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Simple Summary: Studies have shown that alternative splicing (AS) has been utilized in a wide
variety of life processes. However, there are very few studies on AS during germ cell development. In
this study, we preliminarily investigated the variation of variable shear events during the formation
of chicken germ cells through the RNA-seq data analysis of embryonic stem cells (ESCs), gonad
PGCs (gPGCs), and spermatogonia stem cells (SSCs), and the critical AS mode for several crucial
stage-specific genes, which were identified during germ cell development. The results of this study
lay a theoretical foundation for further analysis of the regulation mechanism of key genes involved
in germ cell formation.

Abstract: Alternative splicing (AS) is a ubiquitous, co-transcriptional, and post-transcriptional
regulation mechanism during certain developmental processes, such as germ cell differentiation.
A thorough understanding of germ cell differentiation will help us to open new avenues for avian
reproduction, stem cell biology, and advances in medicines for human consumption. Here, based
on single-cell RNA-seq, we characterized genome-wide AS events in manifold chicken male germ
cells: embryonic stem cells (ESCs), gonad primordial germ cells (gPGCs), and spermatogonia stem
cells (SSCs). A total of 38,494 AS events from 15,338 genes were detected in ESCs, with a total of
48,955 events from 14,783 genes and 49,900 events from 15,089 genes observed in gPGCs and SSCs,
respectively. Moreover, this distribution of AS events suggests the diverse splicing feature of ESCs,
gPGCs, and SSCs. Finally, several crucial stage-specific genes, such as NANOG, POU5F3, LIN28B,
BMP4, STRA8, and LHX9, were identified in AS events that were transmitted in ESCs, gPGCs, and
SSCs. The gene expression results of the RNA-seq data were validated by qRT-PCR. In summary, we
provided a comprehensive atlas of the genome-wide scale of the AS event landscape in male chicken
germ-line cells and presented its distribution for the first time. This research may someday improve
treatment options for men suffering from male infertility.

Keywords: alternative splicing (AS) events; chicken (Gallus gallus); male germ cell differentiation;
single-cell RNA-seq

1. Introduction

Alternative splicing (AS) is an important, co-transcriptional, and post-transcriptional
regulatory mechanism that results in multiple mRNA and protein isoforms from a single
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gene. Protein isoforms show different or mutually antagonistically functional and struc-
tural characteristics, which play critical roles in cellular processes, such as cell signaling and
differentiation [1–3]. Recent high-throughput analyses have shown their ubiquitousness
in nematode worm genes (Caenorhabditis elegans, 71%), human genes (Homo sapiens, 95%),
mouse genes (Mus musculus, 57%), cow genes (Bos taurus, 21%), etc. [4–6]. The classical
AS event types include the alternative 5′ splice site (A5′), alternative 3′ splice site (A3′),
exon-skipping (ES), intron retention (IR), and alternative exon (AE), which were involved
in the mRNA transcription from one gene via the spliced site of pre-mRNA [7]. Therefore,
AS is the fundamental cause of significantly fewer genes than protein species in eukaryotes.
Generally, AS events are involved in many physiological processes, as well as cell differen-
tiation, apoptosis, and development. Abnormal AS events will cause deviant processes by
changing gene expression products [8–11]. Hence, studying AS in biological processes is
vitally important and essential.

Germ cells are exclusive cells which are capable of bringing genetic information to
the next generation and sustaining life. Their regulation processes are subtle and intri-
cate during cell differentiation [12–14]. It is noted that the formation, migration, and
differentiation of germ cells are current hotspots in animal genetics, breeding, and repro-
duction research [15–17]. Moreover, germ cells can be isolated, cultured, and substituted
for embryonic stem cells (ESCs) in the treatment of diseases (such as infertility and organ
regeneration) without ethical and immune rejection complications [18,19]. Especially in
chickens (Gallus gallus), the unique migration pattern of primordial germ cells (PGCs)
and advantages of embryonic development in ovum make germ cell isolation easier, and
abundant germ cells could be applied to advanced stem cell research and transgenic animal
production [20,21]. In addition, chickens are a classic avian experimental model, and they
have been used extensively in developmental animal biological research [22,23]. For these
reasons, understanding of chicken germ cell biology has not only accelerated the practical
application of avian reproduction biology and fundamental stem cell research, but also
assisted human medicine and medical applications (including various birth defects, germ
cell tumor, and drug target screening). The utilization of these methods allows researchers
and scientists to avoid the ethical constraints of other methods [24]. Hence, the study of
chicken germ cell differentiation is an extremely urgent need.

Recent evidence suggests that AS events are an essential and vital factor in develop-
mental biology and have been shown to play important roles in testis proteome diversi-
fication and male germ cell differentiation via numerous mechanisms [25–27]. However,
there has been a scarcity of reports regarding AS events studied in chicken germ cells, and
the distribution and features of these reports are still unclear. Now, single RNA-seq and
relevant bioinformatic analysis methods are powerful and accurate tools to characterize AS
events in an entire genome [28,29]. Therefore, we screened relevant AS events related to
the differentiation of chicken ESCs, gPGCs, and spermatogonia stem cells (SSCs) through
single-cell RNA-seq. The primary aim of our study was to determine the distribution of AS
events that participate in the development and differentiation of male germ cells. We went
further by analyzing AS event genes to construct an interaction network and identify key
pathways in bioinformatics to sharpen our insight into reinterpreting specific pathways.
Finally, we investigated AS events and expression patterns of key genes in ESCs, gPGCs,
and SSCs. This study not only provides a comprehensive view of AS events in chickens,
but also highlights novel insights into potential roles of AS events in the study of male
germ cell differentiation.

2. Materials and Methods

2.1. Materials

Chicken eggs were collected from Rugao Yellow chickens (from the Poultry Institute,
Chinese Academy of Agricultural Sciences, Yangzhou, China). All eggs were incubated at
37 ◦C and 75% relative humidity for 4.5 days or 18.5 days.
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2.2. Cells and RNA-seq

The method of chicken ESC, gPGC, and SSC isolation referred to the previous re-
port [30,31]. Briefly, ESCs was separated from newly laid fertilized eggs (blastoderm, E0,
HH stage X) and digested with trypsin-EDTA (0.25%) for 3 min. gPGCs were isolated from
eggs which had been incubated for 4.5 days (gonads, E4.5, HH stage 28–30). Genital ridges
from embryos were collected and cut up, followed by digestion with trypsin-EDTA (0.25%).
SSCs were isolated from eggs which had been incubated for 18.5 days (testis, E18.5, HH
stage 44)). Testes from male embryos were collected and cut up, followed by the digestion
with Collagenase I and trypsin-EDTA (0.25%). Isolated cells were filtered and prepared for
further RNA extraction.

Cells were collected and then treated with a SMART-Seq v4 ultra low input RNA kit
for sequencing (Takara, Dalian, China, 634850). The RNA from each sample was used
for cDNA synthesis and sequencing. The RNA library pools for three kinds of cells were
established following the protocol of Illumina Hiseq2000 PE150, and the experiments were
performed at the Novogene Company (Beijing, China).

2.3. RNA-Seq Reads Mapping

Filtering and quality control checks of raw reads from RNA-seq were performed
utilizing the Fast QC program (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/, accessed on 1 August 2019). The clean reads were mapped to the chicken reference
genome (Gallus gallus, galGal4.0) using Tophat (version 2.1.1) [32]. The mapped reads
were assembled into contigs with Cufflinks (version 2.2.1). The expression value for each
gene was calculated and normalized to FPKM (fragments per kilobase of exon per million
fragments mapped) values using Cuffnorm (version 2.2.1) in the Cufflinks package [33].

2.4. Identification, Classification, and Quantification of AS Events

After utilizing Cufflinks, the identification and quantification of AS events was ac-
complished using ASprofile [34]. Initially, the extract AS program compares all pairs of
transcripts within a gene to determine exon–intron structural differences that indicate an
AS event. The following types of events have been implemented: exon skipping (SKIP),
cassette exons (MSKIP), alternative transcript start and termination (TSS, TTS), retention of
single or multiple introns (IR, MIR), and alternative exons (AEs). Additionally, variations
on these classes have allowed for some wiggle room at the boundaries of the surrounding
features, and they have been reported and prefixed with an X. Therefore, we classified these
AS events into 5 types: alternative 5′ splice Site (A5′, including TSS and XTSS), alternative
3′ splice Site (A3′, including TTS and XTTS), exon skip (ES, including SKIP, MSKIP, XSKIP,
and XMSKIP), retained intron (RI, including IR, XMIR, XIR, and XMIR), and alternative
exon (AE, including AE and XAE). Finally, the extract-as-fpkm program calculates the frag-
ments per kilobase million (FPKM) of each event from those of transcripts harboring an
event in each sample. The results can be used to observe trends in dynamics of AS profiles.

2.5. Intersections and Interaction Network Analysis of the AS Event Gene

The intersections (Upset plot and Veen plot) between different types of AS events were
also investigated and illustrated by employing the UpSetR package (version 1.4.0, https:
//www.r-project.org/web/packages/UpSetR, accessed on 22 May 2019) of R software
(version 3.6.2, https://www.r-project.org/, accessed on 12 December 2019). After selection
by Veen plot, the genes of AS events were submitted to String (version 11.0, https://string-
db.org/, accessed on 19 January 2019) for the protein–protein interaction (PPI) analysis.
Cystoscope (version 3.7.2, https://cytoscape.org/, accessed on 5 September 2019) was then
applied to illustrate and identify neighborhoods where proteins were densely connected in
the PPI network.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.r-project.org/web/packages/UpSetR
https://www.r-project.org/web/packages/UpSetR
https://www.r-project.org/
https://string-db.org/
https://string-db.org/
https://cytoscape.org/
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2.6. GO Enrichment and KEGG Pathway Analysis of AS Events Gene

Gene ontology (GO) enrichment analysis was performed using DAVID (v6.8, https:
//david.ncifcrf.gov/, accessed on 1 September 2020) [35,36], and GO terms were consid-
ered as statistically significant with p-values < 0.05. GO terms have been classified by the
GO database (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2-go.gz, accessed on 10 May 2017),
which is an international standard gene functional classification system. In addition,
BinGO, which illustrates relationships among GO terms, was explained using Cytoscape
3.7.2 version [37]. The Kyoto Encyclopedia of Genes and Genomes (KEGG) helps re-
searchers to better understand the biological functions of genes based on large-scale molec-
ular datasets (http://www.genome.jp/kegg/, accessed on 10 May 2017). In this study, the
enrichment of KEGG was analyzed by KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/kobas3
/annotate/, accessed on 20 September 2018) and a p-value < 0.05 was set as the cutoff
for significantly enriched KEGG terms. Illustrations were performed through the ggplot2
package in R [38].

2.7. RNA Preparation and RT-qPCR

Isolated cells were homogenized using TRIzol, and the total RNA was isolated accord-
ing to the manufacturer’s instructions (QIAGEN, Beijing, China, DP424). qRT-PCR was
performed using the FastKing One-Step RT-PCR Kit with SYBR green (QIAGEN, Beijing,
China, KR123), and the mRNA levels were determined by a CFX-Connect Real-time PCR
detection system (BIO-RAD, Hercules, CA, USA, 7500fast). Quantification results were
normalized to the relative housing keeping gene (GAPDH) using the 2-∆∆Ct method. The
sequences of qRT-PCR primers are listed in Table 1.

Table 1. Sequences of qRT-PCR primers.

Gene Transcript ID Primer (5′-3′) Title 3

NANOG ENSGALT00000044516
F: TACCCCAGACTCTGCCACTA 163 bp
R: CTTCTGGCTCTGAAACCGC

POU5F3 ENSGALT00000043197
F: GATGCGCCGACCTCAGAG 112 bp
R: CATAGAGCGTGCCCAGAG

LIN28B ENSGALT00000044077
F: CAATGTGAGGATGGGCTTCG 220 bp
R: ACTTCCTAAACAGGGGCTCC

BMP4 ENSGALT00000020316
F: GATCTCTACCGGCTCCAGTC 174 bp

R: GTTGAAGACGAAGCGGATCC

STRA8 ENSGALT00000038151
F: TCCACGGCTATTTCACACCT 242 bp

R: TCAAGGAAACCAGCAGCAAC

LHX9 ENSGALT00000003480
F: GAACTCACCTGCTTTGCCAA 181 bp
R: GAGTCTTGTTGCAGGTGGTG

GAPDH ENSGALT00000023323
F: TGGGAAGCTGTGGAGAGATG 166 bp
R: GCAGGTCAGGTCAACAACAG

3. Results

3.1. The AS Events during Male Chicken Germ Cell Differentiation

To study AS events in male chicken germ cell differentiation, we performed genome-
wide RNA-seq for ESCs, gPGCs, and SSCs isolated from chicken embryonic blastoderms
(E0, HH stage X), gonads (E4.5, HH stage 28–30), and testes (E18.5, HH stage 44), respec-
tively (Figure 1a). Our results showed that the sequencing of the three cells transcriptome
provided 195.7 million reads of ESCs, 170.1 million reads of gPGCs, and 143.2 million reads
of SSCs. After quality control and mapping to the entire annotated chicken genome (galGal
4.0), 28.7%, 31.47% and 28.13% mapped splice reads were observed in ESCs, gPGCs, and
SSCs, respectively (see Figure 1b). To refine and explore AS event changes during germ
cell differentiation, we divided AS events into alternative 5′ splice site (A5′), alternative
3′ splice site (A3′), exon skip (ES), retained intron (RI), and alternative exon (AE) (see
Figure 1c). In ESCs, a total of 38,494 AS events from 15,338 genes were detected, indicating

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
ftp://ftp.ncbi.nih.gov/gene/DATA/gene2-go.gz
http://www.genome.jp/kegg/
http://kobas.cbi.pku.edu.cn/kobas3/annotate/
http://kobas.cbi.pku.edu.cn/kobas3/annotate/
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that each gene might have had 2–3 AS events on average. However, 48,955 AS events
from 14,783 genes and 49,900 AS events from 15,089 genes were found in gPGCs and SSCs,
respectively. This indicated an average of 3–4 AS events from each gene, which was a
notably higher frequency than that in ESCs (see Table 2). In detail, most AS events detected
during germ cell differentiation were A5′ and A3′ followed by ES, RI, and AE, which
further implies that gPGCs and SSCs had a higher frequency of AS events than ESCs across
all five kinds of AS events, especially ES, RI, and AE (see Figure 1d). Moreover, ES, RI, and
AE were much less prevalent than A5′/A3′ in three germ cell types, which suggests that
A5′/A3′ are major AS events during chicken male germ cell differentiation.
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Figure 1. AS events during chicken male germ cell differentiation. (a) ESCs were isolated from the blastoderm of fertile
eggs at E0 (HH stage X). gPGCs were isolated from chicken gonads at E4.5 (HH stage 28–30), and SSCs were isolated from
chicken testis at E18.5 (HH stage 44). (b) The overview of RNA-seq data analysis pipeline. (c) Representative model for five
types of AS events, including alternative 5′ splice site (A5′), alternative 3′ splice site (A3′), exon skip (ES), retained intron
(RI), and alternative exon (AE). (d) Numbers of AS events and involved genes during male chicken germ cell differentiation.

Table 2. The identification of AS events in chicken ESCs, gPGCs, and SSCs.

AS Classification
ESCs gPGCs SSCs

AS Events Gene AS Events Gene AS Events Gene

Alternative 5′ Splice Site (A5′) 16,741 14,560 18,697 12,639 19,391 13,402
Alternative 3′ Splice Site (A3′) 16,273 14,609 17,217 12,874 17,515 13,601

Exon Skip (ES) 2964 1412 7002 2487 7212 2605
Retained Intron (RI) 1476 649 3564 1271 3186 1169

Alternative Exon (AE) 1040 486 2475 995 2596 1113

3.2. AS Event Distribution Analysis during Male Chicken Germ Cell Differentiation

To investigate the splicing feature of each germ cell, we generalized the common gene
distribution of AS events during male germ cell differentiation. The results showed that
the A5′/A3′ gene group contained 12,453, 8081, and 9031 genes in ESCs, gPGCs, and SSCs,
respectively. This was the intersection group with the largest number of genes involved in
two types of events. However, the A5′/A3′/ES and AT groups contained 749 and 390 genes
which followed the A5′/A3′ group in ESCs. In gPGCs, the following groups were the
A5′/A3′ groups, which contained 1593 and 1338 genes, respectively. Additionally, SSCs,
accounting for 1413 and 1175 genes, were contained in the A5′/A3′/ES group, and the
A3′ group followed the A5′/A3′ group. In each type of male germ cell, different splicing
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features were present; more details can be found in Figure 2 and Tables S1–S3. Overall, the
male germ cell exhibited different distribution characteristics of AS events, suggesting that
AS is involved in the male germ cell differentiation.
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3.3. A Cell-Type-Specific Spliced Gene in ESCs, GPGCs, and SSCs

To find out the potential influence of AS in male germ cell gene expressions, we
compared the total gene and spliced gene expression patterns in ESCs, gPGCs, and SSCs.
They shared a similar expression pattern (see Figure 3a; Tables S4 and S5). In addition to
the expression pattern comparison at the gene level, we studied differentially spliced genes
during the male germ cell differentiation and compared AS genes of three germ cells. Their
overlap had 14,168 genes, and 222, 83, and 79 of these genes were singlehandedly present
in ESCs, gPGCs, and SSCs, respectively (see Figure 3b). To determine whether the genes
were affected by male germ cell differentiation, we analyzed these cell-specific gene groups.
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The network results revealed that ESCs might contain four interaction networks, which
include hub genes at MYC, HOXA, RARS, etc. However, the GPGCs and SSCs may exhibit
fewer networks and hub genes (see Figure 3c). Taken together, these results imply that
differentially spliced genes appear in male germ cell differentiations.
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3.4. Function Enrichment Results of Spliced Genes during Male Germ Cell Differentiation

To verify the function of these spliced genes, we performed GO and KEGG pathway
enrichment analyses universally for the process of spliced genes during male germ cell
differentiation. In total, 22 first-class GO terms were significantly identified: 7 GO terms
were enriched in biological processes, including cellular process (GO:0009987), develop-
mental process (GO:0032502), and metabolic process (GO:0008152). Additionally, we found
10 and 5 GO terms in the cellular component and molecular function parts, respectively
(see Figure 4a, Table S6). Moreover, GO terms such as cellular process (GO:0009987), de-
velopmental process (GO:0032502), and metabolic process (GO:0008152) stand out, which
play important roles in the biological process (Figure 4b). A total of 166 KEGG pathways
were significantly enriched by the overall spliced genes (Table S7). The top 30 pathways
are shown in Figure 4c, containing metabolic pathways (gga01100), endocytosis (gga04144),
MAPK signaling pathway (gga04010), calcium signaling pathway (gga04218), Wnt signal-
ing pathway (gga04310), and spliceosome (gga03040) (Figure 4c). These results indicate
that spliced genes widely exist in the cell differentiation process.

3.5. Validation of AS Events and Crucial Gene Expression

Even previous results showed that spliced genes have similar expression patterns to
total genes, but details of the relationship between AS events and spliced genes are still
unknown. We displayed AS events from six genes which play a crucial role in male chicken
germ cell differentiation. NANOG and POU5F3, highly expressed in ESCs, exhibited A5′

and A3′ events [39,40]. The LIN28B had more types of AS events in gPGCs, and both of the
BMP4 had specific expression in gPGCs [41,42] (see Figure 5a). STRA8 and LHX9 exhibited
high expressions in SSCs and showed different patterns of AS events during male germ cell
differentiation [43,44] (see Figure 5b). Transcript levels of these genes in ESCs, gPGCs, and
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SSCs were measured by qRT-PCR. The consistent results from both qRT-PCR and RNA-Seq
suggested the reliability of RNA-Seq data and its accuracy in quantifying gene expressions
in male germ cells (see Figure 5c).
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Figure 5. Validation of AS events and crucial gene expression. (a) The gene transcript structure and AS events of crucial
genes in male chicken germ cell differentiation. The red square is exon, the different color cycles are AS events, and the
purple arrow represents the qRT-PCR primers at the constitutive exon loci. (b) The gene expression of RNA-seq data. (c) The
gene expression of qRT-PCR results and correlation analysis.

4. Discussion

The phenomenon of AS was discovered in the twentieth century, but it has not been
systemically analyzed [45]. Advances in high-throughput sequencing provide an efficient
technology to acquire AS events at the genome-wide level [46]. In this study, we reported
and characterized genome-wide AS events during male chicken germ cell differentiation
through a systemic comparison of single-cell RNA-seq. Results showed that AS events,
especially A5′/A3′ events, are comprehensively involved in the process of male germ cell
differentiation, while showing different patterns in ESCs, gPGCs, and SSCs. Functional
enrichments in GO and KEGG pathways are closely related to cell differentiation. Moreover,
some crucial gene expression patterns are differential AS events. Collectively, all these
results provide a glimpse of dynamic involvements and systematical profiling of AS events
in chicken ESCs, gPGCs, and SSCs, which might arouse the research use of numerous,
potential biomarkers and AS events in the study of male germ cell differentiation.
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A diverse splicing pattern in one gene leads to a variety of isoforms and expression
patterns, which makes AS and its regulation mechanism more complex in the germ cellular
process [47]. In this study, a total of 38,494 AS events out of 15,338 genes in ESCs, 48,955 AS
events out of 14,783 genes in gPGCs, and 49,900 out of 15,089 genes in SSCs were detected.
This is significant, in that AS is a commonly used process during male chicken germ
cell differentiation. In addition, all cells generated the largest number of A5′ and A3′,
while the smallest number of AEs was generated. It is possible that the A5′/A3′ is major
factor in determining the transcript splicing, thus each alternative transcript is somewhat
defined by the A5′/A3′. After comparing the difference of AS preference through ESCs,
gPGCs, and SSCs, five types of AS events were increased, and ES, RI, and AE were all
significantly enhanced in gPGCs and SSCs. The difference in AS has also been described
in mammalian spermatogenesis, giving support to the agreement that changes in AS may
contribute to male germ cell differentiation [48,49]. Moreover, the distribution of AS events
demonstrated differential AS event patterns in ESCs, gPGCs, and SSCs. It is obvious that
the splicing features of AS events may lead to direct differentiation.

To further understand the gene function affected by AS through influencing male
chicken germ cell differentiation, we performed PPI, GO, and KEGG analyses of AS genes,
and found that they were enriched in some biological processes, such as the developmental
process, cellular process, and metabolic process. These results further suggest that AS
events play an important role during male chicken germ cell differentiation. An interesting
finding is that the metabolic process was not only enriched in GO terms, but also highly
enriched in KEGG pathways. Similarly, many reports conclude that metabolic changes
accompany the SSC differentiation [50,51]. We suspect that AS events induce the pathway
transmission during male germ cell formation via metabolic transform. In addition, the
calcium signing pathway, a key player in cell differentiation and development, was found
to be regulated by some spliced factors in our study [52,53]. Being aware of many pathways,
such as Wnt, MAPK, and mTOR, involved in the chicken germ cell formation process, we
observed that abundant genes within these crucial pathways exhibited AS events. The
implication is that AS events may affect germ cell differentiation via these pathways [54–56].
Moreover, germ cell-specific genes such as NANOG, POU5F3, LIN28B, BMP4, STRA8,
and LHX9, which act as stage markers of germ cells, were developmentally regulated
and stage-specific. In our results, the expression of these genes was associated with AS
events transmitted through male chicken germ cell differentiation [39–44]. AS events may
regulate the expression of these genes and subsequently impact the differentiation and
developmental cell process. Taken together, AS is a complex and important regulatory
mechanism, which may play a crucial role during male germ cell differentiation.

5. Conclusions

In summary, we have provided a comprehensive atlas on the genome-wide scale of the
AS event landscape in male chicken germ-line cells (ESCs, gPGCs, and SSCs) and presented
the distribution of these AS events. AS events have reportedly been involved in the germ
cell differentiation process since they were first discovered. This helps us understand how
AS events are associated with the male germ cell differentiation process, and to possibly
improve treatment options for male infertility in animals and humans.
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10.3390/ani11051469/s1, Table S1: The AS event analysis in chicken ESCs, Table S2: The AS event
analysis in chicken gPGCs, Table S3: The AS event analysis in chicken SSCs, Table S4: The total gene
mRNA expression (FPKM) of ESCs, gPGCs, and SSCs, Table S5: The spliced gene mRNA expression
(FPKM) of ESCs, gPGCs, and SSCs, Table S6: The GO term analysis of AS event genes during male
chicken germ cell differentiation, Table S7: The KEGG pathway analysis of AS event genes during
male chicken germ cell differentiation.
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