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Review
Glossary

Bispecific antibody (bsAb): antibody-derived proteins with the ability to bind to

two different epitopes.

Bispecific T cell engager (BiTE): a class of bsAbs that is capable of directing a

host immune system.

Complementarity determining region (CDR): the hypervariable region of an

antibody, which exhibits a high level of sequence diversity and is involved in

antigen binding.

Diabody (Db): a heterodimeric bsAb.

Human anti-mouse antibody (HAMA): the most common human anti-animal

antibody interferent.

Monoclonal antibody (mAb): monospecific antibodies produced by immorta-

lization of a specific antibody-secreting B cell.

Recombinant bispecific antibody (rbsAb): a bsAb produced by genetic

manipulation of genes.
Artificial manipulation of antibody genes has facilitated
the production of several unique recombinant antibody
formats, which have highly important therapeutic and
biotechnological applications. Although bispecific anti-
bodies (bsAbs) are not new, they are coming to the
forefront as our knowledge of the potential efficacy of
antibody-based therapeutics expands. The next genera-
tion of bsAbs is developing due to significant improve-
ments in recombinant antibody technologies. This
review focuses on recent advances with a particular
focus on improvements in format and design that are
contributing to the resurgence of bsAbs, and in particu-
lar, on innovative structures applicable to next genera-
tion point-of-care (POC) devices with applicability to low
resource environments.

Antibodies as bispecifics
Antibodies belong to a class of globular proteins, called
immunoglobulins, that are produced by B lymphocytes,
and are deployed by the immune system to identify and
target foreign or ‘non-self’ molecules [1,2]. The structure of
an antibody (Figure 1) determines its binding specificity
and biological activity [3]. Antibodies are the most diverse
proteins found in nature with the greatest variability in
amino acid sequence contained within the hypervariable
region or complementarity-determining regions (CDRs;
see Glossary), located in the Fv region [4]. Thus, the
antibody CDRs determines the specificity for its cognate
antigen. The Fc region is essential for mediating effector
functions including: antibody-dependent cell-mediated cy-
totoxicity (ADCC), antibody-dependent cellular phagocyto-
sis, antigen presentation to the immune system,
degranulation, complement-mediated lysis, and regulation
of cell activation and proliferation.
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Nobel laureates (1984) Köhler and Milstein devised
the first and what has become the most freely available
and, hence, widely used method to generate monoclonal
antibodies (mAbs) [5]. However, extensive antibody engi-
neering and optimization were required before effective
antibodies were produced. The first antitumor mAb,
rituximab [6], was approved for use worldwide in 1997
and since then >35 mAbs have achieved regulatory ap-
proval for therapeutic use. Despite significant positive
clinical results, especially in the case of hematological
malignancies, adverse clinical outcomes and animal stud-
ies have highlighted underlying limitations of mAbs.
Accordingly, many strategies have been developed in
order to improve the specificity and control the functions
of antibodies. One such important approach is the devel-
opment of bsAbs and this review focuses on current and
future avenues of research for bsAbs. In addition, the
applicability of bsAbs for diagnostics is discussed and
critically assessed.
Single chain diabody (scDb): a derivative of the Db approach where a peptide

linker joins the two antibody fragments and the domains are expressed as a

single polypeptide chain.

Single chain fragment variable (scFv): antibody format where the variable

regions of the heavy (VH) and light chains (VL) are expressed with a linker

sequence connecting them.

Single domain antibody (sdAb): an antibody fragment consisting of a single

monomeric variable antibody domain.

Tandem single chain fragment variable (taFv): a linked fragment variable (Fv)

molecule.

Trifunctional antibody (Triomab): intact IgG molecules that can engage three

different cells types.
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Figure 1. Diagrammatic representations of antibody structure. (A) Classical Y-shaped IgG composed of two heavy (blue–red) and two light (gray–green) chains that are

further divided into variable (VH in red and VL in green) and constant domains (CH in blue and CL in gray). The fragment variable (Fv) domain is the smallest fragment of an

antibody required for binding and is composed of the VH and VL domains which house the complementarity determining regions (CDRs). (B) The introduction of a flexible

linker to the VL–VH (or VH–VL) gives rise to the single chain fragment variable (scFv). (C) The fragment antigen binding (Fab) can be generated by both recombinant and

enzymatic approaches as can the F(ab0)2 fragment (D), which is composed of two Fab fragments. The structures of the shark Ig-NAR (E) and camelid (F) VHH immunoglobulin

differ from that of the IgG molecule and are composed of single variable heavy domains. The black circles indicate the antigen binding sites. Adapted from [4].
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bsAbs

bsAbs are antibody-derived proteins with the ability to
bind to two different epitopes on the same or different
antigens. The first bsAbs were produced by oxidative
recombination of two univalent antibody preparations,
however, it was not for another 20 years that bsAbs with
therapeutic potential were produced [7]. The establish-
ment of hybridoma technology in 1975 was a major ad-
vance paving the way for bsAb development [5]. bsAbs are
produced by three main methods: (i) chemical conjugation,
which involves chemical cross-linking; (ii) fusion of two
different hybridoma cell lines; or (iii) genetic approaches
involving recombinant DNA technology [7]. The fusion of
two different hybridomas produces a hybrid-hybridoma (or
quadroma, Figure 2A) secreting a heterogeneous antibody
population including bispecific molecules [8]. Alternative
approaches included chemical conjugation of two different
mAbs and/or smaller antibody fragments [9]. Oxidative
reassociation strategies to link two different antibodies
or antibody fragments were found to be inefficient due to
the presence of side reactions during reoxidation of the
multiple native disulfide bonds [10]. Current methods for
chemical conjugation focus on the use of homo- or hetero-
bifunctional crosslinking reagents [7,11]. Recombinant
DNA technology has yielded the greatest range of bsAbs,
through artificial manipulation of genes and represents
the most diverse approach for bsAb generation (45 formats
in the past two decades) [11].

Several bsAb formats can redirect cytotoxic effector cells
against target cells that play key roles in disease processes.
They can induce cytotoxicity, phagocytosis, and present
antigens or directly suppress deregulated immune
responses, depending on the nature of interaction between
the bsAb and its target. Furthermore, they can deliver
payloads including toxins, drugs, prodrugs and contrast
agents [11]. bsAbs have proven to be of major therapeutic
interest over the past 30 years, due to an array of potential
capabilities. They also possess several advantageous char-
acteristics for therapeutic development including design
flexibility, modularity, optimal selectivity for activatory or
622
downregulating molecules, oligoreactivity, and the deliv-
ery of therapeutic molecules [12]. The vast majority of
bsAbs were initially designed to retarget effector cells
towards tumor cells, and a variety of constructs were
designed to retarget cells of the immune system by binding
to and triggering Fc receptors on the surface of effector cells
or by binding to T cell receptor (TCR) complexes [13]. These
first generation bsAbs were predominantly generated
using hybrid-hybridomas or by chemical crosslinking. De-
spite some significant biological effects elicited by these
antibodies, there was no ongoing significant impact on the
clinical course of a disease state. Issues associated with
these first generation bsAbs included difficulty in large-
scale production of homogeneous batches and a lack of
efficacy of murine antibody fragments. Human anti-mouse
antibody (HAMA) responses were observed in the majority
of treated patients in addition to Fc-mediated side effects
(cytokine-release syndrome, thrombocytopenia, and leuko-
penia). Subsequently, research has focused on approaches
to overcome these limitations through novel antibody
formats.

Recombinant bsAb (rBsAb) formats

With the advent of recombinant DNA technology, it is
possible to ameliorate the shortcomings associated with
traditional approaches for bsAb production. A plethora of
different recombinant bsAb formats exist (Figure 2), rang-
ing from whole IgG-like molecules (Figure 2A–E) to small
recombinant formats (Figure 2F–N), such as tandem single
chain variable fragment molecules (taFvs), diabodies
(Dbs), single chain diabodies (scDbs), and various other
derivatives of these. Bispecific tetravalent molecules are
produced using Fc-mediated dimerization and possess two
binding sites for each antigen, which impart increased
avidity. A frequent approach to produce a tetravalent
bispecific molecule is through the fusion of a single-chain
Fv fragment to the C terminus of an antibody heavy chain
or by substituting the Fab arm with a bispecific single-
chain antibody fragment such as a tandem scFv or an scDb
[14]. Other approaches fuse two different scFvs to the N
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Figure 2. Bispecific antibody (bsAb) formats. Unique and diverse sets of bsAbs exist and can be described as IgG-like (A–G) and small bispecific (H–N) formats. The antigen-

binding sites are indicated by the black and gray colored circles. A quadroma (A) is generated from the fusion of two different hybridomas and secrets a mixture of

antibodies including a bispecific. Single chain fragment variable (scFv) can be linked to the Fc domain (B) and the constant light chain (C) of IgG molecules to generate the

IgG–scFv format. Conversely, an scFv–IgG construct can be prepared through linkage of an scFv to the variable heavy (VH) (D) and variable light (VL) (E) of an IgG. The dual

variable domain (DVD-Ig) bsAb (F) is created by fusion of a second VH–VL domain to the existing IgG VH–VL domain. The dock and lock (DNL) concept may be applied to

multiple constructs through homodimerization dimerization of a DDD (blue) and AD (purple) sequence forming disulfide bonds (red circles) and a DNL-Fab is shown (G). A

triabody (H) consists of three linked Fvs, whereas a tetrabody (I) consists of four Fv domains. The diabody (J) is a heterodimeric bsAb composed of two specificities and the

stability the diabody is improved by encoding the construct as a single polypeptide chain (K). The bispecific T cell engager (BiTE) is a single polypeptide chain of two Fv

molecules (TascFv) (L), whereas the tandem Fv (TaFv) (M) is a linked Fv molecule. The tandem diabody imparts avidity in addition to bispecificity (N). Adapted from [11].
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terminus of constant heavy and light chain domains. It is
also possible to fuse a second variable heavy (VH) and
variable light (VL) domain to the heavy and light chains
of an antibody, therefore leading to the production of a
dual-variable-domain (DVD) antibody (Figure 2F) [15].

Recombinant strategies can also be used to produce
small bsAb fragments. The most common approach for
this is the fusion of two different scFv molecules. This
strategy forms the basis of the bispecific T cell engager
(BiTE) developed for cancer immunotherapy (Figure 2L–
M). A further expansion of this strategy is the fusion of an
additional scFv fragment molecule, leading to the forma-
tion of a trivalent or trispecific antibody [14,16]. In an
alternative approach, two bispecific Dbs (BS1.5 and
BS1.5H) and two bispecific trivalent proteins (BS6 and
BS8) were expressed within the same cell, produced and
tested as potential agents for pretargeted delivery of radi-
olabeled bivalent haptens to tumors expressing carcinoem-
bryonic antigen. These chains assembled in an antiparallel
manner to form heterodimeric molecules [14,17]. ScFv
fragments expressed in bacteria are known to exist in both
monomeric and dimeric forms [18] and this can be
exploited to form Dbs, which are generated by linking
the VH domain of one antibody to the VL domain of another
(Figure 2J). The linker is deliberately short (3–12 amino
acids in length), which induces the two domains to pair
with the complementary domain of another chain, thus
creating two different antigen-binding sites. scDbs are a
derivative of the Db approach (Figure 2K) and are produced
by introducing an additional peptide linker to join the two
antibody fragments, hence, the domains are expressed as a
single polypeptide chain [14]. Although recombinant pro-
duction of scFv fragments may circumvent the shortcomings
associated with hybrid-hybridomas, the approach faces sig-
nificant challenges. Certain forms of scFv have variable and
unpredictable expression yields and the linker used can
cause spontaneous aggregation of the recombinant materi-
al. Introducing shortened linkers to produce a Db does not
always guarantee success, as the linker can induce delete-
rious conformational changes resulting in a reduction of
antibody functionality [19]. To overcome solubility-related
issues, several unique approaches have been undertaken to
stabilize rbsAbs. Single domain antibodies (sdAbs) occur in
the natural repertoire of both camelid and cartilaginous fish
(Figure 1E,F). These single V domain constructs, known as
VHH in camelids and V-NAR in sharks, are of minimal size
(15 kDa). In addition, they demonstrate high expression
levels, and exhibit high stability and solubility in vitro,
which has made them attractive entities for bsAb generation
[20]. SdAbs can be produced in bacteria (or yeast) and their
properties support facile conversion to bispecific formats
through linkage of two sdAbs directed against two different
623
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antigens. The resultant low molecular mass (�30 kDa),
although advantageous for biodistribution, can hamper
therapeutic success due to rapid clearance in vivo by renal
filtration and degradation. The positive attributes associat-
ed with sdAbs have made them a key point of therapeutic
interest [20–22]. The ‘dock-and-lock’ construction method
involves homo- and heterodimerization of the dimerization
and docking domain (DDD) of human cAMP-dependent
protein kinase A (PKA) with the anchoring domain (AD)
from A-kinase anchor protein (AKAP) [14,23]. Therefore,
fusion of a Fab fragment directed against the first antigen to
AD and fusion of a Fab fragment directed against the second
antigen to the DDD domain (homodimer) and subsequent in
vitro assembly of the two protein preparations results in a
trivalent molecule composed of one Fab-AD and two Fab-
DDD moieties (Figure 2G) [24]. Furthermore, a disulfide-
stabilized scFv was fused to the C terminus of an IgG light
chain creating an IgG–scFv bsAb (Figure 2C), expressed in
mammalian cells and purified by one-step protein A chro-
matography. In this format, the bsAb exhibits IgG-like
stability, and demonstrates IgG-like tumor targeting and
blood clearance in vivo. This format is suggested as a
standardized platform for the construction of functional
bsAbs [25] and several such IgG–scFv formats are described
in the literature (Figure 2B–E) [26].

rbsAbs for therapeutics
The monospecific nature of mAbs for therapy may often be
a limitation for their effective use in complex human
diseases. Cancer, HIV, inflammatory disease, infectious
disease, and allergic disorders are multifaceted in nature
and therapeutic resistance can result from engagement or
upregulation of alternative receptor pathways. Current
combination mAb therapies are undergoing clinical trials
and show some efficacy in diseases, such as cancer, by
simultaneous engagement of target antigens [11]. Al-
though this approach shows promise, each mAb in the
combination therapy may be required to achieve regulato-
ry approval. Therefore, additional polyclonal strategies are
under investigation for oligoreactive treatment of complex
disease states [11,27]. rbsAbs have significant potential for
application in multifaceted disease therapy, because they
can be engineered to block or engage multiple sites on a
single target simultaneously, or sites on different targets,
within a single therapeutic entity. In addition, payloads
can be delivered specifically to the target cell, and Fc
effector engagement can recruit cells of the immune sys-
tem. bsAbs are of particular therapeutic interest as strat-
egies in cancer therapy, which is the predominant disease
state to which bsAb are applied. Most current applications
have focused on redirecting the cytotoxic activity of lym-
phocytic effector cells against tumor targets through bind-
ing to the T cell co-receptor molecule CD3. In addition to
CD3, CD16 is the major activating receptor on natural
killer (NK) cells and mediates low-affinity interactions
with IgG. Several antigen targets have undergone evalua-
tion with the majority of them representing tumor-associ-
ated antigens (TAAs) (Table 1).

Despite the ongoing development of various increasing-
ly complex bsAb designs, only two formats, BiTES and
Triomabs, have made a substantial impact. The Triomab
624
format has proven to be the most successful due to its
performance in clinical trials and the approval of catumax-
omab by regulatory agencies. Those formats currently in
clinical trials are listed in Table 2.

Bispecific T cell engagers (BiTEs)

BiTEs combine a unique set of properties unreported for
any other kind of bsAb (Box 1). The BiTE format potential-
ly overcomes several limiting factors relating to the biolog-
ical activity of tumor-directed bsAbs. BiTEs combine the
minimal binding domains (Fv fragments) of two different
mAbs fused together by a short flexible linker that allows
free rotation of the two arms, and thus facilitates optimal
antibody:antigen interaction [28]. They function by form-
ing a link between T cells (CD3 or CD19) and TAAs,
inducing T cell dependent cytotoxic activity by proteins
including perforin and granzyme, independently of the
presence of MHC I or co-stimulatory molecules [28], and
these proteins enter tumor cells, initiating apoptosis.
MT103 (blinatumomab, Table 2) a CD19-specific BiTE is
currently in clinical trials for the treatment of non-Hodg-
kin’s lymphoma and acute lymphoblastic leukemia [22].
MT110, an anti-human Epithelial cell adhesion molecule
(EpCAM) � anti-human CD3 Tandem single chain frag-
ment variable (taFv), was the second BiTE tested in clini-
cal trials, and the first directed to a wide spectrum of solid
tumors [29]. In vitro testing of MT110 reconfirmed the
results obtained with MT103 on tumor cell lines, thereby
demonstrating the modularity of the BiTE format. MT110
is currently being tested in a Phase I study with lung,
colorectal, and gastrointestinal cancer. Initial results sug-
gest that the pharmacokinetic properties and the risk of
systemic activation associated with MT110 might require
further molecular development in order to develop a safe
and feasible treatment option [22].

Trifunctional antibodies/Triomabs

Trifunctional antibodies (Triomabs) are intact IgG mole-
cules characterized by their unique ability to engage three
different cells types, typically, tumor cells, T cells, and
accessory cells, such as, macrophages, dendritic cells, NK
cells, and other Fc-receptor-expressing cells. Trifunctional
antibodies have two different antigen-binding specificities,
most commonly CD3 and a tumor antigen [22]. The pres-
ence of the intact Fc region facilitates interaction with
receptors triggering several immune defense reactions
(Box 2). Although trifunctional antibodies were initially
perceived to be unfavorable for therapeutic development,
due to retention of Fc effector functions, several of these
antibodies were assessed in clinical trials. TRION Pharma
and Fresenius Biotech developed the first successful tri-
functional antibodies, composed of whole hybrid mouse/rat
IgG molecules with specificity for CD3 and the tumor-
associated antigens: HER2 (ertumaxomab) and EpCAM
(catumaxomab). Catumaxomab was the first bsAb to reach
the pharmaceutical marketplace (2009) for the treatment
of malignant ascites in patients with EpCAM-positive
carcinomas, by simultaneous engagement of type I, IIa,
and III Fc receptors [30]. At present, an ongoing Phase II
clinical trial for catumaxomab is underway for the treat-
ment of ovarian and gastric cancer. Bi20 (Lymphomun)



Table 1. rbsAbs for therapy

Format Target 1 Target 2 Refs

Cancer

TaFv CD19 CD3 (CTL) [66–69]

EpCAM CD3 [70–72]

ErbB2 CD3 [72]

Lewis Y CD3 [72]

FAP CD3 [73]

Wue CD3 [74]

Melanoma

proteoglycan

CD28 [75]

MHC complex CD16 (NK cells) [76]

ErbB2 CD16 [77]

EGFR Adenovirus (Ad) [78–83]

EpCAM Ad [83]

CD40 Ad [84]

CEA Ad [85]

3E10 (cell

penetration)

P53 (apoptosis) [86]

Db CD19 CD3 [87,88]

CD20 CD3 [89]

EGFR CD3 [90]

MUC-1 CD3 [91]

P glycoprotein CD3 [92]

CD19 CD16 [93]

HLA-DR Y90 [94]

EGFR IGFR [95]

VEGFR2 VEGFR3 [96]

PSMA CD3 [97]

scDb CD19 CD3 [98]

Engodlin CD3 [99]

Endoglin Ad [100]

HMWMAA Ad [101]

CEA Ad [85]

CEA Prodrug [102]

TaDb CD19 CD3 [103,104]

scFv-CH3 ErbB2 CD16 [105]

IgG-scFv

scFv-IgG

scFv2-

TRAIL-R2 LTbR [106]

EGFR IGFR [107]

EGFR IGFR [108]

IGFR – [109]

IgG-scFv CD123 CD3 [110]

IgG-scFv CEA DOTA [111]

IgG-scFv EGFR Met [112]

F(ab’) 2 CD20 CD22 [113]

Multiple EGFR CD3 [114]

TriMab ErbB IGF1R [115]

bsFab (sdAb) CEA FcgRIIa [116]

scbsAb PSCA CD3 [117]

scFv-Fc-scFv PDGFRb VEGF [118]

BiTE EGFRvIII CD3 [119,120]

Allergic disease

IgG-like FceRI FcgRIIb (CD32B) [121]

F(ab’)2 IgE FcgRIIb (CD32B) [122]

IgG-like CCR3 CD300a [123]

Infectious disease

IgG-scFv HIV CCR5 epitope HIV CCR5 epitope [124]

VHH-CH LukS-PV LukF-PV [125]

scFv Malaria parasite

(MSP)

CD3 [126]

TaDb MP65 SAP-2 [127]

Inflammatory disease

IgG-scFv

scFv-Fc

TascFv-Fc

IL-17A IL-23 [128]

Table 1 (Continued )

Format Target 1 Target 2 Refs

Db FcgRIIb (CD32B) CD79b [129]

DVD-Ig IL-1a IL-1b [130]

DVD-Ig IL-12 IL-18 [15]

scAb CCR5 CD3 [131]

scFv IL-11b IL-17A [132]

Adapted from [11,26].

Abbreviations: Ad, adenovirus; Met, hepatocyte growth factor receptor; PDGFR,

platelet-derived growth factor receptor; CCR, chemokine CC receptor; CEA, carci-

noembryonic antigen; DOTA, 1,4,7,10-tetraazacyclododecane-N,N0,N0 0,N0 0 0-tetra-

acetic acid; EGFR, epidermal growth factor receptor; FAP, fibroblast activation

protein; HMWMAA, high molecular weight melanoma-associated antigen; IGFR,

insulin-like growth factor receptor; LTbR, leukotriene b receptor; MUC-1, Mucin 1;

PSCA, prostate stem cell antigen; PSMA, prostate specific membrane antigen;

SAP, secretory aspartyl proteinase; TRAIL-R2, TNF-related apoptosis inducing

ligand receptor-2; VEGFR, vascular endothelial growth factor receptor.
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targets CD20, a B lymphocyte membrane antigen, which is
a viable target for the treatment of B cell related malig-
nancies. Bi20 is generated by chemical heteroconjugation
of the CD-specific chimeric mAb, rituximab, and the CD3-
specific murine mAb OKT-3 (muromonab). It differs from
catumaxomab because it is composed of two whole immu-
noglobulins [12], and initial in vitro studies demonstrated
that Bi20 mediated efficient and specific lysis of B cell lines
compared to unarmed T cells or cell lines treated with
rituximab alone. In a pilot study, consisting of six patients
with recurrent B cell malignancies, promising results in-
dicate the therapeutic potential of Bi20. Phase I clinical
trials are currently underway to evaluate efficacy in
patients with relapsed or refractory CD20+ non-Hodgkin’s
lymphoma (NHL) [31], in addition to other indications [32–
35].

Bispecific antibodies for diagnostics
The ability of bsAbs to bind simultaneously to a specific
antigen and a given detection moiety enables them to
function as excellent bifunctional immunoprobes in diag-
nostic assays (Figure 3). Associated advantages of bsAbs
over traditional mAbs include: design flexibility and one-
step addition of reagents compared to traditional multi-
step procedures. Obviating the requirement to label a
reagent directly, such as a secondary antibody, reduces
the deleterious effects of chemical modification of either
the enzyme or the antibody. Antibodies are extremely
versatile and are incorporated into a variety of different
immunodiagnostic assay platforms, such as: microtiter
plate assay, swab, strip, filter disk, and ‘spinning-disc-type’
assays. bsAbs are attractive in such assays because they
simplify the detection steps and are currently used for the
development of simple, rapid, and highly sensitive immu-
noassays for the detection of bacterial and viral infectious
diseases and in cancer diagnostics.

In vivo cancer diagnostic imaging

In vivo cancer diagnostic imaging facilitates insight into
the molecular and functional characteristics of cancerous
tissue, which permits targeting, identifying, and assessing
several different types of tumors. bsAbs in cancer diagnos-
tic imaging have proven effective, particularly when
implementing a pretargeting strategy [24,36,37]. The pre-
targeting strategy enhances the sensitivity of imaging by
625



Table 2. rbsAbs in clinical trials

Name (format) Target 1 Target 2 Phase Refs

MDX-447 [F(ab0) 2] EGFR FcgRI I [133]

MM-111 (trimeric scFv) ErbB2 ErbB3 I–II [134]

DT2219ARL (dimeric scFv) CD19 CD22/DT390 I [22]

TF2 (Tri-Fab) CEA HSG I–II [135]

rM28 (scAb) Melanoma-associated proteoglycan CD28 I–II [136]

MT103 (BiTE) CD19 CD3 I–II [137]

MT110 (BiTE) EpCAM CD3 I [138]

SAR156597 (Tetravalent bispecific tandem Ig) IL-4 IL-13 I [139]

AFM13 (TandAb) CD30 CD16A I [140]

MEHD-7945A (bsmAb) EGFR HER3 I–II [141]

Ozoralizumab (Trivalent bispecific nanobody) TNF HSA II [142]

Adapted from [143].

Abbreviations: HSA, Human Serum Albumin; TNF, tumor necrosis factor.

Box 2. Immune defensive reactions
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elimination of background noise, as a consequence of
untargeted radioactivity, and reduces unintended toxicity.
In such a strategy, the bsAb is designed to bind to the
target antigen and a radiometal–chelate or hapten–pep-
tide complex (effector molecule). The pretargeting ap-
proach is a two-step imaging process in which the bsAb
is injected initially, and once excess antibody has cleared
from circulation, it is followed by injection of mono-divalent
radiolabeled haptens [38]. Animal model experiments have
shown that bsAbs are capable of an equivalent tumor
uptake compared to conventional radiolabeled antibodies
and have minimum accretion within a matter of minutes
rather than several hours or days. Additionally, the radio-
nucleotide is cleared rapidly from circulation and tissue
retention in the kidneys and liver was low. Positron emis-
sion tomography (PET) imaging approaches use 131I -la-
beled haptens after pretargeting with a bsAb, however, the
visualization of small malignant lesions remains problem-
atic [39]. To improve the ability to image such lesions, an
alternative strategy combines pretargeting with highly
specific, high-activity radiotracer-labeled polymers [40–
42]. bsAb complexes were utilized to pretarget PC-3 human
prostate cancer xenographs in SCID mice. These com-
plexes consisted of intact anti-diethylenetriaminepentaa-
cetic acid (DTPA) antibody or Fab-linked bombesin (Bom)
coupled via thioether bonds (Bom-bsCx or Bom-bsFCx).
Results indicated that the radiolabeled polymers accumu-
lated at the pretargeted sites and enabled visualization of
cancerous lesions as small as 1–2 mm. Additionally, meta-
static melanoma lesions in the lungs of mice were imaged
with a bsAb and 99mTc-DSPL (polylysine polymer conju-
gated to DTPA), succinylated, and labeled with 99mTc. The
use of bsAbs in cancer imaging has significantly enhanced
the quality and reliability of this technique. Furthermore,
Box 1. Advantages of the BiTE [144,145]

� 100–10 000-fold higher efficacy in tumor cell lysis relative to other

CD3-bispecific formats and monoclonal IgG1 antibodies.

� Induces target cell elimination by unstimulated peripheral T cells

without the need for T cell co-stimuli or T cell preactivation

regimens.

� Strictly targets cell dependent, polyclonal activation of most CD4+

and CD8+ T cells.

� High protein stability and homogeneity.
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atherosclerotic lesions as small as 4 mm were successfully
imaged in apolipoprotein E (apoE) knockout mice by use of
surrogate antigen-coated polystyrene beads pretargeted
with a bsAb F(ab0)2 � F(ab0)2 [43]. Within animal models,
bsAbs have been proven to be superior to mAbs in terms of
specificity, sensitivity, and signal intensity while main-
taining minimal signal background.

Infectious disease

Infectious-disease-causative agents include bacteria, vi-
ruses, parasites, and fungi. In the present ‘decade of the
vaccine’, the World Health Organization (WHO) attributes
9.5 million deaths annually to infectious diseases, which is
a significant socioeconomic burden on society. Global
healthcare systems use surveillance measures to control
the spread of infectious diseases, which are reliant on early
detection. Tuberculosis (TB) is caused by the highly resis-
tant bacterium Mycobacterium tuberculosis and particu-
larly affects those with a weak immune system, for
example, individuals infected with HIV. Although most
infections are asymptomatic and latent, one in ten infec-
tions eventually progresses to active disease, which if
untreated, kills >50% of those infected. The WHO reports
that of the 8.7 million cases of TB in 2011, there were 1.4
million deaths worldwide [44]. A rapid, sensitive, specific,
and inexpensive TB diagnostic for a POC setting is of
considerable value and importance for TB control. Current
methods of detection including sputum smear microscopy
(SSM) and bacterial culture do not facilitate early diagno-
sis. The bacterial culture method is considered to be the
gold standard for TB diagnosis, however, 2–6 weeks are
� Cytotoxic T cells, with their highly cytotoxic potential, abundance,

and ‘search-and-destroy’ function, are the most potent killer cells

of the human body. They are capable of effectively inducing

tumor cell lysis and apoptosis.

� Accessory cells target and eliminate tumor cells through pro-

cesses such as phagocytosis or apoptosis. Additionally, they have

the ability to release cytokines, which further stimulate the action

of T cells.

� Dendritic cells are capable of inducing long-lasting immunity

against cancerous tumors by processing and presenting tumor

cells and tumor cell derived material to the immune system.
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Figure 3. Diagrammatic representation of a generalized assay format for a

bispecific antibody (bsAb)-based immunoassay. The capture monoclonal
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its cognate antigen present in the test sample. Upon addition of the corresponding
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subsequently added substrate to a quantifiable signal or colored product. Adapted

from [7].
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required to obtain results. Through the development of
molecular assays including the interferon gamma release
assay (IGRA) [45] and nucleic acid amplification (NAA)
[46], early detection has improved. These approaches re-
quire significant expertise and infrastructure and as a
consequence are not suited for resource-limited areas.
Lipoarabinomannan (LAM) is an important non-protein
antigen of the bacterial cell wall, which is present in
different body fluids of TB-infected patients. A bispecific
mAb with specificity towards the LAM antigen and the
reporter molecule, horseradish peroxidase (HRPO), was
developed through hybrid-hybridoma technology. This
bsAb was incorporated into a simple low cost immnuos-
wab-based assay to detect the LAM antigen [47]. The limit
of detection of this assay for spiked synthetic LAM was
5.0 ng/ml in bovine urine, 0.5 ng/ml in rabbit serum, and
0.005 ng/ml in saline, and for bacterial LAM from M.
tuberculosis H37Rv, it was found to be 0.5 ng/ml in rabbit
serum [47]. The assay was further evaluated using 23
clinical serum samples collected from TB patients, of which
14 were positive and seven were negative in terms of anti-
LAM antibody titer. The assay exhibited 100% specificity
and 64% sensitivity (95% confidence interval) in a parallel
comparison with laboratory culture. In addition to good
specificity, visual results were obtained within 2 h of sam-
ple collection. This immunoassay was also evaluated in
another format to test the sensitivity of the assay using a
biotinylated CS-35 mAb. The transformation of the assay
from a bispecific-based format to a monoclonal-based for-
mat reduced the sensitivity of the assay. The use of this
bsAb, the first of its kind to detect any TB antigen, in the
immnuoswab assay provided enhanced sensitivity and
specificity [47], and the reported assay is particularly
suited to resource-limited areas, as a rapid tool for detect-
ing TB in resource constrained laboratory settings.

Hepatitis B

Hepatitis B is a significant health concern and viral hepa-
titis is a leading cause of liver cancer and commonly results
in liver transplantation. Hepatitis B virus surface antigen
(HBsAg) is the key screening target for detecting infected
individuals. Current approaches for HBsAg screening rely
on laboratory-based ELISA testing. A novel agglutination
test for hepatitis B infection uses an anti-HBsAg � anti-
human erythrocyte bsAb [48]. The Db format was devel-
oped by phage display, selecting scFv from red blood cells
and HBsAg-specific libraries. In human blood samples (712
clinical specimens), agglutination was observed in samples
containing HBsAg (100% specificity) and the test showed
97.7% sensitivity. The agglutination kinetics were HBsAg
concentration dependent with high viral loads leading to
agglutination in 1–2 min. Although the assay was specific
and sensitive, it did not have equivalent limits of detection,
compared to ELISA (10-fold difference), but operated with-
in the observed HBsAg concentration range for actively
infected individuals (5 ng/ml to 600 mg/ml) [48]. As a pri-
mary POC screening tool, the simple agglutination test is a
powerful approach to assist in the rapid screening for
hepatitis-B-infected individuals.

Escherichia coli

E. coli O157:H7 is considered to be a serious human
pathogen and is associated with bloody diarrhea (hemor-
rhagic colitis) and hemolytic uremic syndrome (HUS).
Current methods of detection of E. coli in food and water
focus on enrichment and microbial culture [49], which may
take 24–48 h to identify the organism. Other techniques
focus on molecular methods such as PCR, which despite the
sensitivity and rapid result retrieval capabilities, this
technique is limited by the requirement to isolate DNA
from samples. A more sensitive, rapid, and reliable diag-
nostic technique for the identification of E. coli is essential
for appropriate detection and management to prevent
disease outbreaks. To develop a highly sensitive bsAb-
based assay for E. coli O157:H7 in water samples, a
hybridoma secreting a mAb specific for E. coli O157:H7
whole bacteria and E. coli O157:H7 lipopolysaccharide
(LPS) was fused with an anti-HRPO mAb-secreting hy-
bridoma to generate a quadroma. The resulting bsAb was
incorporated into a sandwich ELISA [50], allowing rapid,
one-step detection of E. coli O157:H7. In this assay the
anti-E. coli O157:H7 mAb was used as the capture reagent
to enrich bacteria at the surface followed by bsAb mediated
detection. The detection sensitivities of this assay were
determined to be 100, 750, and 500 CFU/ml for tap water,
lake water, and apple juice, respectively, in a microtiter-
plate-based assay. A marked improvement in sensitivity
for E. coli O157:H7 was achieved using both immunofilter
and immunomagnetic ELISA formats, with detection
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limits of 1 CFU/ml and 10 CFU/ml, respectively. Addition-
ally, the specificity of the assay was confirmed, because it
did not detect other bacterial strains such as Salmonella,
Pseudomonas, and non-pathogenic E. coli. This novel,
bsAb-based assay had high specificity with low background
and was both rapid and ultrasensitive. A major advantage
of this assay, in comparison to current assays, was removal
of the requirement for amplification steps.

Bordetella pertussis

B. pertussis is the causative bacterium of pertussis (whoop-
ing cough), which affects individuals of adolescent age, and
there were an estimated 300 000 pertussis-related deaths
in children (2008). Despite the availability of a vaccine, it
has become a major health concern in recent years. Esti-
mates from the WHO suggest that in 2008 there were 16
million cases of pertussis, of which 95% were in developing
countries. Similar to many other bacterial infections, early
detection is critical in order to prevent the spread of
infection and to ensure correct treatment of infected indi-
viduals. Currently, there are two methods for detecting
this bacterium. The first requires that clinical nasopha-
ryngeal swab or aspirate samples are cultured for 3–7 days
[51]. The second method involves the use of a fluorescently
labeled mAb directed against an antigenic LPS molecule,
which is present on the outer membrane of B. pertussis.
Both assays have limitations regarding sampling, operator
training, and sensitivity, which restrict their use in re-
source-constrained locations [52]. A ‘molecular velcro’
sandwich assay for the detection of B. pertussis was found
to be useful for the analysis of clinical samples, immuno-
chemical structural studies, and for the serological char-
acterization of B. pertussis LPS [51]. The bsAb was
produced by fusion of the anti-B. pertussis LPS mAb-se-
creting hybridoma with an anti-HRPO mAb-secreting hy-
bridoma. The anti-LPS-specific mAb was capable of
binding to heat-killed B. pertussis BP347 in both buffer
and sample matrix (spiked nasopharyngeal aspirates) [51].
The assay proved highly sensitive with a lower limit of
detection of �5 CFU. Interestingly, the binding of the B.
pertussis to the anti-B. pertussis LPS mAb-coated solid
phase was found to be irreversible, despite significant
washing suggesting that the assay works as a form of
‘velcro molecular’ assay. This immunoassay achieved ul-
trasensitive detection of B. pertussis due to the availability
of multiple LPS molecules on the bacterial surface for bsAb
binding. Additionally, to facilitate ease of use and rapid
detection, the immunoassay was tested in an immunoswab
format permitting POC detection of B. pertussis in a clini-
cal setting.

Staphylococcus aureus thermonuclease (TNase)

S. aureus is the most frequent cause of wound infection
among hospitalized patients, with studies suggesting that
it is present in 43% of infected leg ulcers [53]. The major
biomedical problem of chronic wound healing and the
continuing emergence of antibiotic-resistant species have
become major health concerns. A novel fluorescence-based
immunoassay enabled qualitative detection of S. aureus
TNase to confirm the presence of S. aureus in vitro [53].
Rhodamine and fluorescein-labeled hemocyanin from
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Megathura crenulata (KLH) were prepared as immuno-
conjugates containing a sensitive fluorescent reporter moi-
ety. A bsAb that both specifically quenched the
fluorescence of the reporter conjugate and bound the
TNase target antigen was produced using cell fusion tech-
niques. In that study two KLH-fluorophore/TNase-specific
antibody series were generated, with each member of the
series specific to an epitope on either the KLH or the
fluorescent moiety of the reporter conjugate. The decrease
in fluorescence emission intensity at 580 nm/520 nm for
the rhodamine and fluorescein conjugates, respectively,
was analyzed with each bsAb of the series, and quenching
was observed upon antibody–antigen binding [53]. In-
creased fluorescence intensity observed upon TNase bind-
ing was demonstrated with antibodies that have a higher
affinity for the bacterial antigen than the fluorescent re-
porter. The specificity of the assay for S. aureus was also
tested using the Pseudomonas aeruginosa LPS antigen as
a control, which demonstrated that variations in the fluo-
rescence quenching effect did not exceed 4%. These pre-
liminary investigations suggest a highly sensitive assay
with potential applications in biological specimens with a
limited risk of false positive results.

Severe acute respiratory syndrome (SARS)

SARS is a serious form of pneumonia and affected >8000
people worldwide, spreading to 30 countries across five
continents, in the 2002–2003 outbreak. SARS coronavirus
(SARS-CoV) is the responsible agent and was transmitted
from wild animals to the human population [54,55], and
delayed identification of this virus aided contagion. The
SARS virus is detected in humans by RT-PCR [56,57]
indirect fluorescence assay, which detects anti-SARS-
CoV antibodies in body fluids [58] and by isolation of
SARS-CoV from clinical samples [59,60]. Such viral cul-
turing is time consuming, tedious and insensitive, there-
fore, PCR- and antibody-based detection methods are the
predominant techniques adopted for surveillance. A highly
sensitive and rapid bsAb-based immunoswab assay was
developed for the early detection of SARS-CoV. This assay
was superior to the traditional monoclonal ELISA-based
assay [61] and detected the viral antigen nucleoplasmid
protein (NP). Three different mAbs that recognize various
epitopes on the NP antigen and the anti-HRPO mAb were
utilized to generate the anti-SARS-CoV NP � anti-HRPO
bsAbs. This immunoswab assay showed NP detection lim-
its of 10 pg/ml in saline, 20–200 pg/ml in pig nasopharyn-
geal aspirates, and 500 pg/ml in rabbit serum, thus,
demonstrating the bispecific detection approach as super-
ior in terms of sensitivity and specificity. The immunoswab
assay facilitated rapid detection (�45 min) [61] and was
robust, potentially permitting screening of numerous
infected individuals within a short period of time, and
hence, assisting to contain viral infection. Furthermore,
by targeting the SARS-CoV spike protein (S1) in both mAb-
and bsAb-based assays, to identify SARS infected individ-
uals, it was also demonstrated that the bsAb detection
reagent could improve the sensitivity of the assay from
37 to 19 ng/ml [62].

Although these examples demonstrate the utility of
bsAbs for diagnostic applications, there are several



Box 3. Outstanding questions

� Will the multitude of bsAbs formats provide comparable pre-

clinical information?

� Is the Triomab or BiTE or sdAb the way forward for human

therapeutics?

� Will the paucity of diagnostic bispecifics be improved by a single

bispecific format coming to the fore in the therapeutic arena?

� Can bispecific antibody deliver superior, simplified diagnostics

with application in low resource settings, through simplification

of the assay capture and/or detection steps?
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shortcomings related to the use of quadromas including
yield, format uniformity, and purification. The advent of
recombinant formats is of considerable value to overcome
these limitations. It is anticipated that bsAb formats in the
therapeutic arena can be meaningfully applied to diagnos-
tics as the development of next generation diagnostic
devices for POC, decentralized, and aged care applications
demand superior diagnostic reagents.

Concluding remarks
The bsAb stable is large with big pharmaceutical compa-
nies investing over US$7.5 billion in bsAbs since 2009 [27].
The front-runners have yet to clearly emerge but the
increasing confidence in bsAbs over the past few years
has resulted in a plethora of bsAb formats. In combination
with highly innovative molecular biological approaches,
the momentum gained through clinical success is prompt-
ing the emergence of additional formats. In many cases
these may prove ineffective for therapeutic applications,
resulting in a high attrition rate. However, the therapeutic
arena has seen significant advancements in bsAb-based
agents, which culminating in a single bsAb achieving
regulatory approval. This bsAb, catumaxomab, does not
extend far beyond the traditional IgG format but to access
truly unique functions many more original and ground-
breaking approaches will be required. Similar to the de-
velopment of human mAb therapies, the efficacy and
safety of simultaneous engagement of multiple disease
targets will take considerable research and potentially,
considerable time, to show marketplace dominance [63].
Current clinical trials are in progress and larger numbers
of entities are expected to enter clinical evaluation in the
future. It is still unclear if such smart retargeting strate-
gies will be successful but bsAbs are backed as ‘hot stock’ at
present due to their real potential to have a significant
impact on human disease treatment and management
[27]. Although the next big blockbuster therapy may well
be a bsAb, the application of such constructs to diagnostics
is an attractive alternative to current strategies, which
has real potential to pave the way for improved, next-
generation diagnostics with applications in low-resource
and POC settings. bsAbs in simple immunodiagnostic
tests are applicable to such settings and can assist in
ensuring these tests meet the ASSURED principles
[64]. Regardless of the application there are some common
issues that will need to be addressed (Box 3) including
manufacturability, scale, and stability, with issues relat-
ing to immunogenicity, pharmacokinetics, and biodistri-
bution being of particular concern for therapeutics [65].
The bsAb tale is moving beyond two specificities and into
chapters that will vastly improve their therapeutic appli-
cations and will also significantly impact on current diag-
nostic challenges.
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