tailed, two-sample Student t test was used to calculate p-

values for differences in means between groups. The data are

expressed as means 6 SEM. For statistical inference, a p-value of

,0.05 was considered significant.

Supporting Information

Table S1 List of promoters enriched in Tat ChIP-Chip.

Found at: doi:10.1371/journal.ppat.1001103.s001 (0.13 MB PDF)

Table S2 Oligonucleotide sequences used for RT-PCR.

Found at: doi:10.1371/journal.ppat.1001103.s002 (0.06 MB PDF)

Table S3 Oligonucleotide sequences used for ChIP-qPCR and

promoter fold enrichment.

Found at: doi:10.1371/journal.ppat.1001103.s003 (0.06 MB PDF)
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