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Abstract

Envirotyping is an essential technique used to unfold the nongenetic drivers associated with the phenotypic adaptation of living organisms.
Here, we introduce the EnvRtype R package, a novel toolkit developed to interplay large-scale envirotyping data (enviromics) into quantita-
tive genomics. To start a user-friendly envirotyping pipeline, this package offers: (1) remote sensing tools for collecting (get_weather and
extract_GIS functions) and processing ecophysiological variables (processWTH function) from raw environmental data at single locations or
worldwide; (2) environmental characterization by typing environments and profiling descriptors of environmental quality (env_typing func-
tion), in addition to gathering environmental covariables as quantitative descriptors for predictive purposes (W_matrix function); and (3)
identification of environmental similarity that can be used as an enviromic-based kernel (env_typing function) in whole-genome prediction
(GP), aimed at increasing ecophysiological knowledge in genomic best-unbiased predictions (GBLUP) and emulating reaction norm effects
(get_kernel and kernel_model functions). We highlight literature mining concepts in fine-tuning envirotyping parameters for each plant
species and target growing environments. We show that envirotyping for predictive breeding collects raw data and processes it in an
eco-physiologically smart way. Examples of its use for creating global-scale envirotyping networks and integrating reaction-norm modeling
in GP are also outlined. We conclude that EnvRtype provides a cost-effective envirotyping pipeline capable of providing high quality
enviromic data for a diverse set of genomic-based studies, especially for increasing accuracy in GP across untested growing environments.
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Introduction
Quantitative genetics divides phenotypic variation (P) into a ge-
netic (G) and nongenetic sources of variation (E). The latter may
involve micro-environmental effects that can be controlled by
adequate experimental designs and phenotype correction strate-
gies (e.g., Resende and Duarte 2007; Galli et al. 2018). Conversely,
most nongenetic sources are due to macro-environmental fluctu-
ations resulting from resource availability during crop lifetime
(Shelford 1931). Despite this unfolded division, the effect of the
environment on shaping gene expression (e.g., Plessis et al. 2015;
Jo�nczyk et al. 2017; Liu et al. 2020) and fine-tuning epigenetic
factors (Varotto et al. 2020; Vendramin et al. 2020) creates an
indissoluble envirotype-phenotype covariance in the phenotypic
records (Lynch and Walsh 1998). Thus, for any genotype-
phenotype association study across multiple environments (e.g.,
mapping quantitative trait loci, QLT; genomic association studies,
GWAS), there is a strong nongenetic influence that can be better
understood using envirotyping-based data, i.e., a foundation of
multiple techniques to collect, process, and integrate environ-
mental information in genetic and genomic studies, Costa-Neto
et al. (2020a).

Over the last 10 years, envirotyping (Xu 2016) has been incor-
porated into whole-genome prediction (GP, Meuwissen et al. 2001)
aiming to better model genotype � environment interaction
(G�E) as a function of reaction-norm from environmental cova-
riables (ECs), i.e., linearized responsiveness of a certain genotype
for a target environmental gradient. Those genomic-related reac-
tion norms can be modeled as genotype-specific coefficients for
each EC due to whole-genome factorial regressions (Heslot et al.
2014; Ly et al. 2018; Millet et al. 2019), allowing a deeper under-
standing of which ECs may better explain the phenotypic plastic-
ity of organisms. Furthermore, ECs can also be used to create
envirotyping-based kinships (Jarquı́n et al. 2014; Morais Junior
et al. 2018; Costa-Neto et al. 2020a), enabling the establishment
of putative environmental similarities that may drive a large
amount of phenotypic variation. The integration of ecophysiolog-
ically enriched envirotyping data has led to outstanding results
in modeling crops such as maize, due to the use of Crop Growth
Models (Cooper et al. 2016; Messina et al. 2018) and Deep Kernel
approaches (Costa-Neto et al. 2020a). Combined with phenotyping
and genotyping data, the use of envirotyping data may leverage
molecular breeding strategies to understand historical trends
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and cope with future scenarios of environmental change (Gillberg
et al. 2019; de los Campos et al. 2020). Its use can also support
other prediction-based pipelines in plant breeding, such as high-
throughput phenotyping surveys (Bustos-Korts et al. 2019; Krause
et al. 2019; Galli et al. 2020).

Despite advancements in the development of hypotheses sup-
porting the inclusion of envirotyping data in GP, it is difficult for
most breeders to deal with the interplay between envirotyping,
ecophysiology, and genetics. For example, much research has
been conducted to explore and associate data into the concepts
and theories underlying quantitative genetics (e.g., Fisher’s
Infinitesimal Model) with the goal of building genomic relation-
ship matrices (GRM). Genotyping pipelines based on bioinformat-
ics were successfully developed to translate biochemical outputs
collected from plant tissues into biologically significant markers
of DNA polymorphisms, e.g., genotyping-by-sequence (GBS,
Elshire et al. 2011). To the best of our knowledge, there is no pub-
licly available user-friendly software to implement envirotyping
pipelines to translate raw environmental data into a useful,
highlytailored matrix of envirotypic descriptors. Consequently, a
workflow to interplay enviromics (pool of environment-types,
abbreviated as envirotypes) and genomic analysis is lacking,
especially for GP conditions in multi-environment testing (MET)
where G� E is the main hindrance in the model’s accuracy.

In this study, we introduce EnvRtype, a novel R package used to
integrate macro-environmental factors in various fields of plant
and animal research or evolutionary ecology. We approach basic
ecophysiological concepts underlying the collection and process-
ing of raw-environmental data, both biologically and statistically.
Then, we present the functions for implementing remote data
collection and primary processing and its applications for deriv-
ing quantitative and qualitative descriptors of relatedness.
Finally, we present a comprehensive view of how envirome-
based data can be incorporated into GP for selecting genotypes
across diverse environments. We highlight the use of different
envirotyping levels to discover descriptors of environmental simi-
larity, using crop species to exemplify the concepts.

Material and methods
Envirotyping pipeline
EnvRtype is an R package created for handling envirotyping by
ecophysiological concepts in quantitative genetics and geno-
mics for multiple environments. It means that envirotyping is
not only a collection of raw environmental data that is used for
exploratory or predictive processes but rather a pipeline based
on the collection of raw data and their subsequent processing
in a manner that makes sense for describing the development
of an organism in the target environment using a priori
ecophysiological knowledge. Here, we consider enviromics as
the large-scale envirotyping (Xu 2016; Resende et al. 2020) of a
theoretical population of environments for a target species or
germplasm (the so-called envirome). It may also denote the
core of possible growing conditions and technological inputs
that create different productivity levels. The envirotyping pipe-
line implemented by EnvRtype software is divided into three
modules briefly described above and detailed in the following
sections (Figure 1).

Module 1 (yellow toolboxes in Figure 1) starts by collecting raw
environmental data from public platforms, such as a satellite-
based weather system named “NASA’s Prediction of Worldwide
Energy Resources” (NASA POWER, https://power.larc.nasa.gov/),

which can access information daily anywhere on earth. This
database is well consolidated and validated for use in several re-
search fields, including crop modeling in agricultural research
(White et al. 2011; Monteiro et al. 2018; Aboelkhair et al. 2019).
Details about resolution and validation are given in https://
power.larc.nasa.gov/docs/methodology/validation/.

Data collection may span existing experimental trials (single
sampling trials) or historical trends for a given location � plant-
ing date arrangement. This module gathers the functions for re-
mote data collection of daily weather and elevation data, as well
as the computation of ecophysiological variables, such as the ef-
fect of air temperature on radiation use efficiency. The module
includes a toolbox with “Remote Data Collection” and “Data
Processing” steps, both designed to help researchers find a viable
alternative for expensive in-field environmental sensing equip-
ment. More details about the theoretical basis of environmental
sensing and the module are given in the section “Module 1:
Remote Environmental Sensing”.

The processed environmental information can then be used
for many purposes. In Module 2, we designed tools for the
characterization of the macro-environmental variations, which
can also be done across different time intervals of crop growth
and development (when associated with a crop) or fixed time
intervals (to characterize locations). The environmental charac-
terization toolbox (green toolbox in Figure1) involves two types of
profiling:

1) Discovering environmental types (envirotypes, hereafter ab-
breviated as ETs) and how frequently they occur at each
growing environment (location, planting date, and year).
Based on the ET-discovering step, it is possible to create en-
vironmental profiles and group environments with the
same ET pattern. This step is also useful for running explor-
atory analysis, e.g., to discover the main ET of planting
dates at a target location.

2) Gathering ECs from point-estimates (e.g., mean air temper-
ature, cumulative rainfall). These ECs can be used for many
purposes, from a basic interpretation of G�E to estimating
gene-environment interactions. At the end of this process, a
matrix of ECs (W) is created and integrated with tools from
Module 3.

3) Further details about this module are given in the section
“Module 2: Macro-Environmental Characterization”.

Finally, the information from Module 2 can be used to create
environmental similarity and integrate robust GP platforms for
multiple environments, hereafter referred to as envirotype-
informed GPs. Module 3 (the dark purple boxes Figure 1) aims to
provide tools to compute environmental similarity using correla-
tions or Euclidean distances across different trials conducted on
ECs. Thus, we developed a function to integrate this enviromic
source in GP as an additional source of variation to bridge the gap
between genomic and phenotypic variation. For that, we provide
at least four different structures into a flexible platform to inte-
grate multiple genomic and enviromic kinships.

Figure 1 shows some possible outputs of the EnvRtype package
(in red toolbox colors), in which W can be used to interpret G�E
(e.g., factorial regression) or exploited in terms of increasing the
accuracy of phenotype prediction for multiple environments.
More details are given in the section “MODULE 3: Enviromic
Similarity and Phenotype Prediction”. Below we give some theo-
retical details about each module and a description of the func-
tions used to implement it.
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Software
The R package EnvRtype is available at https://github.com/alloga
mous/EnvRtype(version 1.0.0, verified January 15, 2021). More
details about graphical plots and additional codes can also be
found on this Git Hub webpage and in Supplementary Software.
Typing the following command in R will automatically install the
package (BOX 1):All codes and BOX in this work are available on
both the Git Hub web page and as Supplementary Code file.

MODULE 1—remote environmental sensing
Remote data collection
EnvRtype implements the remote collection of daily weather and
elevation data by the get_weather function. This function has the
following arguments: the environment name (env.id); geographic
coordinates (latitude, lat; longitude, lon) in WGS84; time interval
(start.day and end.day, given in “year-month-day”); and country
identification (country), which sets the raster file of elevation for
the region of a specific country. Countries are specified by their 3-
letter ISO codes [check in the package Git Hub or use the
getData(“ISO3”) function from the raster package to see the
codes].

Table 1 shows the names of the outputs of get_weather
and processWTH (see Tools for basic processing). All weather in-
formation is given on a daily basis. Altitude (ALT) information is
provided by SRTM 90 m resolution and can be collected from any
place between �60 and 60 latitudes. This information is

Figure 1 The workflow of the envirotyping pipeline implemented using EnvRtype in R. Yellow, green, dark purple, and red-colored boxes denote the
steps related to Modules 1, 2, 3, and the examples of outputs from EnvRtype. Straight arrows indicate the flux of the envirotyping pipeline passing by
each module. Curved arrows represent a process between Modules 1 and 2 in which field-growing conditions can be described as a panel of envirotype
descriptors from each environmental factor processed and organized in Module 2.

BOX 1. Install EnvRtype

> install.packages(‘devtools’)
> devtools::install_github(‘allogamous/EnvRtype’)
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presented as a data.frame class output in R. It is possible to down-
load data for several environments by country.

A practical example of get_weather is given below (BOX 3). A
collection of environmental data for Nairobi, Kenya (latitude
1.367 N, longitude 36.834 E) from 01 march 2015 to 01 April 2015,
is performed by:

A second function is extract_GIS, which can collect point val-
ues from large raster files from GIS databases. This function
has six arguments. The object env.data indicates the name of
the environmental dataset (arranged as a data.frame). It can be
an output data.frame of the get_weather function or any
spreadsheet of environmental data, as long as it is organized
with a column denoting the environment’s name, which is de-
fined by the env.id argument (default is env.id ¼ “env”).
Latitude and Longitude is provided in the same manner de-
scribed in get_weather.

Finally, the name.out is the argument to define the name of
the collected covariable (e.g., ALT for altitude). The function
extract_GIS can be useful for collecting covariables from
raster files within databases such as WorldClim (Fick and

Hijmans 2017; https://www.worldclim.org/), SoilGrids (https://soil
grids.org/), EarthMaps (https://earthmap.org/) and Nasa Power
(https://power.larc.nasa.gov).

A practical use of extract_GIS is given below (BOX 4). A collec-
tion of clay content (g/kg) from 5 cm to 15 cm of depth for Nairobi
using a raster file was downloaded from SoilGrids and the func-
tion extract_GIS. The raster file ‘clay_5_15’ can be accessed in R by
typing data(“clay_5_15”).

Summarizing raw-data
A basic data summary of the outputs from the get_weather func-
tion is done by the summaryWTH function. This function has 10
arguments (env.data, id.names, env.id, days.id, var.id, statistic,
probs, by.interval, time.window, and names.window). The com-
mon arguments with extract_GIS have the same described utility.
Other identification columns (year, location, management, re-
sponsible researcher, etc.) may be indicated in the id.names ar-
gument, e.g., id.names ¼ c(“year”, “location”, “treatment”).

Considering a specific environmental variable, the argument
var.id can be used as, for example, var.id ¼ “T2M”. By default,
this function considers all the names of the variables presented
in Table 1. For other data sources, such as micro-station outputs,
this argument is necessary for identifying which variables will be
summarized. The argument days.id indicates the variable point-
ing to the time (days), where the default is the daysFromStart col-
umn from the get_weather function. A basic example of this use is
given below (BOX 4):Dividing the development cycle into time
intervals (e.g., phenology), whether phenological or fixed time
intervals (e.g., 10-day intervals), helps to understand the tempo-
ral variation of environmental factors during the crop growth

Table 1 The core of environmental factors available using the “environmental sensing module” of the EnvRtype package

Source Environmental factor Unit

Nasa POWERa Top-of-atmosphere insolation MJ m�2 d�1

Average insolation incident on a horizontal surface MJ m�2 d�1

Average downward longwave radiative flux MJ m�2 d�1

Wind speed at 10 m above the surface of the earth m s-1

Minimum air temperature at 2 m above the surface of the earth �C d�1

Maximum air temperature at 2 m above the surface of the earth �C d�1

The dew-point temperature at 2 m above the surface of the earth �C d�1

Relative air humidity at 2 m above the surface of the earth %
Rainfall precipitation (P) mm d�1

SRTMb Elevation (above sea level) m
Computedc Effect of Temperature on Radiation use Efficiency (FRUE) —

Evapotranspiration (ETP) mm d�1

Atmospheric water deficit P-ETP mm d�1

The deficit of vapor Pressure kPa d�1

The slope of saturation vapor pressure curve kPa C�d�1

Temperature Range �C d�1

Global Solar Radiation based on Latitude and Julian Day MJ m�2 d�1

a Collected from NASA orbital sensors (Sparks 2018).
b Shuttle Radar Topography Mission integrated with the raster R package.
c Concepts from Allen et al. (1998) and Soltani and Sinclair (2012).

BOX 2. Toy Data sets

> data(‘maizeYield’) # phenotype data
> data(‘maizeG’) # GRM
> data(‘maizeWTH’) # weather data

BOX 3. Practical use of get_weather

> env.data ¼ get_weather(env.id ¼ ‘NAIROBI’,lat ¼ -1.367,
lon ¼ 36.834, start.day ¼ ‘2015-03-01’,
end.day ¼ ‘2015-04-01’, country ¼ ‘KEN’)

BOX 4. Practical use of extract_GIS

> data(“clay_5_15”)
> env.data ¼ extract_GIS(covraster ¼ clay_5_15,
name.out ¼ ‘clay_5_15’,env.data ¼ env.data)
> head(env.data)
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cycle. Thus, specific time intervals can be created by the time.-
window argument. For example, time.window ¼
c(0,14,35,60,90,120) denotes intervals of 0–14 days from the first
day on record (0). If the first record denotes the crop’s emer-
gence date in the field, this can also be associated with some
phenological interval. Those intervals can be named using the
argument names.window, names.window ¼ c(“P–E”, “E–V1”,
“V1–V4”, “V4–VT”, “VT–GF”, “GF–PM”).

The argument statistic denotes which statistic should be used
to summarize the data. The statistic can be: mean,sum or quantile.
By default, all statistics are used. If statistic ¼ “quantile”, the ar-
gument prob is useful to indicate which percentiles (from 0 to 1)
will be collected from the data distribution, i.e., default is prob ¼
c(0.25, 0.50, 0.75), denoting the first (25%) second (50%, median),
and third (75%) quantiles.

Tools for basic data processing
The processWTH function performs basic data processing. As de-
scribed for summaryWTH, this function can also process environ-
mental data for get_weather outputs and other sources (micro-
stations, in-field sensors) using the same identification argu-
ments (env.data, id.names, env.id, days.id, var.id). This function
also gathers three other sub-functions created to compute gen-
eral variables related to ecophysiological processes, such as the
macro effects of soil-plant-atmosphere dynamics and atmo-
spheric temperature on crop development. The basic usage of
this package is given by processWTH(env.data ¼ env.data); in ad-
dition, crop-specific parameters such as cardinal values of tem-
perature and evapotranspiration, as well as site-specific
characteristics, can be given in additional arguments. Below, we
describe these arguments over three functions that compose
processWTH. We provide a brief description of them, in addition
to the ecophysiological concepts underlying their application (see
Appendix 1).

Radiation-related covariables
EnvRtype made a function called param_radiation available to com-
pute additional radiation-based variables that can be useful for
plant breeders and researchers in several fields of agricultural re-
search (e.g., agrometeorology). These parameters include the ac-
tual duration of sunshine hours (n, in hours) and total daylength
(N, in hours), both estimated according to the altitude and lati-
tude of the site, time of year (Julian day, from 1 to 365), and
cloudiness (for n). In addition, the global solar radiation incidence
(SRAD, in MJ m2 d�1) is computed as described at the beginning of
this section. The latter is important in most computations of crop
evapotranspiration (Allen et al.1998) and biomass production
(Muchow et al.1990; Muchow and Sinclair, 1991). More details
about those equations are given in ecophysiology and evapo-
transpiration literature (Allen et al.1998; Soltani and Sinclair
2012). More detail is given in Appendix 2.

The arguments of param_radiation are: env.data and merge, in
which merge denotes if the computed radiation parameters must
be merged with the env.data set (merge ¼ TRUE, by default).

Temperature-related covariables
The param_temperature function computes additional thermal-
related parameters, such as GDD and FRUE, and T2M_RANGE.
This function has eight arguments (env.data, Tmax,Tmin,
Tbase1, Tbase2, Topt1, Topt2, and merge). To run this function
with data sources other than get_weather, it is necessary to indi-
cate which columns denote maximum air temperature (Tmax,
default is Tmax ¼ “T2M_MAX”) and minimum air temperature
(Tmin, default is Tmin ¼ “T2M_MIN”) (BOX 6). The cardinal tem-
peratures must follow the processes provided in the previously
described ecophysiology literature (Soltani and Sinclar 2012, see
Appendix 3). Consider the estimations for dry beans at the same
location in Nairobi, Kenya (previous box examples). The cardinal
temperatures for dry beans were collected from Table 2, which
gathers different cardinal temperatures for a diverse set of crops.

Atmospheric demands
We implemented the param_atmospheric function to run basic
computations of atmospheric demands. This function has 11

BOX 5. Practical use of SummaryWTH

> summaryWTH(env.data ¼ env.data, env.id ¼ ‘env’,
days.id ¼ ‘daysFromStart’,statistic ¼ ‘mean’)
> summaryWTH(env.data ¼ env.data) # by default

BOX 6. Practical use of param_temperature for Dry

Beans in Nairobi, Kenya

> TempData ¼ param_temperature(env.data ¼ env.data,
Tbase1¼ 8, Tbase2¼ 45, Topt1¼ 30, Topt2¼ 35)
> head(TempData)
> # merging TempData automatically
> env.data ¼ param_temperature(env.data ¼ env.data,
Tbase1¼ 8, Tbase2¼ 45, Topt1¼ 30, Topt2¼ 35,
merge ¼ TRUE)
> head(env.data)

Table 2 Synthesis of some cardinal limits for temperature on
the phenology development in the main crops These estimates
were adapted from Soltani and Sinclar (2012), Lago et al. (2009),
and Bartz et al. (2017).

Specie Suggested cardinal limit

Tbase1 Topt1 Topt2 Tbase2

Maize 8.0 30.0 37.0 45.0
Wheat 0.0 25.0 28.0 40.0
Rainfed rice 8.0 30.0 37.0 45.0
Irrigated rice (vegetative

stage)
8.0 28.0 40.0 45.0

Irrigated rice (reproduc-
tive stage)

15.0 25.0 35.0 45.0

Sorghum 8.0 30.0 37.0 45.0
Soybean 8.0 30.0 35.0 45.0
Peanut 8.0 30.0 35.0 45.0
Canola 0.0 25.0 28.0 40.0
Sunflower 8.0 30.0 34.0 45.0
Dry Bean 8.0 30.0 35.0 45.0
Chickpea 0.0 25.0 30.0 40.0
Barley 0.0 25.0 28.0 40.0
Sugarcane 5.0 22.5 35.0 40.0
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arguments: env.data; PREC (rainfall precipitation in mm, default
is PREC¼“PRECTOT”); Tdew (dew point temperature in �C, default
is Tdew¼“T2M_DEW”); Tmax (maximum air temperature in �C,
default is Tmax¼“T2M_MAX”); Tmin (minimum air temperature
in �C, default is Tmin¼“T2M_MIN”); RH (relative air humidity %,
default is RH¼“RH2M”); Rad (net radiation, in MJ m�2 day�1, de-
fault is Rad ¼ “Srad”); alpha (empirical constant accounting for
vapor deficit and canopy resistance values, default is
alpha¼ 1.26); Alt (altitude, in meters above sea level, default is
Alt ¼ ALT); G (soil heat flux in W m�2, default is G¼ 0); and merge
(default is merge¼TRUE). Details about these inputs and equa-
tions are given in the Appendix Section.

Below we present an example of usage in Nairobi, Kenya.
Consider the same env.data collected in the previous box and an
elevation value of Alt ¼ 1,628 (BOX 7).

MODULE 2—macro-environmental
characterization
Discovering Envirotypes with env_typing
An environment can be viewed as the status of multiple resource
inputs (e.g., water, radiation, and nutrients) across a certain time
interval (e.g., from sowing to harvesting) within a specific space
or location. The quality of those environments is an end-result of
the daily balance of resource availability, which can be described
as a function of how many resources are available and how fre-
quently those resources occur (e.g., transitory or constant
effects). Also, the relationship between resource absorption and
allocation depends on plant characteristics (e.g., phenology, cur-
rent health status). Then, this particular environmental-plant in-
fluence is named after the envirotype to differentiate it from the
concept of raw environmental data (data collected directly from
sensors). It can be referred to as ETs. Finally, the typing of envi-
ronments can be done by discovering ETs; the similarity among
environments is a consequence of the number of ETs shared be-
tween environments.

Before the computation of ETs, a first step was to develop a de-
sign based on ecophysiological concepts (e.g., plants’ needs for
some resource) or summarize the raw data from the core envi-
ronments being analyzed. Then, for each ET we computed the
frequency of occurrence, which represents the frequency of spe-
cific quantities of resources available for plant development.
Typing by frequency of occurrence provides a deeper understand-
ing of the distribution of events, such as rainfall distribution
across different growing cycles and the occurrence of heat stress
conditions in a target location (Heinemann et al. 2015). Thus,
groups of environments can be better identified by analyzing the

events occurring in a target location, year, or planting date. This
step can be done not only by using grade point averages (e.g., ac-
cumulated sums or means for specific periods), but also by their
historical similarity. In this way, we are able to not only group
environments in the same year, but also through a historical se-
ries of years. Finally, this analysis deepens in resolution when the
same environment is divided by time intervals, which can be
fixed (e.g., 10-day intervals), or categorized by specific phenologi-
cal stages of a specific crop.

To implement envirotype profiling, we created the env_typ-
ing function. This function computes the frequency of occur-
rence of each envirotype across diverse environments. This
function has 12 arguments, nine of which (env.data, id.names,
env.id, days.idvar.id, statistic, by.interval, time.window, and
names.window) work in the same way as already described in
the previous functions. The argument cardinals are responsi-
ble for defining the biological thresholds between envirotypes
and adaptation zones. These cardinals must respect the eco-
physiological limits of each crop, germplasm, or region. For
that, we suggest literature on ecophysiology and crop growth
modeling, such as Soltani and Sinclar (2012). The argument
cardinals can be filled out as vectors (for single-environmental
factors) or as a list of vectors for each environmental factor
considered in the analysis. For example, considering the cardi-
nals for air temperature in rainfed rice presented in Table 2,
the cardinals are typed for Los Ba~nos, Philippines, from 2000
to 2020, as (BOX 8):If cardinals ¼ NULL, the quantiles 10%,
25%, 50%, 75%, and 90% are used by default. Which quantiles
will be used is determined in the same manner as prob (in
summaryWTH), but now using the quantile argument, e.g.,
quantile ¼ c(0.25,0.50,0.75).

For multiple environmental factors, a list of cardinals must
be provided—for example, considering rainfall precipitation
(PRECTOT, mm.day�1) and dew point temperature
(T2DEW,�C.day�1). Suppose precipitation values less than
10 mm.day�1 are insufficient to meet the studied crops’ de-
mand. Values between 11 mm.day�1 and 40 mm.day�1 would be
considered excellent water conditions, and values greater than
40 mm.day�1 would be considered excessive rainfall. In this sce-
nario, such rainfall values could be negatively associated with
flooding of the soil and drainage of fertilizers, among other fac-
tors related to crop lodging or disease occurrence. Thus, for
PRECTOT, the cardinals will be cardinals ¼ c(0,5,10,25,40,100).
For dew point, let’s assume data-driven typing (cardinals ¼
NULL) using the previously described quantiles. Taking the
same example for Los Ba~nos, Philippines (BOX 9).

BOX 7. Practical use of param_atmospheric

> # first need to compute radiation parameters
> RadData ¼ param_radiation(env.data ¼ env.data)
> head(RadData)
> env.data ¼ param_radiation(env.data ¼ env.data,
merge ¼ TRUE)
> AtmData ¼ param_atmospheric(env.data ¼ env.data)
> head(AtmData)
> env.data ¼ param_atmospheric(env.data ¼ env.data,
merge ¼ TRUE)
> head(env.data)

BOX 8. Basic use of env_typing

> # typing temperature in Los Ba~nos, Philipines, from 2000
to 2020
> env.data ¼ get_weather(env.id ¼ ‘LOSBANOS’,
country ¼ ‘PHL’,
> lat ¼ 14.170, lon ¼ 121.241, variables.names ¼ ‘T2M’,
> start.day ¼ ‘2000-03-01’,end.day ¼ ‘2020-03-01’)
> # list of vectors containing empirical and cardinal
thresholds
> card ¼ list(T2M¼c(0,8,15,28,40,45, Inf))
> env_typing(env.data ¼ env.data, env.id ¼ ‘env’,
var.id ¼ ‘T2M’, cardinals ¼ card)
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Environmental Covariables with W_matrix
The quality of an environment is measured by the amount of
resources available to fulfill the plants’ demands. In an experi-
mental network composed of multi-environment trials (MET),
the environment’s quality is relative to the global environmental
gradient. Finlay and Wilkinson (1963) proposed using phenotypic
data as a quality index over an implicit environmental gradient.
However, this implicit environmental quality index was proposed
as an alternative to explicit environmental factors, given the
difficulties in obtaining high-quality envirotyping data. Here
we provide the use of detailed environmental data arranged in
a quantitative descriptor such as a covariate matrix (W), fol-
lowing the terminology used by Costa-Neto et al. (2020a) and de
los Campos et al. (2020). Based on these W matrices, several
analyses can be performed, such as (1) dissecting the G� E in-
teraction; (2) modeling genotype-specific sensibility to critical
environmental factors; (3) dissecting the environmental factors
of QTL�E interaction; (4) integrating environmental data to
model the gene � environment reaction-norm; (5) providing a
basic summary of the environmental gradient in an experi-
mental network; (6) producing environmental relationship ma-
trices for genomic prediction.

To implement these applications, the processed environmen-
tal data must be translated into quantitative descriptors by sum-
marizing cumulative means, sums, or quantiles, such as in
summaryWTH. However, these data must be mean-centered and
scaled to assume a normal distribution and avoid variations due
to differences in scale dimensions. To create environmental simi-
larity kernels, Costa-Neto et al. (2020a) suggested using quantile
statistics to better describe each variable’s distribution across the
experimental network. Thus, this allows a statistical approxima-
tion of the environmental variables’ ecophysiological importance
during crop growth and development. In this context, we
developed the W_matrix function to create a double-entry table
(environments/sites/years environmental factors). Contrary to
env_typing, the W_matrix function was designed to sample each
environmental factor’s quantitative values across different envi-
ronments.

The same arguments for the functions summaryWTH and env_-
typing are applicable (env.data, id.names, env.id, days.idvar.id,
statistic, by.interval, time.window, and names.window).
However, in W_matrix, arguments center¼ TRUE (by default) and
scale ¼ TRUE (by default) denote mean-centered (w��w) and
scaled ðw��w=r), in which w is the original variable, �w and r

are the mean and standard deviation of this covariable across the
environments. Quality control (QC ¼ TRUE argument) is done by

removing covariables with more than rTOL6 r, where rTOL is the
tolerance limit for standard deviation, settled by default argu-
ment as sd.tol ¼ 3.

To exemplify a basic use of W_matrix, let us consider the
maizeWTH object, involving only weather variables temperature,
rainfall and precipitation, while assuming a quality control of
sd.tol ¼ 4. The time intervals were settled for every ten days
(default), and statistic as ‘mean’ for each variable at each time
interval (BOX 10).

MODULE 3—enviromic similarity and phenotype
prediction
The prediction of phenotypes across multiple environments can
be conducted using different approaches, such as mechanistic
crop models and empirical regressions, in which environmental
and/or genomic information is necessary for training accurate
models. The latter, named after whole-genome prediction (GP,
Meuwissen et al. 2001), has revolutionized both plant and animal
breeding pipelines around the world. Most approaches rely on in-
creasing the accuracy of modeling genotype-phenotype patterns
and exploring them as a predictive breeding tool. Among the sev-
eral enrichments of computational efficacy and breeding applica-
tions, the integration of genomic by environment interaction
(G�E) has boosted the ability of genomic-assisted selection to
evaluate a wide number of genotypes under several growing con-
ditions over multiple environmental trials (METs).

Heslot et al. (2014) and Jarquı́n et al. (2014) introduced ECs to
model an environmental source of the phenotypic correlation
across MET. These approaches aim to model the reaction-norm
of genotypes across MET, i.e., how different genotypes react
to different environmental gradient variations. In most
cases, reaction-norm modeling serves as an additional source of
variation for complementing the genomic relatedness among
individuals tested and untested under known environmental
conditions. Thus, in addition to the genomic kernels, envirotype-
informed kernels can be used to capture macro-environmental
relatedness that shapes the phenotypic variation of relatives, the
so-called enviromic kernel (Costa-Neto et al. 2020a).

In the third module of the EnvRtype package, we present the
tools used to implement this modeling approach. Three main
functions were designed for this purpose. First, the function env_-
kernel can be used for the construction of environmental relation-
ship kernels using environmental information. Second, the
get_kernel aims to integrate these kernels into statistical models
accounting for different structures capable of explaining the phe-
notypic variation across MET. Finally, the function kernel_model

BOX 10. env_typing for several variables

> # toy set of environmental data
> data(“maizeWTH”)
> # type the variable names
> var ¼ c(“PRECTOT”, “T2MDEW”, “T2M_MAX”, “T2M_MIN”)
>W¼W_matrix(env.data¼
maizeWTH[maizeWTH$daysFromStart < 100 , ],

var.id¼var, statistic¼“mean”, by.interval¼TRUE)

> dim(W)

BOX 9. Basic use of env_typing for more variables

> var ¼ c(“PRECTOT”, “T2MDEW”) # variables
> env.data ¼ get_weather(env.id ¼ ‘LOSBANOS’,
country ¼ ‘PHL’,

lat ¼ 14.170, lon ¼ 121.241, variables.names ¼ var,
start.day ¼ ‘2000-03-01’,end.day ¼ ‘2020-03-01’)

> # cardinals and data-driven limits
>card ¼ list(PRECTOT ¼ c(0,5,10,25,40,100),
T2MDEW ¼ NULL)
>env_typing(env.data ¼ env.data, env.id ¼ ‘env’,
var.id ¼ var, cardinals ¼ card)
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can be used to fit regression models accounting for environmen-
tal and or genomic data using a computationally efficient
Bayesian approach. In the following subsections, we describe
the kernel methods for modeling envirotype relatedness. Then
we present the statistical models that can be built with these
kernels.

Enviromic Kernels with env_kernel
In this package, we use two types of kernel methods to compute
enviromic-based similarity. The first consists of the traditional
method based on the linear variance-covariance matrix (Jarquı́n
et al. 2014). This kernel is equivalent to a genomic relationship
matrix and can be described mathematically as:

KE ¼
WW

0

trace WW
0ð Þ=nrowðWÞ

(1)

where KE is the enviromic-based kernel for similarity among
environments and W matrix of ECs. Note that we use W matrix,
but any other source of data from environments can be used
here as EC (e.g., typologies, disease evaluations, management).

The second method is a nonlinear kernel modeled by
Gaussian processes, commonly called the Gaussian Kernel or GK,
and widely used in genomic-enabled prediction (Gianola and van
Kaam 2008; de los Campos et al. 2010; Cuevas et al. 2017). The use
of GK for modeling KE was proposed by Costa-Neto et al. (2020a)
and is described in a similar way to the approach already used for
modeling genomic effects:

KE ¼ exp hD2
ii0 =Q

� �
(2)

where h is the bandwidth factor (assume as h¼ 1 by default)
multiplied by the Euclidean Distance D2

ii0 ¼
P

k wik �wi0 kð Þ2 for
each pairwise elements in the W ¼ fwi;wi0 g. This means that
the environmental similarity is a function of the distance
between environments realized by ECs. The scalar variable Q
denotes the quantile used to ponder the environmental distance
assumed as Q¼ 0.5, equal to the median value of D2

ii0 . The h can
be computed using a marginal function described by Pérez-
Elizalde et al. (2015).

The env_kernel function implements both methods. It has
the following main arguments: env.data, env.id, gaussian, and
h.gaussian. The first two arguments work in the same manner
previously described for other functions. The gaussian argument
(default is gaussian ¼ FALSE) denotes if models (1) or (2) are used
to compute KE. If gaussian ¼ TRUE, then the Gaussian kernel
(equation 2) is used, and h.gaussian must be inserted to compute
it. In the Y argument (default is Y ¼ NULL), it is possible to insert
a phenotypic record to be used in the marginal function to
compute a data-driven h (Pérez-Elizalde et al. 2015).

The env_kernel function has two outputs called varCov (related-
ness among covariables) and envCov (relatedness among environ-
ments). The first is useful to deepen the understanding of the
relatedness and redundancy of the ECs. The second output is KE.
This matrix is the enviromic similarity kernel integrated into the
GP models.

A basic use of env_kernel is presented below. Consider the W
matrix created in BOX 10 for the maizeWTH object (5 environ-
ments in Brazil). The KE. value using linear covariance and the
Gaussian kernel is given as (BOX 11):

Phenotype prediction across multiple environments
After constructing the relationship kernels for environmental re-
latedness, it is possible to fit a vast number of statistical models
using several packages available in R CRAN. However, it is impor-
tant to consider that statistical models containing more complex
structures (e.g., more than one genetic effect plus G�E and envi-
ronmental information) are models that require more expensive
computational effort and time. Under Bayesian inference, which
demands multiple iterative sampling processes (e.g., via Gibbs
sampler) to estimate the variance components, the computa-
tional effort may be more expensive. Among the R packages cre-
ated to run Bayesian linear models for genomic prediction, three
main packages may be highlighted: BGLR-Bayesian Generalized
Linear Regression (Pérez and de los Campos 2014), BMTME-
Bayesian Multi-Trait Multi-Environment (Montesinos-López
et al. 2016) and BGGE-Bayesian Genotype plus Genotype by
Environment (Granato et al. 2018). However, BGGE employs an op-
timization process that can be up to five times faster than BGLR
and permits the incorporation more kernel structures than
BMTME. For this reason, we implement the kernel_model function
that runs the same optimization algorithm for Hierarchical
Bayesian Modeling used in BGGE (see Appendix 5).

Below we describe a generic model structure that covers the
diversity of possible combinations for modeling the phenotypic
variation across MET. This model considers k genomic and l
enviromic effects, plus fixed-effects and a random residual
variation:

y ¼ 1lþ Xf bþ
Xk

s¼1
gs þ

Xl

r¼1
wr þ e (3)

where y is the vector combining the means of each genotype
across each one of the q environments in the experimental net-
work, in which y ¼ y1; y2; . . . yq½ �T . The scalar 1l is the common in-
tercept or the overall mean. The matrix Xf represents the design
matrix associated with the vector of fixed effects b. In some
cases, this vector is associated with environmental effects (target
as fixed-effect). Random vectors for genomic effects (gs) and
enviromic-based effects (wr) are assumed to be independent of
other random effects, such as residual variation (e). It is a gener-
alization for a reaction-norm model because, in some scenarios,
the genomic effects may be divided as additive, dominance, and
other sources (epistasis) and the genomic by environment (G�E)
multiplicative effect. In addition, the envirotyping-informed data
can be divided into several environmental kernels and a subse-
quent genomic by envirotyping (G�W) reaction-norm kernels.
Based on Equation 6, the theory underpinning the get_kernel func-
tion is summarized in three

• Benchmark Genotypic Effects. These are baseline models ac-
counting only for genotype-based effects, mostly associated
with pedigree-based or genomic realized kinships.

Pp
s¼1 gs 6¼ 0

and
Pq

r¼1 wr ¼ 0, in which gs may be related to main

BOX 11. Basic use of env_kernel for linear and

nonlinear kernel methods

> env_kernel(env.data ¼W, gaussian ¼ FALSE)
> env_kernel(env.data ¼W, gaussian ¼ TRUE)
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genotype-effect (G) in the case of the main genotype-effect
model (MM); and G plus a genotype by environment deviation
(GþG�E), in the case of the so-called MDs model. Note that
multiple genotype-relatedness kernels may be incorporated,
e.g., for additive (A) and dominance (D) deviations and other
sources of information from “omics.” All genomic kernels
must have the p�p dimension, in which p is the number of
genotypes. However, this model does not consider any envi-
ronmental effect.

• Enviromic-enriched Main Effects. We added the acronym “E”
to the MM and MDs models to denote ‘enviromic-enriched’
for EMM and EMDs models. These models consider

Pp
s¼1 gs 6¼

0 and
Pq

r¼1 wr 6¼ 0, in which gs are related to G (EMM) or
GþG�E (EMDs), and wr are only the main envirotype effects
(W). In this type of model, the environmental effects can be
modeled as a fixed deviation (using Xf b) plus a random
envirotyping-based variation (

Pq
r¼1 wr).

• Enviromic-based Reaction-Norm. We added the acronym “RN”
for “reaction-norm” to the MM and MDs models, resulting in
RNMM and RNMDs models, respectively. As described in (ii), the
environmental effects can now be modeled as fixed deviations
(using Xf b) plus a random envirotyping-based variation
(
Pq

r¼1 wr). However, those RN models consider
Pp

s¼1 gs 6¼ 0 andPq
r¼1 wr 6¼ 0, in which gs are related to G (RNMM) or GþG�E

(RNMDs), and wr are related to main envirotype effects (W) plus
an envirotype � genomic interaction (G�W). In this context,
RNMM accounts for the variation due to GþWþGW, whereas
RNMDS considers GþGEþWþGW.

Getting covariance structures with get_kernel: The get_kernel
function has four main arguments: a list of genomic relationship
kernels (K_G); a list of environmental relationship kernels (K_E);
and a phenotypic MET data set (data), composed of a vector of
environment identification (env), a vector of genotype identifica-
tion (gid), and a vector of trait values (y); at last, the model argu-
ment sets the statistical model used (“MM”,“MDs”, “EMM”,
“EMDs”, “RNMM” and “RNMDs”). Each genomic kernel in K_G
must have the dimension of p� p genotypes. This argument
assumes K_G ¼ NULL by default. If no structure for genetic
effects is provided, the get_kernel function automatically assumes
an identity matrix for genotype effects, in which it considers no
relatedness among individuals. Finally, the argument stage
(stage ¼ NULL by default) states which development stages can
be used to create stage-specific enviromic kernels. More detail about
the latter is given in the Example 3 of the Results section.

In the same manner, K_E could have the dimension of q� q
environments, but the environmental kernels can be built at the
phenotypic observation level in some cases. It means that for
each genotype in each environment, there is a different EC,
according to particular phenology stages or envirotyping at the
plant level. Thus, using the additional argument dimension_KE
¼ c(“q”, “n”) (default is “q”, for environment), the K_E may accom-
plish a kernel with n� n, in which n ¼ pq. The basic usage of get_-
kernel is given below (BOX 12) and its detailed applications are
provided in the Results section.

Modeling the phenotypic variation with kernel_models: Finally,
the kernel_model function has four main arguments: a phenotypic

BOX 12. Basic usage of get_kernel function

>data(“maizeYield”)
>data(“maizeG”)
>data(“maizeWTH”) # toy set of environmental data
>y ¼ “value” # name of the vector of phenotypes
>gid ¼ “gid” # name of the vector of genotypes
>env ¼ “env” # name of the vector of environments
>ECs ¼W_matrix(env.data ¼maizeWTH, var.id ¼ c(“FRUE”,’PETP’,”SRAD”,”T2M_MAX”),statistic ¼ ‘mean’)

## KG and KE might be a list of kernels
>KE ¼ list(W ¼ env_kernel(env.data ¼ ECs)[[2]])
>KG ¼ list(G¼maizeG);

## Creating kernel models with get_kernel
>MM ¼ get_kernel(K_G ¼ KG, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “MM”)
>MDs ¼ get_kernel(K_G ¼ KG, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “MDs”)
>EMM ¼ get_kernel(K_G ¼ KG, K_E ¼ KE, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “EMM”)
>EMDs ¼ get_kernel(K_G ¼ KG, K_E ¼ KE, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “EMDs”)
>RMMM ¼ get_kernel(K_G ¼ KG, K_E ¼ KE, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “RNMM”)
>RNMDs ¼ get_kernel(K_G ¼ KG, K_E ¼ KE, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “RNMDs”)

BOX 13. Basic usage of kernel_model function

> fixed ¼model.matrix(�0þenv, maizeYield)
> MDs ¼ get_kernel(K_G ¼ KG, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “MDs”)
> fit ¼ kernel_model(y¼ y, env ¼ env, gid ¼ gid, data ¼maizeYield, random ¼MDs, fixed ¼ fixed)
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MET data set (data), composed of a vector of environment identi-
fication (env), a vector of genotype identification (gid), and a vec-
tor of trait values (y), a list object for random effects (random,
from get_kernel) and a matrix for fixed effects (fixed). For the
Hierarchical Bayesian Modeling (see Appendix 5), the arguments
for number of iterations (iterations, default is 1,000) and the
number of samples used for burn-in (burnin, default is 200) and
thining (thining, default is 10) must be provided. The function
has two main outputs: the predicted phenotypes (yHat), variance
components for each random effect (VarComp). Below we show a
brief example of the use of kernel_model for a MDs model (BOX 13)
using the same inputs used in BOX 12.

Practical examples
Three practical examples were implemented to present a com-
prehensive overview of the most important functions of EnvRtype.
First, we illustrate the use of EnvRtype for starting an envirotyping
pipeline across different locations in the world (Example 1).

Second, we used the toy data set (maizeG, maizeWTH and
maizeYield) to demonstrate different environmental similarities
based on different environmental factors (Example 2). We used
two envirotyping levels (per environment and per development
stage at each environment) and two ECs (FRUE, PETP, and
FRUEþPETP) to demonstrate different ways to build environmen-
tal relatedness for GP. This type of application can be useful for
researchers interested in predicting the individual genotypic
responses shaped by genomic and enviromic-specific factors
across existing experimental trials or for the assembly of virtual
scenarios.

Finally, in Example 3 we ran a genomic prediction study case
in maize (maizeG, maizeWTH,and maizeYield) involving three mod-
els (M1, Baseline Genomic MDs model; M2, Reaction Norm RNMM
model, and M3, Reaction Norm RNMM considering a different
enviromic kinship for each development stage) and two cross-
validation schemes (CV1: prediction of novel genotypes, using
20% of the data as a training set; CV00: prediction of novel geno-
types at novel environments, using 3 of the 5 environments plus
20% of the genotypes as a training set).

Results
Example1: global-scale envirotyping
To illustrate the use of EnvRtype for a global-scale envirotyping
study, we consider different periods (and years) within the sum-
mer season at nine locations around the world (BOX 14): Goiânia
(Brazil, 16.67 S, 49.25 W, from March 15, 2020 to April 04, 2020);
Texcoco (Mexico, 19.25 N, 99.50 W, from May 15, 2019 to June 15,
2019); Brisbane (Australia, 27.47 S, 153.02 E, from September 15,
2018 to October 04, 2018); Montpellier (France, 43.61 N, 3.81 E,

from June 18, 2017 to July 18, 2017); Los Ba~nos (the Philippines,
14.170 N, 121.431 E, from May 18, 2017 to June 18, 2017); Porto-
Novo (Benin, 6.294 N, 2.361 E, from July 18, 2016 to August 18,
2016), Cali (Colombia, 3.261 N, 76.312 W, from November 18,
2017 to December 18, 2017); Palmas (Brazil, 10.168 S, 48.331 W,
from December 18, 2017 to January 18, 2018); and Davis
(the United States, 38.321 N, 121.442 W, from July 18, 2018
to August 18, 2018). In this example, we use “GOI”,
“TEX”,“BRI”,“MON”,“LOS”,“PON”,“CAL”,“PAL” and “DAV” to iden-
tify each location (Figure 2A).

From the collected variables, it is possible to type any environ-
mental factor or a core of environmental factors (Figure 2B). As a
toy exemplification (BOXES 14 and 15), we used the variable
“T2M” (the daily average temperature at 2 m) to discover ETs and
compute environmental similarity (Figure 2C). In this case, we
used the Gaussian kernel as a sign of environmental distance,
but it can also be used as kinship for predictive breeding (Costa-
Neto et al. 2020a).

It is possible to see in this toy example, that perhaps locations
in different continents might have similar ET trends for air tem-
perature. This process can be done for several variables (single or
joint) to better describe those similarities.

Example 2: modeling genomic-enabled
reaction-norm
To illustrate the use of different ECs in modeling genomic-enabled
reaction-norms, we ran a toy example involving a tropical maize
data set available in EnvRtype (see BOX 2). From Equation (3), we as-
sumed the following baseline model: y ¼ 1lþ Xf bþ gþ gEþ
e; where Xf b is the fixed environmental effects, g is the random
genomic-additive effects and gE is the genomic � environment in-
teraction, modeled by a block diagonal matrix of genomic effects
across environments (MDs model). Thus, we added enviromic
effects following two envirotyping levels: (1) envirotyping mean val-
ues per environment (entire croplife), and (2) envirotyping for each
time interval (development stage) across crop life, assuming fixed
stages in terms of days after emergence. For each envirotyping
level, we considered two types of ECs: the factor of temperature ef-
fect over radiation use efficiency (FRUE) and the difference between
rainfall precipitation and crop evapotranspiration (PETP) (Figure 3).
From Equation (3), these matrices of ECs (EC1, EC2, EC3, EC4, EC5,
and EC6) were arranged in three kernel structures using the
RNMDs model, with the baseline genomic model updated to y ¼
1lþ Xf bþ gþ gEþ ECþ gECþ e, which resulted in 6 models (M1,
M2, M3, M4, M5, and M6) according to each EC matrix used, plus a
baseline genomic model (M0).

BOXES 16 and 17 presents the codes to implement these envir-
otyping levels and model structures can be implemented in
EnvRtype. Table 3 presents a brief summary of the variance

BOX 14. Remote Sensing for Several Places

> env ¼ c(’GOI’,’TEX’,’BRI’,’MON’, ’LOS’,’PON’,’CAL’,’PAL’,’DAV’)
> lat ¼ c(-16.67,19.25,-27.47,43.61,14.170,6.294,3.261,-10.168,38.321)
> lon ¼ c(-49.25,-99.50,153.02,3.87,121.241,2.361,-76.312,-48.331,-121.442)
> start ¼ c(’2020-03-15’,’2019-05-15’,’2018-09-15’,‘2017-06-18’,’2017-05-18’,’2016-07-18’,‘2017-11-18’,’2017-12-18’,’2018-07-18’)
> end ¼ c(’2020-04-15’,’2019-06-15’,’2018-10-15’,‘2017-07-18’,’2017-06-18’,’2016-08-18’,‘2017-12-18’,’2018-01-18’,’2018-08-18’)
> env.data ¼ get_weather(env.id ¼ env, lat ¼ lat,lon ¼ lon, start.day ¼ start, end.day ¼ end)
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components for each random effect. The inclusion of enviromic
sources led to a drastic reduction of variance components for re-
sidual effects (from 0.837 in M0 to 0.262 in M6), and in some
cases, the increase in the variance component for genomic
effects (from 0.435 in M0 to 0.548 in M5). It was possible to ob-
serve that environmental variance is a key component that
explains phenotypic variation. For the same raw environmental
data, each envirotyping level and modeling structure impacts on
modeling the phenotypic variation, such as comparing M1 to M4
and M2 to M5. Most of the variation due to G�E effects are bet-
ter captured when some enviromic information is used in the
model (from 0.329 in M0 to 0.786 in M3), leading us to infer that
pure genomic G�E effects are inefficient in capturing the real
pattern of genotype-environment differences observed in the
phenotypic records. In the present example, the joint use of dif-
ferent EC led to the greatest reduction in error variance (M3 and

M6), but the use of single ECs can be helpful in explaining
genotype-specific difference as the G� E component is better
estimated by considering the reaction-norm for particular envi-
ronmental factors (e.g., FRUE in models M1 and M4). Finally, the
effect of envirotyping level also impacted in the model’s ability
in explaining phenotypic records, increasing the genomic vari-
ance (from 0.425 in M1 to 0.522 in M4, and from 0.387 in M2 to
0.548 in M5).

Example 3: Genomic Prediction using kernels for
different development stages
Finally, we illustrate a case study of genomic prediction (GP) for
two prediction scenarios (CV1 and CV00). In order to demonstrate
the get_kernel function, we assumed a nonlinear kernel for
enviromic effects (gaussian ¼ TRUE). Different from the last ex-
ample, in this study, we created different enviromic kernels
for each development stage (M3). This model was compared to
the benchmark reaction-norm model (M2, Jarquı́n et al. 2014)
and the baseline multi-environment genomic model (M1, the
MDs model Lopez-Cruz et al. 2015). Thus, we ran the RNMM,
which means that for M2 and M3 the genomic�environment
effects are computed as Kronecker product between enviromic
and genomic kinships, and for M1, as a block diagonal genomic
matrix (MDs). In this example, we hope to demonstrate that
for the same environment, it is possible to create different
enviromic relatedness kernels according to the similarities

Figure 2 Workflow for a global-scale envirotyping analysis for air temperature effects in maize growing environments over diverse locations.(A)
Worldwide geographic positions of 9 locations used as toy examples. (B) Panel of ETs for average air temperature during a specific month of a particular
year in the summer season of each location. (C) Environmental similarity matrix using Gaussian kernel method among of the observed locations using
the information of the observable ETs. From (A–C), it is possible to highlight that environmental similarity among locations in different continents can
be visualized to support the creation of a global-scale experimental network and support germplasm exchange between countries.

BOX 15. Discovering ETs and similarity among locations

> ET ¼ env_typing(env.data ¼ env.data,env.id ¼ ‘env’,var.id ¼ ‘T2M’))

> EC ¼W_matrix(env.data ¼ env.data, var.id ¼ ‘T2M’)

> distances ¼ env_kernel(env.data ¼ ET, gaussian ¼ T)[[2]]

> kinship ¼ env_kernel(env.data ¼ EC, gaussian ¼ F, sd.tol ¼
3)[[2]]
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found in different environments at the same development stage
(Figure 4).

We assume four development stages in maize: first vegetative
stage (S1, from V1 to V6); second vegetative stage, in which the
rate of biomass growth is increased in tropical maize (S2, from V6
to VT); anthesis-silking stage (S3, from VT to R1); and the grain
filling stage (S4, from R1 to R3). To create this relatedness, 13 ECs
were computed from daily weather data. The full matrix of ECs
for all development stages considered a combination of 13 ECs by
4 development stages, thus resulting in 52 environmental
descriptors (BOX 18).Figure 3 shows that for the same five envi-
ronments, the crops’ growing conditions, and consequently the
patterns of similarity, differ according to the crop development
stage. So, it’s feasible to hypothesize a relatedness build up for
some development stages may be more informative of the
environmental-phenotype covariance among field trials than
others, and perhaps more so than all environmental variables at
all development stages. The biological explanation behind this
hypothesis relies on ecophysiology, in which the plants are more
or less sensitive to environmental variations at specific develop-
ment stages. If the growing conditions drastically differ at some
key development stage, and do not differ in others that do not
have a strong impact on the final phenotypic expression, it is fea-
sible to assume that the environmental variance for those “non

BOX 16. Envirotyping levels and model structures for modeling reaction-norm

> data(“maizeYield”) # phenotypic data
> data(“maizeG”) # GRM
> data(“maizeWTH”) # weather data
> y ¼ “value” # name of the vector of phenotypes
> gid ¼ “gid” # name of the vector of genotypes
> env ¼ “env” # name of the vector of environments

### 1- Environmental Covariables (ECs)
> stages ¼ c(’VE’,’V1_V6’,’V6_VT’,’VT_R1’,’R1_R3’,’R3_R6’,”H”)
> interval ¼ c(0,7,30,65,70,84,105) # in days after emergence
> EC1¼W_matrix(env.data ¼maizeWTH, var.id ¼ ‘FRUE’)
> EC2¼W_matrix(env.data ¼maizeWTH, var.id ¼ ‘PETP’)
> EC3¼W_matrix(env.data ¼maizeWTH, var.id ¼ c(’FRUE’,’PETP’))
> EC4¼W_matrix(env.data ¼maizeWTH, var.id ¼ ‘FRUE’,
> by.interval ¼ T, time.window ¼ interval, names.window ¼ stages)
>EC5¼W_matrix(env.data ¼maizeWTH, var.id ¼ ‘PETP’,
> by.interval ¼ T, time.window ¼ interval, names.window ¼ stages)

### 2- Kernels
>K1¼ list(FRUE ¼ env_kernel(env.data ¼ EC1)[[2]])
>K2¼ list(PETP ¼ env_kernel(env.data ¼ EC2)[[2]])
>K3¼ list(FRUE_PETP ¼ env_kernel(env.data ¼ EC3)[[2]])
>K4¼ list(FRUE ¼ env_kernel(env.data ¼ EC4)[[2]])
>K5¼ list(PETP ¼ env_kernel(env.data ¼ EC5)[[2]])
>K6¼ list(FRUE_PETP ¼ env_kernel(env.data ¼ EC6)[[2]])

### 3- Obtain Kernel Models
>M0¼ get_kernel(K_G ¼ KG, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “MDs”)
>M1¼ get_kernel(K_G ¼ KG, K_E ¼ K1, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “RNMDs”)
>M2¼ get_kernel(K_G ¼ KG, K_E ¼ K2, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “RNMDs”)
>M3¼ get_kernel(K_G ¼ KG, K_E ¼ K3, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “RNMDs”)
>M4¼ get_kernel(K_G ¼ KG, K_E ¼ K4, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “RNMDs”)
>M5¼ get_kernel(K_G ¼ KG, K_E ¼ K5, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “RNMDs”)
>M6¼ get_kernel(K_G ¼ KG, K_E ¼ K6, y¼ y, gid ¼ gid, env ¼ env, data ¼maizeYield, model ¼ “RNMDs”)

BOX 17. Running kernel_model to compute variance
components

> fixed ¼model.matrix(�0þenv, maizeWTH)
> iter ¼ 1000
> burn ¼ 500
> seed ¼ 78172
>model ¼ paste0(’M’,0:6); Models ¼ list(M0, M1, M2, M3, M4,
M5, M6);
>Vcomp <- c()
>for(MODEL in 1: length(Models))f

set.seed(seed)
fit <- kernel_model(data ¼ maizeYield, y¼ y, env ¼ env,

gid ¼ gid,
random ¼Models[[MODEL]], fixed ¼ fixed,
iterations ¼ iter, burnin ¼ burn, thining ¼ thin)

Vcomp <- rbind(Vcomp, data.frame(fit$VarComp,
Model¼model[MODEL]))
g
print(Vcomp)
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polymorphic stages” may lead to an increased noise in the enviro-
mic relatedness, reducing then the accuracy of GP using reaction-
norms. In order to test this hypothesis, we ran the cross-
validation (BOX 19) for two prediction scenarios (CV1 and CV00).
Below we present an example of code for running GP. More detail
about the codes is given in the Supplementary Codes
section.Table 4 presents a summary of the variance components
for the random effects of each model. An increased trend in the
genomic variance was observed as the inclusion of some enviro-
mic data (from 0.426 in M1 to 0.509 in M2 and 0.555 in M3) and re-
duction of residual error variance (from 0.848 in M1 to 0.269 in
M2 and 0.262 in M3). Despite that, for this germplasm evaluated
at this experimental network, the effect of G�E decreased when
estimated using an enviromic kinship (from 0.353 in M1 to 0.269
in M2), but were better understood when dissected for each de-
velopment stage (M3). The variance components for environmen-
tal relatedness plus genomic�stage interaction was higher for
reproductive-related stages (S3 and S4), suggesting that these
stages may be more important in explaining environmental-
phenotype covariances across field trials than using all environ-
mental information to build up enviromic kinships.

Finally, in Table 5, we present the accuracy of the statistical
models for each prediction scenario. These results were obtained
by the average Pearson’s Moment Correlation (r) for each one of
the 30 random samples of training sets. The use of enviromic

information was beneficial for both prediction scenarios. The
ability to predict novel genotypes at known growing conditions
(CV1), using only the phenotypic records of 20% of the germplasm
led to an increase from r¼ 0.130 (baseline genomic model, M1) to
r¼ 0.762 (benchmark reaction-norm model, M2), in which the lat-
ter was not different for the reaction-norm accounting for stage-
specific enviromic kernels (r¼ 0.760 for M3). However, great dif-
ferences between M2 and M3 were observed for predicting novel
genotypes at novel growing conditions (CV00). In this scenario,
based on the phenotypic records from 20% of the germplasm
evaluated in 3 of the 5 environments (so the remaining 2 were
used as testing-environments), the M3 model outperformed all
models (r¼ 0.504) in comparison to M2 (r¼ 0.485) and M1
(r¼ 0.102). This last model has the worst performance due to the
lack of phenotypic records.

Discussion
The collection, processing, and use of envirotyping data in
genomic-based studies do not depend only on the quality of the
data sources. Here, we demonstrate that the increased ecophysi-
ological knowledge in envirotyping increases statistical models’
accuracy in genomic prediction and provides a better explanation
of the sources of variation, while increasing those efficiency mod-
els. The correct use of envirotyping data depends on the quality

Figure 3 Linear enviromic kernels based on the combination of two ECs and two envirotyping levels (by environment and by development stage at each
environment) for 5 locations (SE, PM, NM, IP, and SO) across an experimental network of tropical maize. (A) Enviromic kernel considering only the FRUE
variable (impact of temperature on radiation use efficiency) at environmental level (EC1 matrix). (B) Enviromic kernel considering only the PETP
variable (deficit of evapotranspiration, mm.day�1) for the entire crop life (EC2 matrix). (C) Enviromic kernel considering both FRUE and PETP for the
entire live crop (envirotyping per environment, EC3 matrix). (D) Enviromic kernel considering only FRUE for each development stage at each
environment (EC4 matrix). (E) Enviromic kernel considering only PETP for each development stage at each environment (EC5 matrix) and the
combination of FRUE and PETP for each development stage (F, EC6 matrix).
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of data processing and is specific for each crop species (or living
organism). The same “environment” (considering a time interval
for a target location) may result in different ETs for each organ-
ism, depending on their sensitivity to constant and transitory en-
vironmental variations. Thus, in this study, we presented some
of those concepts and created functions (and gathered others
from different R packages) to facilitate the use of envirotyping
data in quantitative genomics.

We presented a user-friendly software, but also a cost-
effective pipeline aimed at democratizing the use of envirotyping
in several fields of plant research. EnvRtype is an open-source
package and all advances made up until now are freely available,
a situation that can ultimately boost the predictive breeding for
low-budget research programs to invest in environmental sen-
sors or perform experiments across a geographically heterogene-
ity region. Thus, as the remote sensing tools and databases

Table 3 Summary of variance components [and confidence intervals] for 7 genomic-based reaction-norm models with GxE (RNMDs),
considering three envirotyping levels (no envirotyping, envirotyping by environment and envirotyping by development stage at
environment) and three combinations of two environmental covariates (FRUE, PETP and FRUEþPETP). Models were fitted using all
phenotypic records available (n¼ 150 genotypes at 5 environments ¼ 750 records). Genomic kinships were based on additive effects.
Enviromic kinships were built using a linear-covariance matrix (gaussian ¼ FALSE). FRUE and PETP denote the covariates “effect of
temperature on radiation use efficiency” (from 0 to 1) and the “difference between daily precipitation and daily evapotranspiration”
(mm day�1), respectively.

Envirotyping level Model Random effect

Environment (E) Genotype (G) GxE Residual

No envirotyping M0 — 0.435
[0.397; 0.480]

0.329
[0.299; 0.362]

0.837
[0.763; 0.924]

Envirotyping by
environment

M1
(EC1¼ FRUE)

4.117
[3.789; 4.493]

0.425
[0.387; 0.468]

0.764
[0.696; 0.843]

0.849
[0.773; 0.936]

M2
(EC 2¼ PETP)

3.440
[3.165; 3.754]

0.384
[0.350; 0.423]

0.786
[0.716; 0.867]

0.726
[0.662; 0.801]

M3
(EC3 ¼FRUEþPETP)

4.279
[3.938; 4.670]

0.497
[0.453; 0.548]

0.664
[0.605; 0.733]

0.456
[0.416; 0.503]

Envirotyping by
development stage at
each environment

M4
(EC4¼ FRUE)

8.802
[8.099; 9.605]

0.522
[0.476; 0.576]

0.484
[0.441; 0.534]

0.266
[0.243; 0.294]

M5
(EC5¼ PETP)

3.514
[3.233; 3.835]

0.548
[0.500; 0.604]

0.425
[0.388; 0.469]

0.267
[0.243; 0.295]

M6
(EC6¼ FRUEþPETP)

1.595
[1.468; 1.740]

0.514
[0.468; 0.566]

0.464
[0.423; 0.512]

0.262
[0.238; 0.289]

Figure 4 Nonlinear enviromic kernels (Gaussian) based on 13 environmental covariates over five tropical maize environments (locations SE, PM, NM, IP,
and SO). (A) Enviromic kernel using a combination of 13 covariates at 4 development stages in maize (total of 52 ECs). (B) Enviromic kernel using
variables 13 covariates at the initial vegetative stage (from V1 to V6). (C) Enviromic kernel using variables 13 covariates at the leaf growing stage
(from V6 to VT). (D) Enviromic kernel using variables 13 covariates at the anthesis-silking interval (from VT to R1). (E)Enviromic kernel using variables
13 covariates at the grain filling interval (from R1 to R3).
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evolve, the power of EnvRtype to perform a quick and accurate
envirotyping pipeline also evolves. In addition, other types of
data sources can easily be integrated in the modeling
approaches. For example, the use of high-throughput phenotypes
can easy be integrated in predictive models by using get_kernel to

build phenomics-realized relationship kernels (Crain et al. 2018;
Rincent et al. 2018; Cuevas et al. 2019). Other kernel methods,
such as Deep Kernel (Cuevas et al. 2019; Costa-Neto et al. 2020a),
can be used to create kernels to be incorporated in Bayesian ker-
nel models using kernel_model function. Thus, despite the

BOX 18. Running kernel_model to compute variance components

## Organizing Environmental Covariables (ECs) in W matrix
> stages¼ c(’VE’,’V1_V6’,’V6_VT’,’VT_R1’,’R1_R3’,’R3_R6’,”H”)
## intervals (days)
> interval ¼ c(0,7,30,65,70,84,105);
## variables used
>id.vars ¼ names(maizeWTH)[c(10:15,23,25:30)]
## W matrix
>W.matrix ¼W_matrix(env.data ¼maizeWTH, env.id ¼ ‘env’,
var.id ¼ id.vars, by.interval ¼ T, time.window ¼ interval,
names.window ¼ stages, center ¼ F, scale ¼ F)
## Kernel for the involving all development stages
>K_F <- env_kernel(env.data ¼W.matrix, gaussian ¼ T)[[2]]
## Kernels for each development stage
>K_S <- env_kernel(env.data ¼W.matrix, gaussian ¼ T, stages ¼ stages[2:5])[[2]]
# K_G (genotype) and K_E (environment) must be a list of kernels
>K_G ¼ list(G ¼maizeG);
> K_F <- list(E¼K_F);
## Assembly Genomic and Enviromic Kernel Models
>M1¼ get_kernel(K_G¼K_G, data ¼maizeYield, env ¼ env,
gid ¼ gid, y¼ y, model ¼ “MDs”) #baseline genomic model
>M2¼ get_kernel(K_G¼K_G, K_E¼K_F, data ¼maizeYield, env ¼ env, gid ¼ gid,
y¼ y, model ¼ “RNMM”,dimension_KE ¼ ‘q’) # reaction-norm 1
>M3¼ get_kernel(K_G¼K_G, K_E¼K_S, data ¼maizeYield, env ¼ env, gid ¼ gid,
y¼ y, model ¼ “RNMM”,dimension_KE ¼ ‘q’) # reaction-norm 2

BOX 19. Genomic Prediction using kernel_model

>source(’https://raw.githubusercontent.com/gcostaneto/SelectivePhenotyping/master/cvrandom.R‘)
>rep ¼ 10; seed ¼ 1010; f¼ 0.20; iter ¼ 5E3; burn ¼ 1E3; thin ¼ 10;
> Y ¼maizeYield
>TS ¼ Sampling.CV1(gids ¼ Y$gid, f¼ f, seed ¼ seed, rep ¼ rep, gidlevel ¼ F)
>fixed ¼model.matrix(�0þenv, Y)
>require(foreach);
>require(EnvRtype)
>results <-foreach(REP ¼ 1: rep, .combine ¼ “rbind”)%:%
foreach(MODEL ¼ 1: length(model), .combine ¼ “rbind”)%dopar% f
yNA <- Y
tr <- TS[[REP]]
yNA$value[-tr] <- NA
fit <- kernel_model(data ¼ yNA, y¼ y, env ¼ env, gid ¼ gid,
random ¼Models[[MODEL]], fixed ¼ fixed,
iterations ¼ iter, burnin ¼ burn, thining ¼ thin)
df<-data.frame(Model ¼model[MODEL], rep¼REP,
rTr¼cor(Y$value[tr], fit$yHat[tr], use ¼ ’complete.obs’),
rTs¼cor(Y$value[-tr], fit$yHat[-tr], use ¼ ‘complete.obs’))
return(df)
g
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provided end-to-end pipeline to interplay envirotyping in quanti-
tative genomics, the users can adapt their codes and integrate
different sources of information using the EnvRtype functions,
such other omics data (Westhues et al. 2017).

We also showed that global envirotyping networks could be
built using remote sensing tools and functions provided in
EnvRtype. The combination of remote sensing þ typing strategies
is a powerful tool for turbocharging global partnerships of field
testing and germplasm exchange. It also contributes to increas-
ing the prediction of genotypes across a wide range of growing
conditions, i.e., the so-called adaptation landscapes (Messina
et al. 2018; Bustos-Korts et al. 2019). This can involve past trends
and virtual scenarios (Gillberg et al. 2019; de los Campos et al.

2020). Associated with predictive GIS tools, the recommendation
of cultivars could also be leveraged for specific regions (Costa-
Neto et al. 2020b). It could also increase a better definition of field
trial positioning (Rincent et al. 2017; Resende et al. 2020) and how
breeding strategies have impacted crop adaptation in the past
(Heinemann et al. 2015). Evidence of this suggestion is the in-
creased ability of predicting novel genotypes at novel growing
conditions achieved by obtaining a deeper understanding of how
environments are more or less related at each development stage
of crop life.

Despite the benefits and potential uses of EnvRtype, we can en-
visage the following limitations: (1) the resolution of satellite-
based weather system (Nasa Power data base), corresponding to
0.5��0.5� (�55,5 km � 55,5 km) of longitude by latitude, may com-
promise the discrimination of environments in close geographical
proximity; (2) the quality of point-estimates of environmental
data using extract_GIS function from public GIS databases
depends on the file resolution available; (3) the need for a good
registration of geographic coordinates of the target environment,
but also on knowing the “window” between harvest and sowing
(for agricultural crops); and (4) management factors must be in-
cluded manually in W_matrix, which we strongly suggest in order
to avoid mistakes.

Data sets and codes availability
EnvRtype has a toy data set for running examples, mostly involving
genomic prediction (see Module 3). This data set was included in
Souza et al. (2017) and Cuevas et al. (2019) and came from the Helix
Seed Company (HEL). However, to facilitate the demonstration of

Table 4 Summary of the variance components for three modeling structures (M1, Baseline Genomic Model; M2, Benchmark Reaction-
Norm model; M3, Reaction-Norm for each development stage) considering different sources of phenotypic variation due to genomic and
enviromic effects. Confidence intervals (a¼ 5%) for each variance component is given between square brackets. Horizontal dashed lines
separate the genomics, environmental and genomic � environment effects. Genomic kinships were based on additive effects. Enviromic
kinships were built using a nonlinear method (gaussian ¼ TRUE).

Random effect Model

M1 M2 M3

Genomic (G) 0.426
[0.389; 0.470]

0.509
[0.464; 0.562]

0.555
[0.506; 0.612]

Environment (E) — 2.686
[2.470; 2.505]

—

Stage 1 (S1: V1 to V6) — — 3.507
[3.227; 3.827]

Stage 2 (S2: V6 to VT) — — 2.711
[2.494; 2.958]

Stage 3 (S3: VT to R1) — — 3.940
[3.626; 4.300]

Stage 4 (S4: R1 to R3) — — 4.018
[3.697; 4.385]

GxEa 0.353
[0.322; 0.390]

0.269
[0.246; 0.297]

—

GxS1 — — 0.308
[0.269; 0.326]

GxS2 — — 0.295
[0.278; 0.337]

GxS3 — — 0.306
[0.279; 0.336]

GxS4 — — 0.304
[0.280; 0.339]

Residual 0.848
[0.773; 0.936]

0.269
[0.245; 0.296]

0.262
[0.238; 0.289]

a For M1 model, GxE is based on the Kronecker product between an identity environment matrix and the genomic kinship matrix. For M2, this Kronecker
product is based on the enviromic kinship matrix instead of an identity matrix, in which this enviromic kinship were built up using envirotyping data to mimic an
environmental relatedness among field trials.

Table 5 Accuracy (6 standard deviation) of statistical models for
phenotype prediction using genomic (M1) and genomic plus
enviromic sources of variation (M2 and M3) in predicting novel
genotypes at known environments (CV1), using 20% of the
genotypes as a training set, and novel genotypes and novel
environments (CV00), used as a training set 20% of the genotypes
phenotyped at 3 from the 5 environments

Model Prediction scenario

CV1 CV00

M1 (Baseline Genomic �
Environment)

0.130 6 0.047 0.102 6 0.045

M2 (Benchmark
Reaction-Norm)

0.762 6 0.024 0.485 6 0.211

M3 (Reaction-Norm for
Each Development Stage)

0.760 6 0.028 0.504 6 0.194

16 | G3, 2021, Vol. 11, No. 4



functions, we provided a subset of 150 hybrids per environment
(BOX 2). Grain yield data are mean-centered and scaled (MaizeYield
object). The genotyping relationship for additive effects is based on
52,811 SNPs available to make the predictions (maizeG object). The
phenotypic and genomic data are credited to Helix Seed Ltda.
Company. Finally, weather data are presented for each of the five
environments (maizeWTH object). All codes are available in the
BOX codes (from 1 to 19), and as Supplementary Codes
(Supplementary Codes.R file). Additional tutorials can be found at Git
Hub (https://github.com/allogamous/EnvRtype).

Supplementary material is available at G3 online.
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APPENDIX

Appendix 1. What is “environment” and
how to remotely collect environmental data
We use the term “environment” to refer to delimited unit that
combines location, planting date, and management, which gath-
ers the fluctuation for a core of environmental factors. Thus, the
first step of any envirotyping study is to collect reliable environ-
mental data. However, for most breeding programs worldwide,
this step is limited by the availability of sensing equipment (e.g.,
weather stations) installed in the field or nearby site. It is

important to highlight that some equipment can be expensive or
difficult to access for some research groups in certain regions,
more specifically developing countries. For this reason, below, we
present two justifications for incorporating a remote environ-
mental sensing routine (insilico) into this package. Then, we pre-
sent recommendations to enrich the envirotyping platforms to
collect and organize environmental data that will be useful to
breeders’ decision making.

First, in order to facilitate the step of collecting environmental
data, we decided to include a routine for collecting raw daily
weather data through the NASA POWER database (https://power.
larc.nasa.gov/), which can access daily information anywhere on
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earth. This database was integrated using the tools provided by
the nasapower R package (Sparks, 2018). In addition, we inte-
grated the raster R package to support downloading climatic data
(from the WorldClim database) and SRTM (Shuttle Radar
Topography Mission, which provides elevation information). The
information from both databases is freely available and can be
downloaded using geographical coordinates (latitude and longi-
tude, given in decimal degrees, both in WGS84 format) for a spe-
cific window of time (e.g., from sowing to harvest).

Second, the collected environmental data processing requires
some expertise in fields such as agrometeorology, soil physics,
and ecophysiology. For this to be useful in explaining crop adap-
tation, the environmental data must be representative of some
envirotype-to-phenotype dynamic linked to certain ecophysiolog-
ical knowledge (e.g., air temperature, relative air humidity, and
solar radiation driving the crops’ evapotranspiration and, conse-
quently, the soil-water balance). A direct example of the impor-
tance of processing raw envirotyping data into ecophysiological
enriched information is given for the “daily air temperature”vari-
able. This variable can be processed in heat units, heat stress
effects on radiation use efficiency, and thermal range, which is
species-specific. For some traits such as grain yield in maize, the
impact of temperature-derived factors differs from what is ob-
served in traits, such as plant height or flowering time. This dy-
namic also varies across crop developmental stages, which can
be more or less prone to become a stress factor at certain stages
(e.g., in maize, heat at the flowering time has a more significant
impact on grain yield). Below is a detailed description of some of
those subroutines.

Appendix 2. Concepts underlying radiation
effects in plants
The radiation balance in crop systems is regulated by the differ-
ence between the amount of incident radiation, absorbed energy
by the plants and soil surface, and the converted thermal energy.
From Nasa Power, the radiation outputs are given in terms of Top-
of-atmosphere Insolation (ALLSKY_TOA_SW_DWN), Insolation
Incident on a Horizontal Surface (Shortwave, ALLSKY_SFC_SW_
DWN), and Downward Thermal Infrared Radiative Flux (Longwave,
ALLSKY_SFC_LW_DW). Thus, the net solar radiation available for
the physiological process of growth (biomass production) is given
by the difference between longwave and shortwave,
i.e.,SRAD ¼ ALLSKYSFCLWDW � ALLSKYSFCSWDWN, in MJ m�2 d�1. It
is possible to download more solar-related parameters directly
from Nasa Power website, (https://power.larc.nasa.gov/data-ac
cess-viewer/).

In most growth modeling approaches, the effect of radiation use
efficiency (RUE) is the main target to describe the relationship be-
tween the available energy in the environment and how the plants
translate it into biomass (see subsection about thermal parame-
ters). In this context, this environmental variation source is impor-
tant to understand the differences in potential yield observed in
genotypes evaluated across diverse environments. Radiation is
also vital as a source for regulating the available energy for other
biophysical processes, such as evaporation, transpiration, and
temperature (see Processing Atmospheric Parameters).

Appendix 3. Concepts underlying the effect
of temperature in plants
Thermal variables are essential for regulating the rates of critical
biochemical processes within an organism. At the cell level, the

effect of temperature may regulate the rate of enzymatic reac-
tions, in which critical values may lead to denaturation of those
enzymes and the death of the cell. At the plant level,
temperature-related variables regulate the balance between pho-
tosynthesis (gross and net) and respiration in the canopy, impact-
ing RUE. It is also related to the transpiration rates and,
consequently, to the absorption of nutrients from water flux in
the roots. At the reproductive stages, temperature affects the effi-
ciency of pollination, which is directly related to the crop’s final
yield, especially for species in which grain yield is the main target
trait. Phenology development rates are also strongly influenced
by temperature (e.g., growing degree-days, GDD), in which the
balance between biomass accumulation and acceleration of the
crop cycle may compromise the source: sink relations and then
the final yield.

Table 2 summarizes the cardinal limits of temperature for
several species. Those cardinal limits are used to compute
growing degree-days (GDD) and the effect of temperature on
radiation use efficiency (FRUE). The first is useful to predict
phenological development, while the second is an ecophysiol-
ogy parameter used to quantify the impact of temperature on
crop growth and biomass accumulation in crop models (Soltani
and Sinclar, 2012). Thus, both can be useful to relate how tem-
perature variations shape some species’ adaptation in the tar-
get environment. GDD is also important for modeling plant-
pathogen interactions because some pests and diseases have
temperature-regulated growth.

In this context, the dew point (T2MDEW) is another agrometeoro-
logical factor that is greatly important for crop health. This factor
determines the establishment of diseases (especially fungus) under
the leaf to being related to the evaporation process in the stomata.
Finally, the daily temperature range (T2M_RANGE) impacts pro-
cesses such as floral abortion in crops where the main traits are re-
lated to grain production. For more details about the impact of
temperature on diverse crops, please check Luo (2011).

Appendix 4. Concepts underlying the effect
of atmospheric demands in plants
The dynamics of precipitation (rainfall) and water demand (evap-
orationþplant transpiration) are regulated as a consequence of
the balance of radiation and thermal-related processes in the
atmosphere (Soltani and Sinclair, 2012; Allen et al.1998). The soil-
plant-atmosphere continuum involves water dynamics from
the soil, passing through plant tissues, and going back to the
atmosphere through the stomata. This process’s rate is deeply
related to the biomass production of plants and the absorption
of nutrients by the mass flux in roots. Because of that, water
demands are essential for measuring the quality of some growing
environments.

Here, we used the Priestley-Taylor equation to compute
the reference crop evapotranspiration. With this equation, the
empirical constant (alpha ¼ a) may range from 1 (at humidity
conditions) to 2 (at arid conditions). First, we compute the vapor
pressure, determined by ea ¼ RH� es (Dingman, 2002), where es is
the saturation vapor pressure defined as (Buck, 1981):

es ¼ 1:007þ 3:46� 10�5 � Pð Þ
� �

� 6:1121� exp
17:502� Tavg
240:97þ Tavg

� �

where Tavg is the average air temperature, and P is the air pres-
sure (kPa) computed from elevation as P ¼ 101:3�
293 � 0:0065ð �ALT=293Þ5:26. Thus, from the daily vapor pressure
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(ea), we compute the slope of the saturation vapor pressure curve
(D), by (Dingman, 2002):

D ¼ 4098� es

Tavgþ 237:2ð Þ2

Finally, the reference evapotranspiration (ET0) is computed as:

ET0 ¼ a
D� ðRn � GÞ
kv � ðDþ !Þ

where kv is the volumetric latent heat of vaporization (2453 MJ
m�3) and ! is the psychometric constant (kPa C�1), that can be
computed from air pressure as ! ¼ 0:665� 10�3P (Allen et al.
1998). For crops, we encourage the use of crop coefficients (Kc, di-
mensionless) to translate ET0 in crop-specific evapotranspiration.
This Kc is computed from empirical phenotypic records (crop
height, the albedo of the soil-crop surface, canopy resistance)
combined with in-field sensors (evaporation from the soil) or us-
ing Kc estimates for each crop species. Allen et al. (1998) provide a
wide number of general Kc values to be used in this sense. For a
complete understanding of soil-water dynamics, we suggest us-
ing pedotransfer functions to derive some hydraulic properties of
the soil, such as infiltration rate and water retention parameters.
It can be done by soil samples or from remotely collected data
from SoilGrids using extract_GIS().

Appendix 5. Hierarchical Bayesian modeling
used in kernel_model
In this appendix, we present the hierarchical Bayesian modeling
used in kernel_model function of EnvRtype. From the package for
Bayesian Genotype plus Genotype � Environment (BGGE), which
contains a function called BGGE(), we collected the main code
and adapted it for our purposes. This function aims to solve
mixed linear models through Hierarchical Bayesian Modeling—
more detail about that can be found at Granato et al. (2018).
Thus, we integrated the packages EnvRtype with BGGE into a sin-
gle platform. If the users want to run genome-enabled models
without enviromic data, we strongly suggest the use of BGGE()
instead of kernel_models() because the BGGE package permits
the construction of other modeling structures beyond the MM

and MDs presented in this study. Below, we briefly describe the
main distributions and priors used by this package.

The algorithm starts with a reparameterization of each
variance-covariance matrix (K) provided by using the get_kernel()
function. Each K is reparametrized using an eigen-decomposition
procedure as suggested by De Los Campos et al. (2010), in which
K ¼ USU

0
, where S is a diagonal matrix with n nonzero eigenval-

ues and U is an orthogonal matrix with eigenvectors. Then, an or-
thogonal transformation is applied to increase the computational
efficiency of the further steps of the Bayesian approach. This
transformations consists of a phenotypic parametrization, repre-
sented as d ¼ U

0
y, and any kernel-based random effect (b ¼ U

0
u)

and error variation (e ¼ U
0
e) is now represented into a reparame-

trized normal distribution as b � N 0;U
0
KUr2

uÞ ¼ N 0;Sr2
uÞ

��
and

e � N 0;U
0
Ur2

e Þ ¼ N 0; Ir2
e

� 	�
(Cuevas et al. 2017, 2019). Finally, the

distribution of the transformed data is given by:

f d j b; r2
e Þ ¼

Yn

i¼1

N di j bi;r
2
e

� � 

where the acronym i now denotes each random effect (variance-
covariance) considered (from get_kernel). As this Bayesian linear
model assumes p u j r2

u

� 	
¼ N u j 0;Kr2

uÞ
�

, the conditional of any
biis given as p bi j r2

u

� 	
¼ N bi j 0; r2

usi

� 	
, where siare the eigenvalues.

Thus, we assume a conjugate prior distribution of r2
u and r2

e ,
given by inverse chi-squared with, p r2

u

� 	
� v�2 �u; Scuð Þ and

p r2
e

� 	
� v�2 �e; Sceð Þ respectively, in which �u and �e denote the

degree of freedom, and Scu and Sce the scale factors for u and e.
Finally, The Markov Chain Monte Carlo (MCMC) procedure is
then used to generate the conditional distributions through a
Gibbs sampler using the joint posterior distribution (J ¼ b; r2

u; r2
e ),

given the parameters (P ¼ d; �u; �e; Scu; Sce and S) as:

p J j Pð Þ /
Yn

i¼1

N di j bi;r
2
e

� �
N bi j 0;r2

usi

� �( )
� v�2 r2

u j mu; muScu

� �

� v�2 r2
e j me; meSce

� �
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