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Terminal DNA structure and ATP influence binding
parameters of the DNA-dependent protein kinase
at an early step prior to DNA synapsis
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ABSTRACT

The DNA-dependent protein kinase catalytic subunit
(DNA-PKcs) regulates the non-homologous end-
joining pathway of DNA double-strand break repair
in mammalian cells. The ability of DNA-PKcs to
sense and respond to different terminal DNA struc-
tures is postulated to be important for its regulatory
function. It is unclear whether discrimination occurs
at the time of formation of the initial protein-DNA
complex or later, at the time of formation of a paired,
or synaptic complex between opposing DNA ends.
To gain further insight into the mechanism of reg-
ulation, we characterized the binding of DNA-PKcs
to immobilized DNA fragments that cannot undergo
synapsis. Results showed that DNA-PKcs strongly
discriminates between different terminal structures
at the time of initial complex formation. Although
Ku protein stabilizes DNA-PKcs binding overall, it
is not required for discrimination between terminal
structures. Base mispairing, temperature and the
presence of an interstrand linkage influence the
stability of the initial complex in a manner that sug-
gests a requirement for DNA unwinding, reminiscent
of the ‘open complex’ model of RNA polymerase—
promoter DNA interaction. ATP and a nonhydrolyz-
able ATP analog also influence the stability of
the DNA-PKcseDNA complex, apparently by an
allosteric mechanism that does not require DNA-
PKcs autophosphorylation.

INTRODUCTION

DNA double-strand breaks (DSBs) interrupt chromosome
integrity and are potentially lethal to dividing mammalian

cells. The chemical structure of the DNA ends varies widely.
Tonizing radiation and reactive oxygen species from other
sources, which are the predominant natural double-strand
break-inducing agents, produce chemically heterogeneous
DNA ends that require removal or addition of nucleotides
before rejoining (1). The RAG recombination nuclease,
another important natural source of DSBs, cuts DNA to
produce blunt ends at one side of the incision and distinct-
ive hairpin ends at the other (2,3). Cancer chemotherapy
agents, including platinum compounds and topoisomerase II
inhibitors, produce DSBs associated with distinctive repair-
resistant chemical or protein adducts (4,5).

Despite this structural diversity, one repair pathway, non-
homologous end joining (NHEJ), provides the default mecha-
nism for DSB repair in mammalian cells. Moreover, just one
polypeptide in this pathway, the DNA-dependent protein
kinase catalytic subunit (DNA-PKcs), functions as a key regu-
lator of the repair process [reviewed in (6-9)]. Through its
DNA binding and autophosphorylation activities, DNA-
PKcs determines whether DSBs will be repaired by NHEJ
or shunted to an alternative homologous recombination repair
pathway (10-12). DNA-PKcs also controls access to the DNA
ends by processing enzymes and, in some cases, regulates their
activity through protein—protein interactions and phosphory-
lation (11-17).

DNA-PKcs cooperates with another repair protein, Ku, to
establish a functional complex at DNA ends (18,19). Within
this complex, DNA-PKcs is in direct physical contact with
terminal nucleotides of the DNA (20-22). DNA-PKcs has a
serine-threonine kinase activity that is activated by contact
with the DNA ends and that is essential for DSB repair
(23). DNA-PKcs catalyzes its own phosphorylation at multiple
sites (24,25). This autophosphorylation modulates accessibil-
ity of the DNA ends (11,26-28). DNA-PKcs also phosphory-
lates several other repair proteins, including Artemis, DNA
ligase IV and XRCC4 (15-17,29-31), providing another
level of regulatory complexity. An intrinsic ability to discrimi-
nate between different terminal DNA structures and respond
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through selective phosphorylation of itself and other proteins
is postulated to be important for the ability of DNA-PKcs to
regulate NHEJ.

In vitro studies using isolated enzyme and defined DNA
fragments have provided some insight into the mechanism
by which DNA-PK discriminates between terminal structures.
Chu and co-workers (32,33) showed that DNA fragments with
single-stranded tails activate DNA-PK to particularly high
levels, whereas a DNA with a closed hairpin end is a poor
activator under the same conditions. Based on these and
other data, they proposed an elegant model where the
single-stranded tail of one DNA fits into a binding pocket
presented by a DNA-PK complex bound to an opposing
DNA, signaling the presence of a synaptic complex (33).
Although appealing, this model appears to be insufficient to
explain other observations in the literature, including the
ability of hairpin ends to promote autophosphorylation and
inactivation of DNA-PK under other experimental conditions
(34). An alternative and somewhat more general model is that
activation is an autonomous property of DNA-PK bound to a
solitary DNA end. In this model, protein-DNA interactions
that are essential for activation take place internally within a
single DNA-PKcs-containing complex and do not require
one DNA to interact in trans with DNA-PK bound to a
second DNA.

To gain insight into the ability of DNA-PKcs to sense and
respond to single-stranded DNA ends within a solitary com-
plex (i.e. without interactions in trans), we characterized the
assembly of DNA-PKcseDNA complexes under conditions
that preclude synapsis. Our goal is to establish a framework
for understanding individual steps leading to enzyme activa-
tion, and it was thus important to measure DNA binding and
enzyme activity separately from one another. To investigate
DNA binding, we immobilized defined DNA fragments at low
density on a solid support, then exposed them to Ku and DNA-
PKcs to allow complex formation. We measured protein—-DNA
association by surface plasmon resonance (SPR). Separately,
we measured kinase activity in a multiwell plate-based assay
that mimicked SPR conditions. Previous studies have vali-
dated the use of SPR to study DNA-PKcs binding to DNA
(35). Our present work extends this approach to investigate
the crucial question of whether DNA-PK is able to sense and
discriminate between different terminal structures under
conditions that allow formation of an initial complex but
preclude progression to a synaptic complex.

Results show that DNA-PKcs strongly discriminates
between different terminal structures under these conditions.
Binding and activity assays both showed a strong preference
for DNA with single-stranded tails over blunt or covalently
linked (hairpin) termini. Interestingly, behavior of the enzyme
with blunt-end substrate was strongly temperature-dependent,
being more like the unpaired substrate at 37°C and more like
the hairpin substrate at 25°C. Together, results suggest that
DNA-PK promotes transient strand separation to form a stable,
active DNA-PK complex. The results are consistent with an
‘open complex’ model of kinase activation, analogous to that
for RNA polymerase—promoter interaction (36). The results
also showed that the effect of ATP on DNA-PK is more com-
plex than previously appreciated. ATP affects binding by an
allosteric mechanism, in addition to previously described
effect of autophosphorylation.
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MATERIALS AND METHODS
Purification of DNA-PKcs

DNA-PKcs was purified by a modification of the procedure
described by Ding et al. (26). A 1 ml Hi-Trap NHS-activated
HP column (GE Healthcare, Uppsala, Sweden) was coupled
with 20 mg of a Ku80 C-terminal peptide, KGSGEEGGDVD-
DLLDMI, where the initial three residues provide an amine
coupling group as well as a spacer between the column
resin and the start of the Ku sequence. HelLa cell nuclear
protein extract (37) (25 ml) was mixed with 25 ml of Buffer
A [25 mM HEPES-KOH, pH 7.5, 0.1 mM EDTA, 10% glyc-
erol, 1 mM DTT, 1 mM phenylmethylsulfonyl fluoride,
protease inhibitors (leupeptin, aprotinin, pepstatin, SBTI at
1 pg/ml) containing 0.2 M KClI] and the mixture was incuba-
ted with the Hi-Trap material with tumbling overnight at
4°C. The material was packed in a 1 ml column, which
was washed and eluted with a 6 ml linear gradient of 0.15—
1 M KClI in buffer A. Fractions (200 pl) were analyzed by
SDS-PAGE. DNA-PKcs-containing fractions were pooled,
adjusted to 15% trehalose by addition of solid and stored
at —80°C.

Expression and purification of Ku protein

Recombinant, non-tagged Ku protein was produced by
co-infection of Sf9 cells with VBB2-86Ku and VBB2-70Ku
and was purified by sequential Superdex-200, single-stranded
DNA-agarose and heparin-agarose chromatography as des-
cribed previously (38,39).

DNA probes

The following probes were used (Midland Certified Reagent
Company Inc., Midland, TX, USA): 5'-GTTACGCGTGCGG-
CCAGCCCCCTCGCCT(BiodT) TGGCGAGGGGGCTGGCC-
GCACGCGTAAC-3'; 5'-GGCTGGCCGCACGCGTAACGT-
TACGCGTGCGGCCAGCCCCCTCGCCT(BiodT)TGGCGA-
GGG-3; 5-TTTACGCGTGCGGCCAGCCCCCTCGCCT
(BiodT) TGGCGAGGGGGCTGGCCGCACGCGTTTT-3'.

Surface plasmon resonance

The probes were dissolved in Buffer B, which was prepared
by adding 150 mg/ml solid trehalose to a solution of 50 mM
HEPES-KOH, pH 7.5, 1 mM EDTA, 10 mM MgCl,, 100 mM
KCIl and 1 mM DTT (Addition of trehalose results in approxi-
mate final concentrations of 44 mM HEPES—-KOH, 0.87 mM
EDTA, 8.7 mM MgCl,, 87 mM KClI, 0.87 mM DTT and 13%
trehalose). A total of 250 RU of each biotinylated oligonu-
cleotide [1 RU = 0.8 pg/mm2 of chip surface (40)] was cou-
pled to Flow Cell 2 of a streptavidin-coated sensor chip. Flow
Cell 1 served as an unliganded control. The data were collected
on a Biacore X instrument (Biacore, Uppsala, Sweden). To
regenerate the sensor chips between experiments, the flow
cells were washed with acidic (10 mM glycine, pH 3) and
basic (1 M NaCl, 50 mM NaOH) solutions. In addition, each
experiment was performed with at least two different chips.
Except where indicated otherwise in the figure legends, bind-
ing was performed at 37°C. BIAEvaluation software was used
for quantification of binding parameters.
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Microwell kinase assays

Steptavidin-Coated Clear Strip Plates (Pierce, Rockford, IL)
were washed with PBS-T (0.1% Tween-20) buffer for 5 min
at 37°C and rinsed with Buffer B. An aliquot of 100 pmol of
oligonucleotide was added per well in 100 pl of kinase buffer
and incubated for 10 min at 37°C. The wells were blocked with
100 pl of 3% BSA for 5 min at 37°C and washed with 100 pl of
kinase buffer for 5 min at 37°C. Reaction mixture (32 pl)
containing 30 ng DNA-PKcs in 1.25x Buffer B was distributed
to each well and pre-incubated for 5 min at 37°C. The ATP
concentration was adjusted to 12.5 puM by addition of
[y->*P]ATP (20 Ci/mmol) in a volume of 8 ul. The reactions
were terminated with 10 pl of sample buffer [NuPage LDS
sample buffer (4x), Invitrogen] and analyzed by 6%
SDS-PAGE. Phosphoprotein products were detected by
PhosphorImager analysis. Note that a lower ATP concentra-
tion was used than in the SPR experiments because the result-
ing higher specific activity facilitated detection of the
radiolabeled product. Prior work shows that 12.5 uM ATP
is at or above the k, (37), and the use of the lower ATP
concentration was therefore not expected to affect overall
conclusions from the experiment.

RESULTS
Experimental design

We previously demonstrated the ability to assemble oriented
DSB repair complexes using oligonucleotides blocked at one
end with a streptavidin—biotin complex. This constrains pro-
tein interaction in such a way that a single repair complex can
assemble at the opposite end of the fragment (39). In addition
to assuring a unique orientation with respect to the underly-
ing DNA sequence, this design eliminates concerns over inter-
ference between two repair complexes formed at opposite ends
of the same oligonucleotide. There is evidence that such inter-
ference can significantly affect interpretation of results of
activity assays (34).

Our original studies were performed using duplex oligonu-
cleotides prepared by annealing two separately synthesized
strands, one of which incorporated a biotin group at the
5" end. Here, we updated the probe design to take advantage
of a new phosphoramidite reagent that allows incorporation of
biotin at an internal site in an oligonucleotide probe. The new
probes were designed as single molecules that fold to form a
duplex DNA with a biotin in a hairpin structure at one end
(Figure 1A). The new design provides a singly biotinylated
duplex DNA probe without the need for gel purification of an
annealed product. These DNAs were tethered to a streptavidin-
coated support, with the other end free for DNA-PK complex
assembly. In this new generation of probes, the 12 nt sequence
adjacent to the free end was identical to the highly active ‘f12’
substrate used by Hammarsten and co-workers (41). Addi-
tional internal sequence, proximal to the biotin, was the
same as used previously (20).

The experimental design called for comparison of three
different probes, which were similar internally but differed
in the structure of the free end. One probe had a fully base-
paired region at the free end. Two others were chosen to
represent especially good and poor activators, as identified

in prior solution studies: one had a 3 nt unpaired region at
the free end (predicted to be a good activator), and the other
had a closed hairpin structure at the free end (predicted to be a
poor activator). The sequence of the probes is shown in
Figure 1A, and the naming convention is explained in the
figure legend.

Ku and DNA-PKcs binding measured by SPR

We measured protein—-DNA binding in an SPR assay. One of
two channels of a streptavidin-coated sensor chip was loaded
with probe DNA, and the other was left blank as a control.
After washing, analyte containing the protein of interest was
flowed over the chip, and time-dependent association with the
DNA-coated surface was measured over a 2-3.5 min interval
(the association phase). The flow of analyte was then stopped
and replaced by the same buffer as was used for initial wash-
ing, and time-dependent dissociation was measured (the dis-
sociation phase). The buffer used throughout the experiment
was designed to be compatible with both binding and activity
assays; it contained divalent cation (required for kinase activ-
ity) as well as a polyol, trehalose (as a protein stabilizer).

We characterized the binding of Ku and DNA-PKcs sepa-
rately. Our prior studies showed that probes of the size used
here (up to 28 nt) allow binding of either a single Ku dimer or a
single Ku—-DNA-PKcs complex. A 28mer duplex is slightly
too small to allow formation of a complex containing two Ku
dimers (20,39). Figure 1B shows binding of Ku to each of the
three DNA probes. After an ~3 min association phase, binding
to all three chips reached about the same level (£20%).
Dissociation was negligible under the conditions tested. The
association curve for the blunt-end probe had a slightly dif-
ferent shape than the other two, perhaps reflecting ability of
this probe (which has the longest duplex section) to accom-
modate slow binding of a second Ku, but this was not inves-
tigated further. The nearly equivalent binding to the three
probes was expected, as prior work using other assays has
shown that Ku—DNA binding is not affected by the structure
of the DNA ends (42.,43).

We next pre-saturated the surface of the chips with Ku
and measured recruitment of DNA-PKcs to form the initial
DNA-PK complex (Figure 1C). The curves were quite differ-
ent with the different probes. With the hairpin probe (h3B-
27cp), DNA-PKcs bound rapidly, established a plateau and
dissociated rapidly. With the other two probes, DNA-PKcs
binding reached higher values during the association phase
and dissociated much more slowly. Results demonstrate
that introduction of DNA-PKcs into the system provides an
ability to discriminate between different DNA ends that
exceeds discrimination with Ku alone.

DNA-PKcs discriminates between end structures
in the absence of Ku

We next determined whether the ability to discriminate
between DNA ends is intrinsic to DNA-PKcs, or whether
Ku is also required. Results showed that DNA-PKcs had an
even greater ability to discriminate between DNA ends than
when tested in the presence of Ku. Binding to the hairpin
probe was weak; binding to blunt probe was intermediate;
and binding to the unpaired probe was the highest
(Figure 2). The finding that the ability to discriminate between



DNA ends is intrinsic to DNA-PKcs is consistent with results
of prior solution-phase assays (33,41,44) and extends these
findings by demonstrating that discrimination is manifested
at an initial protein-DNA binding step.

The rank order of DNA-PKcs binding avidity (unpaired >
blunt > hairpin) correlated with the potential for strand sep-
aration at the termini, suggesting that localized DNA melting
may be required for formation of a stable initial complex.
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In this case, binding to the blunt probe might be strongly
temperature dependent, by analogy to Escherichia coli
RNA polymerase, which exhibits strongly temperature-
dependent binding when it forms an ‘open complex’ with
promoter DNA (36). Less temperature dependence should
be seen with the unpaired and hairpin probes, which are struc-
turally constrained in an open and closed conformation,
respectively.

We tested DNA-PKcs binding to the three DNAs at 25 and
37°C. At the lower temperature, binding to the blunt-end
probe (h3B-27) was reduced almost to the level seen with
hairpin (compare Figure 2A and B). Binding to the unpaired
probe (h3B-24-2T3) was affected by temperature, but to a
lesser extent (note different scales in Figure 2A and B). Bind-
ing to the hairpin probe (h3B-27cp) was only slightly affected
by temperature. Results are therefore consistent with the
model that formation of a stable initial complex involves
localized DNA melting.

Destabilization of DNA-PKcs binding by ATP and a
nonhydrolyzable ATP analog

We next tested the effect of ATP on formation and stability
of the initial DNA-PKcseDNA complex. In solution-phase
assays, incubation of DNA-PK, DNA and ATP leads to kinase
inactivation by an autophosphorylation mechanism (45). The
autophosphorylation is believed to occur in trans, i.e. where
one DNA-PKcs molecule phosphorylates a second molecule
bound to an opposing DNA end (22,25). We would not expect
trans phosphorylation to be possible in the initial DNA-PK
complex where pairing, or synapsis, of DNAs is constrained.

We tested the effect of ATP and a nonhydrolyzable analog,
AMP-PNP, in the SPR binding assay. We used the unpaired
probe because of the high avidity of DNA-PKcs for this DNA.
ATP strongly influenced DNA-PKcs binding (Figure 3A).
Plateau binding values were lower, and dissociation was
much more rapid. The nonhydrolyzable AMP-PNP analog
also had an effect, although less dramatic. The observation

Figure 1. (A) DNA molecules used in the study. Each probe was synthesized
as a single self-complementary molecule with an internal 5-biotinyl-
deoxythymidine (BiodT) residue. Sequences were identical internally but dif-
fered at the free end of the folded molecule. The convention for naming probes
was as follows: each formed a hairpin with a 3 nt loop at the apex of the self-
annealed region, and the loop had a single biotinylated nucleotide (thus, h3B).
The loop was adjacent to a 24 or 27 nt duplex region (thus, h3B-24 or h3B-27).
Probes had one of three different structures at the free terminus. The probe with
aplain blunt end was designated as h3B-27, a circularly permutated probe with a
closed hairpin at both ends and a nick in the central duplex was designated h3B-
27cp, and the unpaired probe with the same total length and three unpaired
T residues at the 5" and 3’ termini was designated h3B-24-2T3. (B and C)
Assembly of initial DNA-PK complex monitored by SPR. Equal amounts of
DNA (250 RU) were immobilized via biotin-streptavidin linkage to Channel 2
of an SPR chip. Channel 1 served as an unliganded control. During the indicated
association phase, the indicated proteins were flowed over the surface of the
chip at 37°C in kinase reaction buffer without ATP, as described in Materials
and Methods. Prior to and following the association phase, buffer alone was
flowed over the chip. SPR signal (Channel 2 minus Channel 1) was plotted as a
function of time. Except as noted, all curves are averages of duplicates. (B)
Binding of Ku. Ku alone (9 nM) was present in the association phase. (C)
Binding of DNA-PKcs to surface pre-saturated with Ku. Ku (36 nM) was
flowed over the surface of the chip for 120 s, sufficient for binding to approach
a plateau value (data not shown). DNA-PKcs (1 nM) was injected immediately
(within ~10 s of the end of the Ku association phase), and SPR signal was
measured as a function of time. The trace for h3B-27 represents only one
measurement, instead of the usual average of duplicates.
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Figure 2. Comparison of DNA-PKcs binding to different DNAs. (A) Binding at
37°C. DNA-PKcs (1 nM) was present in the association phase. (B) Same as
panel A except experiment was performed at 25°C.

that ATP and AMP-PNP both affected binding indicates that
the effect of adenosine nucleotides is attributable, in part, to an
allosteric mechanism, but do not exclude an additional effect
of protein autophosphorylation.

To further investigate the mechanism of the ATP affect, we
performed an experiment in which ATP was present during
the association phase of the binding reaction but withdrawn
during the dissociation phase. An allosteric effect should be
reversible, whereas an autophosphorylation effect should be
irreversible. Complexes formed in the presence of ATP, which
was then removed, were at least as stable as those formed
in the absence of nucleotide (Figure 3B). The reversibility
of the ATP effect favors the allosteric model.

We also performed the reciprocal experiment, where ATP
was present in the dissociation phase and absent from the
association phase. Under these conditions, ATP dramatically
decreased the stability of the initial complexes, consistent
with the pattern seen when ATP was present continuously
(Figure 3B). The decrease in stability occurred immediately,
with no apparent lag. This is significant because, as will be
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Figure 3. Effect of ATP on binding of DNA-PKcs to different DNAs. Binding
was performed identically as in Figure 2, using the unpaired DNA (h3B-27-
2T3) sensor chip at 37°C. (A) ATP or AMP-PNP (100 uM) was included in both
the association and dissociation phases for the indicated binding curves. (B)
Effect of ATP on DNA-PKcs association and dissociation measured separately.
As indicated, ATP (100 uM) was included in the DNA-PKcs sample only
(present during association phase) or in the wash buffer only (present prior
to sample injection, absent during association phase, present during dissocia-
tion phase). A small effect on association (paradoxical because ATP is nomin-
ally absent during the association phase) probably reflects slight carry-through
of ATP from the initial wash buffer. To facilitate comparison, binding curves
in the absence of ATP, and with ATP present during both association and
dissociation phases, are replotted from (A).

shown subsequently, autophosphorylation occurs with much
slower kinetics under similar conditions.

The effect of ATP on binding of DNA-PKcs to the other
DNAs was also tested. The effect on the blunt-end probe was
similar to the effect on the unpaired probe but less dramatic
(data not shown). ATP had little or no measurable effect on
binding to the hairpin probe. Although binding to the hairpin
probe was too weak overall to be conclusive, the data suggest
that the effect of ATP might be specific for the ‘open complex’
formed with the unpaired and blunt probes.



Autophosphorylation of initial complexes

It was of interest to compare the kinetics of ATP-dependent
dissociation with the kinetics of DNA-PKcs autophosphory-
lation as measured directly under similar conditions. Our SPR
instrument did not permit the recovery of analyte for chemical
analysis. We therefore adapted our assay to a multiwell plate
format where DNA was surface-immobilized, as in the SPR
assays. We have previously characterized the assembly of
DNA-PKcs complexes on these plates and demonstrated
that binding is DNA-dependent (46). After blocking the plates
to reduce nonspecific DNA-PKcs binding, as described in the
earlier study, we pre-incubated DNA-PKcs with DNA to form
initial complexes, added [7—32P]ATP and analyzed the incorp-
oration of radiolabel into DNA-PKcs by SDS-PAGE and
Phosphorlmager analysis.

We first compared the three DNA probes. The level of
phosphate incorporation was greatest with the unpaired
DNA, less with the blunt DNA and negligible above back-
ground with hairpin DNA (Figure 4A). Thus, the rank order of
activity correlated with avidity of binding in the SPR assay.
Because of the higher level of signal, we focused on the
unpaired DNA in remaining experiments.

We examined the time course of phosphate incorporation.
To obtain the most information, we analyzed free DNA-PKcs
and DNA-PKcs bound to the plate separately. The results
are shown in Figure 4B, with quantification in Figure 4C.
Incorporation of radiolabel into the free DNA-PKcs pool,
which accounted for the majority of the phosphorylation at
all time points, proceeded linearly for at least 30 min. Incorp-
oration into the bound pool was much lower and occurred
with somewhat different kinetics, approaching a plateau
after about 4 min.

Whether we consider the free, bound or total population, it
is clear that the rate of autophosphorylation is slow, compared
with the essentially instantaneous effect of ATP on dissocia-
tion in the SPR assays (Figure 3). It is therefore unlikely that
ATP-dependent dissociation in these assays can be explained
solely by an autophosphorylation mechanism.

We have not investigated the exact mechanism underly-
ing the slow continuous buildup of autophosphorylated
DNA-PKcs in the free pool. Under the conditions used
(2 nM DNA-PKcs, ATP and excess DNA) we expect there
to be dynamic exchange between bound and free populations
of nonphosphorylated DNA-PKcs. The overall rate of the
autophosphorylation reaction may thus be controlled by the
slow, continuous, diffusion of free DNA-PKcs, to the enzy-
matically active complexes bound to DNA on the surface of
the plate. Depending on the site(s) of phosphorylation,
autophosphorylated DNA-PKcs may then irreversibly enter
the free pool.

DISCUSSION

The question, “‘Why is the DNA-dependent protein kinase
DNA-dependent?’ is central to understanding the function
of this enzyme in DSB repair. Prior studies have provided
an important clue with the observation that single-stranded
DNA termini activate DNA-PKcs exceptionally well in
solution-phase assays (33,41). These steady-state activity
assays are limited, however, because the measured activity
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Figure 4. DNA-PKcs autophosphorylation assay. (A) h3B-24-2T3, h3B-27
and h3B-27cp (100 pmol) were pre-incubated in wells of a Reacti-Bind strep-
tavidin-coated 96-well plate as described in Materials and Methods. After
washing, DNA-PKcs (85 fmol, 2 nM) was added and incubated 5 min at
37°C in kinase buffer (without ATP). [y—nP]ATP was added (12.5 uM,
~20 Ci/mmol), and incubation was continued for 30 min. Products were
resolved by 6% SDS—-PAGE and visualized by PhosphorImager. Arrow denotes
470 kDa DNA-PKcs polypeptide. (A) Six percent SDS—-PAGE analysis of
radiolabeled reaction products, visualized by PhosphorImager. Lane 1, h3B-
27; lane 2, h3B-27cp; lane 3, h3B-24-2T3. (B) Time course of DNA-PKcs
autophosphorylation in the presence of h3B-24-2T3. Bound and free fractions
were analyzed separately as indicated. (C) Quantification of results in (B).

reflects a composite of individual steps leading to enzyme
activation. For a protein as complex as DNA-PKcs, these
steps may be many and varied, including initial DNA
binding, formation of a synaptic complex and progressive
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autophosphorylation at various sites. Our goal in the present
study is to establish a framework for understanding the con-
tribution of individual steps to enzyme activation, with an
emphasis on early steps that precede synapsis. We showed
that the ability to discriminate between different DNA struc-
tures is first manifested at the level of initial complex forma-
tion. This ability to discriminate between DNAs is an
autonomous property of DNA-PKcs bound to a solitary
DNA end and does not require contact with a second DNA.
The preference for single-stranded ends, and the inability to
form a stable complex with hairpin termini, suggests that
separation, or melting, of the DNA termini may be needed
for stable DNA-PKcs binding. The temperature dependence
of binding to the fully base-paired substrate, reminiscent
of requirements for formation of an ‘open complex’ of
RNA polymerase and promoter DNA (36), reinforces this
conclusion.

Results help discriminate between two different ideas about
the role of single-stranded DNA that are prevalent in the cur-
rent literature. In one model, a single-stranded terminus inter-
acts with an allosteric site in DNA-PKcs that is bound in cis to
the same DNA fragment (Figure 5, Model A), and in the other,
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Figure 5. Two models for interaction of unpaired DNA tails with DNA-PKcs.
Model A is styled after ref. (5) and Model B after ref (33).

the unpaired terminal DNA interacts in trans with DNA-PKcs
bound to a second DNA molecule (Figure 5, Model B).
Our data, suggesting that single-stranded termini interact in
cis with DNA-PKcs, do not rule out an additional role for
interactions in trans, but suggest that these are not necessary
for the initial step of stable DNA-PKcseDNA complex
formation.

A potential concern with this interpretation is that immob-
ilization of DNA at low density on a solid support may not
completely prevent interactions between the ends of different
DNA fragments. That is, tethered DNAs might retain suffic-
ient mobility to encounter one another and form a synaptic
complex. Although this is difficult to exclude altogether, we
believe that it is unlikely to explain our data. If synapsis
were occurring, binding should be very sensitive to the
density of DNA loaded onto the SPR chips. However, relative
avidity of binding to different DNAs was qualitatively
unchanged when the amount of DNA loaded on the SPR
chips was increased 3-fold or decreased 2.5-fold (data not
shown).

In separate experiments, we attempted to force synapsis by
flowing additional DNA or an additional DNA-PKcseDNA
mixture over preformed initial complexes. No additional
binding was detected (data not shown). SPR is limited in
its ability to detect very weak or transient interactions, and
the inability to detect synaptic complexes in this assay does not
necessarily conflict with observations that such complexes can
be visualized by electron microscopy (47). Synapsis may pro-
vide an important mechanism for bringing protein substrates
into the proximity of the active initial complex, thus influenc-
ing protein substrate preference. However, investigation of
this additional level of regulation was beyond the scope of
the present study.

For exploratory purposes, we attempted to fit our SPR
binding data to a quantitative model. We assumed 1:1 stoi-
chiometry of interaction between DNA-PKcs and DNA, with
mass transfer limitation. We performed analysis of binding to
the unpaired probe (h3B-24-2T3) at 37°C, using both the data
in Figure 2 and additional data collected at 2.5-fold lower
DNA density (data not shown). Association rate constants
were in the range 4 X 10-1.5 x 103 M~! sfl, and dissociation
rate constants were 107°-107> s~'. Derived equilibrium
dissociation constants were 107''-3 x 107" M~'. These
are in the range expected for high affinity macromolecular
interactions and are in general agreement with estimates
from other authors (35).

Our results point to an interesting analogy between DNA-
PKcs and RNA polymerases, in that stable binding of both
proteins appears to be dependent on induction of localized
DNA melting. The temperature-dependent binding of RNA
polymerase to promoter DNA was a seminal observation
that led to this ‘open complex’ model for promoter recognition
(36). For RNA polymerases, the open complex model has been
refined and validated by a large body of biochemical and
structural studies, culminating in a detailed structural model
[see (48) and references therein]. Clearly, analogous studies
will be needed with DNA-PKcs to confirm whether the ‘open
complex’ analogy is valid. We note, however, that as with
RNA polymerases, there is a strong biological rationale for
formation of an open complex as an essential and early step in
the reaction. For RNA polymerases, the open complex allows



access to the template DNA strand by initiating nucleotides.
For DNA-PKcs, the open complex may facilitate access
to damaged DNA bases by processing enzymes as well as
facilitating microhomology-based DNA synapsis.

Because present studies are based on measurement of
binding, rather than kinase activity, it was possible to inves-
tigate the effect of ATP separately from other parameters. We
found that the effect of ATP was unexpectedly complex.
Although it is well established that incubation with ATP
can influence DNA-PKcs binding and activity by an autophos-
phorylation mechanism, several lines of evidence suggest that
ATP also has an allosteric effect. The effect of ATP on com-
plex stability was partially mimicked by a nonhydrolyzable
analog. It was also more rapid than could be explained
by autophosphorylation and was reversible when ATP was
removed. These data imply that the effect of ATP on DNA-
PKcseDNA interaction is more complex than previously
appreciated. Although several clusters of autophosphoryla-
tion sites have been identified, knowledge of critical sites
for promoting ATP-dependent dissociation remains elusive.
The possibility of an allosteric effect, in addition to
autophosphorylation-driven dissociation, needs to be taken
into account in any general model. It may be, for example,
that ATP influences the ability of the kinase domain and the
N-terminal domain to ‘clamp’ together in the presence of
DNA (22).

It is important to recognize that interactions with additional
repair proteins, which were not present in our system, may
augment and build upon the intrinsic specificity of DNA-
PKcs revealed here (49,50). It will be particularly interesting
to characterize the ability of Artemis to modify the behavior
of the minimal system. Although DNA-PKcs displayed very
little affinity for hairpin ends under the conditions used
here, cooperative interactions between DNA-PKcs and the
Artemis protein might stabilize assembly of a complex
at such ends in vivo, enabling processing of V(D)J coding
joints.

Although caution is warranted in extrapolating from
in vitro studies with isolated DNA-PKcs and DNA, the ability
of DNA-PKcs to recognize and respond to the structure of
solitary DNA ends might have significant biological implica-
tions. Unrepaired free DNA ends are highly recombinogenic
and thus destabilizing to the genome. If DNA-PKcs were
activated in vivo by forming a stable complex with solitary
DNA ends, this would enable the enzyme, in effect, to broad-
cast an alarm signal declaring the presence of a persistent
DSB. Consistent with this, DNA-PKcs is required for DNA
damage-dependent apoptosis in some cell types (51,52). An
exposed 3’ tail is necessary to initiate strand invasion and
recombination [reviewed in (53)] whereas a hairpin end is
presumably inert in this respect. Thus, it is of interest that
unpaired DNAs have the greatest ability to bind and activate
DNA-PKcs, whereas hairpin ends had little, if any ability to do
so. Providing a signal indicating the presence of a dangerously
recombinogenic free DNA end could be an important function
of DNA-PKcs in addition to its direct role in repair. An analo-
gous ability of single-stranded DNA to activate ATM kinase,
which is related to DNA-PKcs and has overlapping functions
in DNA damage recognition, has been cited as evidence for
a central role of single-stranded DNA as an evolutionarily
conserved signal for DNA damage (54).
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