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Abstract: In the field of environmental health risk assessment and management research, heavy
metals in soil are a constant focus, largely because of mining and metallurgical activities, and other
manufacturing or producing. However, systematic vulnerability, and combined research of social
and physical vulnerability of the crowd, have received less attention in the research literature of
environmental health risk assessment. For this reason, tentative design modelling for comprehensive
environmental health vulnerability, which includes the index of physical and social vulnerability, was
conducted here. On the basis of experimental data of heavy-metal pollution in soil and vegetables,
and population and societal survey data in Daye, China, the physical, social, and comprehensive
environmental health vulnerabilities of the area were analyzed, with each village as an evaluation unit.
First, the polluted and reference areas were selected. Random sampling sites were distributed in the
farmland of the villages in these two areas, with two sampling sites per village. Then, 204 vegetable
samples were directly collected from the farmland from which the soil samples had been collected,
composed of seven kinds of vegetables: cowpea, water spinach, amaranth, sweet potato leaves,
tomato, eggplant, and pepper. Moreover, 400 questionnaires were given to the local residents in these
corresponding villages, and 389 valid responses were obtained. The results indicated that (1) the
average physical vulnerability values of the population in the polluted and reference areas were 3.99
and 1.00, respectively; (2) the village of Weiwang (WW) had the highest physical vulnerability of
8.55; (3) vegetable intake is exposure that should be paid more attention, as it contributes more than
90% to physical vulnerability among the exposure pathways; (4) arsenic and cadmium should be
the priority pollutants, with average physical vulnerability value contributions of 63.9% and 17.0%,
respectively; (5) according to the social vulnerability assessment, the village of Luoqiao (LQ) had
the highest social vulnerability (0.77); (6) for comprehensive environmental health vulnerability, five
villages near mining activities and two villages far from mine-affected area had high physical and
social vulnerability, and are the urgent areas for environmental risk management. In order to promote
environmental risk management, it is necessary to prioritize identifying vulnerable populations in
the village-scale dimension as an innovative discovery.

Keywords: heavy-metal exposure; population environmental health risk; physical vulnerability;
social vulnerability; index evaluation method; village scale

1. Introduction

Heavy metals, as a representative type of environmental pollution [1] via different en-
vironmental media, such as air, water, and soil, affect and harm individuals. Environmental
chemical pollutants and human exposure patterns are often the focus of environmental
health research [2]. By the validation of Public Health Exposome, an evidence based frame
work can be used to research the relationships between differential levels of exposure
at critical stages, personal health outcomes, and health disparities at a population level
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(e.g., community level) [3,4]. In addition to environmental pollution exposure, research
showed that social factors such as poverty [5], lack of education, and poor living condi-
tions [6] may be connected with the existence of environmental health disparities [7,8]. For
this reason, the U.S. Environmental Protection Agency (USEPA) proposed the Framework
for Cumulative Risk Assessment to evaluate cumulative health risks from both chemical
mixtures, and a combination of chemical and nonchemical stressors to communities [9–11].
Researchers in the field of environmental justice (EJ) draw from the concept of environmen-
tal health vulnerability [12] and social vulnerability [13,14]. They also advocate that both
environmental chemical pollutants and social factors should be considered in regulatory
procedures and decision-making activities.

Overall, the main approaches used to evaluate the cumulative health impact of pol-
lution exposure and social stressors have different evaluation systems and frameworks
because of their different emphases. Some quantitative or semi-quantitative methods, such
as health risk assessment [15], health impact assessment [16], and burden of disease [17,18],
mainly focus on pollutant exposure, but weaken the impact of social factors. In order to
evaluate environmental health vulnerability, a series of evaluation index systems, namely,
Cumulative Environmental Hazard Inequality Index (CEHII) [19,20], the Environmental
Justice Screening Method (EJSM) [21,22] with its associated Proposed Climate Change
Vulnerability Screening Method (CCVSM) [23], the Cumulative Environmental Vulnerabil-
ity Assessment (CEVA) [24], the California Community Environmental Health Screening
Tool (CalEnviroScreen) [25], and Public Participatory Geographical Information Systems
(PPGIS) [26], were put into practice with the help of GIS tools. Due to the sophisticated
perspectives of social determinants, environmental exposures and health disparities of
population or communities, the algorithm-based Scalable Combinatorial Tools also sup-
ported to reveal the causal mechanisms and environmental contexts beneath the health
disparities [27]. Moreover, by using the novel exposome and a graph-theoretical toolchain,
exposures with disparities of gender and race even considering the mortal health diseases
or health risks of humans in different territories can be analyzed [28]. The indicators of
such methods are often used at the state or provincial levels; thus, evaluation units are
medium-level-oriented, which hint at a much finer level being preferable, such as villages
or particularly tantamount areas, to accurately reflect small-scale differences.

Pollution affects human health, particularly reproductive health [29,30]. Heavy
metals are considered to be critical pollutants, i.e., cadmium and arsenic, of exposure
sources, resorption pathways, and organ damage, have attracted scientific attention for
decades [31–34]. In the previous relevant study of lead for example, a quantitative samples
addressing the pathways, bare soil to Pb hazards and even site investigation of individuals
home environment, should be identified carefully [35]. In China, soil contamination by
toxic metals is prevalent and serious due to the rapid urban development and substantial
productive industrial activities [36–38]. Toxic metal pollution is a major health threat to
human beings because of its persistent toxicity and not being easily biodegradable [39–41].
Exposure to several heavy metals, i.e., lead, arsenic, and cadmium, is a risk factor for
cancer [42–45] and the development of several other diseases, especially cardiovascular,
kidney [46], nervous system, blood, and bone [47]. Daye is a city that has been an important
metal ore concentration area in Central China with a long mining history of 3000 years.
For this reason, cumulative heavy-metal contamination caused by persistent mining ac-
tivities has attracted extensive attention. For China’s rural areas, the implementation of
policies often depends on the smallest administrative unit, so small-scale research is more
conducive to the identification of vulnerable groups in the region, and the formulation and
implementation of detailed environmental risk management policies.

The purpose of this research was to identify priority protection objectives with high
health vulnerability among 16 villages in Daye through environmental health vulnerability
assessment, and provide important information for environmental risk management. First,
we investigated the pollution situation in the study areas, and analyzed the pollution
exposure characteristics and pollution hazard level of the local residents. Then, we collected
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exposure parameters and socioeconomic data, and analyzed the social vulnerability. Lastly,
we evaluated environmental health vulnerability, which is social vulnerability assessment
combined with the hazard index of heavy-metal pollution.

2. Materials and Methods
2.1. Study Area

In central China, the city of Daye is located in the southeast of Hubei province. Sixteen
villages in Daye were selected as the study areas, nine of which are mine-affected (polluted)
areas in the northeast of Daye, while seven are relatively far from the mining (reference)
area in the west of Daye. There are 32 random sampling sites distributed in the farmland
of the selected villages, with two sampling sites per village. In the polluted areas, there
were 18 sampling sites in 9 villages: Weiwang (WW, sampling sites 1 and 2), Jinqiao
(JQ, sampling sites 3 and 4), Wangjiazhuang (WJZ, sampling sites 5 and 6), Luoqiao (LQ,
sampling sites 7 and 8), Huajing (HJ, sampling sites 9 and 10), Chunguang (CG, sampling
sites 11 and 12), Changle (CL, sampling sites 13 and 14), Guantang (GT, sampling sites
15 and 16), and Tuannao (TN, sampling sites 17 and 18). In the reference area, there were
14 sampling sites in 7 villages: Shangwang (SW, sampling sites 19 and 20), Zhushan (ZS,
sampling sites 21 and 22), Mingshan (MS, sampling sites 23 and 24), Fandao (FD, sampling
sites 25 and 26), Wuduan (WD, sampling sites 27 and 28), Yangqiao (YQ, sampling sites 29
and 30), and Shangzhuang (SZ, sampling sites 31 and 32). Villages in these two study areas
were selected considering the inhabitants’ settlement and distribution. All geographical
locations of the sampling points in the polluted and reference areas are shown in Figure 1.

2.2. Data Sources
2.2.1. Heavy-Metal Pollution Data

Content analysis of heavy metals in soil and common vegetables in the study area was
conducted to assess physical vulnerability. According to the Chinese Technical Specification
for Soil Environmental Monitoring (HJ/166-2004), 32 surface soil samples (1 kg each and
from the top 0 to 20 cm layer at the sampling sites) were collected. In total, 204 vegetable
samples were directly collected from the farmland from which the soil samples were
collected comprising 7 kinds of vegetables: cowpea (Vigna unguiculata (Linn.) Walp), water
spinach (Ipomoea aquatica Forsk), amaranth (Amaranthus tricolor L.), sweet potato leaves
(Ipomoea batatas Lam), tomato (Lycopersicon esculentum Miller), eggplant (Solanum melongena
Linn), and pepper (Capsicum annuum Linn. var. gros-sum (L.) Sendt). A large number of
local residents buy rice and meat from markets, and consume vegetables that they grow
in their own field. Moreover, rice mainly refers to paddy rice, with supplements of wheat
flour, and meat mainly includes pork, chicken (as food), mutton, and beef. The sample
pretreatment and analysis were based on the method designed in our previous research,
which was analyzed in detail by Jun et al. [48].

2.2.2. Population Survey Data

According to the population situation in the Daye area, we designed a questionnaire of
its population parameters. The questionnaire mainly included basic information, exposure
parameters, personal habits, and health information. Questions on basic information of
the respondents regarded age, height, weight, occupation, education level, and income.
Dietary exposure parameters included the types of vegetables grown at home, the types
of vegetables consumed daily, the consumption of fresh vegetables, and other dietary
behavior parameters. Habit and health information included questions about smoking,
illness, sleeping time, working hours, and work intensity.

We distributed 400 questionnaires to the local residents in these 2 areas, and 389 valid
responses were obtained. After data input, PASW Statistics, version 25.0 (SPSS Inc., Chicago,
IL, USA) was used for statistical analysis.
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2.3. Vulnerability Evaluation Method

Vulnerability refers to the threat to which an area is exposed from the properties
of involved chemical agents, the ecological situation of the community, and its general
state-of-emergency preparedness at a given point in time [49]. For environmental risk
management, the assessment of environmental health vulnerability considers two aspects:
first, heavy-metal exposure and the possible health of communities or groups, namely,
physical vulnerability [50]; and second, the comprehensive measurement of the sensitivity,
and the coping ability, adaptability, and resilience of communities in the face of threats,
namely, social vulnerability [51].

Integrated population environmental health vulnerability is divided into two aspects,
physical and social vulnerability. We examined how to evaluate the above-mentioned vul-
nerability. Hence, an analytical framework considering population environmental health
vulnerability assessment on heavy-metal exposure was designed, as shown in Figure 2.
Oral intake and soil exposure are two specific pathways to conduct this research. Moreover,
a preliminary investigation found that the majority of local residents eat vegetables grow-
ing in local soil, which may have been affected by heavy-metal exposure, and they mainly
grow them for self-consumption. Therefore, what is more important is that contaminated
soil and vegetable intake are correlated.
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Figure 2. Systematic research solutions for physical–social health vulnerability assessment on heavy
metal exposure.



Int. J. Environ. Res. Public Health 2021, 18, 13379 6 of 19

2.3.1. Assessment of Physical Vulnerability

The sensitivity of the human body to different heavy-metal species is different. Expo-
sure to various heavy metals cannot be simply added up, so it is not appropriate to measure
physical vulnerability by simply using the heavy-metal concentration in environmental
media or average daily doses.

The index system of pollution hazard in health risk modelling provided by USEPA is
used as a measure of physical vulnerability. The hazard index (HI) for the health risk of a
variety of heavy metals is calculated by Equation (1), and the corresponding dose received
through each of the four pathways was evaluated by Equations (2)–(5).

HI = HQv+HQo+HQd+HQi

=
ADDv

RfDv
+

ADDo

RfDo
+

ADDd
RfDd

+
ADDi

RfDi

(1)

ADDv =
Cv × IRv × EFv × ED

BW × AT
(2)

ADDo =
Cs × IRo × CF × EF × ED

BW × AT
(3)

ADDd =
Cs × ABS × SA × AF × EF × ED

BW × AT
(4)

ADDi =
Cs × IRb × EF × ED

PEF × BW × AT
(5)

where HQv, HQo, HQd, and HQi are the hazard quotients caused by the four pathways of
vegetable intake, soil ingestion, dermal contact, and inhalation, respectively; RfDv, RfDo,
RfDd and RfDi are the corresponding reference doses for each heavy metal through one
of the four pathways, respectively, as shown in Table 1; ADDv, ADDo, ADDd, and ADDi
are the average daily doses from vegetable intake, soil ingestion, dermal contact, and
inhalation, respectively (mg/kg·day); Cv is measured by the average heavy-metal content
of vegetables sampled in each village (mg/kg); Cs is measured by the average heavy-metal
concentration of soils from two sample sites in each village (mg/kg); IRv, refers to the
intake rate of vegetable (mg/day); IRo refers to ingestion (mg/day); IRb refers to inhalation
rate of soil (m3/day); EF is exposure frequency (day/year); ED is exposure duration (year);
BW is the average body weight of the exposed individual (kg); AT is the averaged contact
time (day); PEF is the particle emission factor (m3/kg); SA is the exposed skin surface
area (cm2); AF is adherence factor (mg/m2·day); and ABS is the dermal absorption factor
(unitless). Detailed information of the above-mentioned and probabilistic parameters can
be found in Jun et al. [48], and Fei et al. [52]. Parameters and their values, used to evaluate
physical vulnerability in the above equations, are summarized in Table 1.

2.3.2. Social Vulnerability Index System

For a human community, health outcomes are impacted by the relationships among
measures of socioeconomic level (ability to respond or recover), receptor characteristics
(measures of potential vulnerability), and population self-sensitivity. On the basis of a series
of social vulnerability studies and the local conditions of the study area, 10 indicators were
selected and divided into 3 categories. The important relationship among the indices was
established by expert scoring, and the weights of these 10 indices were determined with the
support of analytic hierarchy process theory. The experts who participated in the research
had a wide range of health risks and a basic understanding of receptor vulnerability.
Ultimately, social vulnerability scores were calculated and used to assess environmental
health vulnerability.
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Table 1. Parameters and their values used to evaluate physical vulnerability.

Parameter Symbol Units Distribution

Vegetable intake rate IRv mg/day 153.84 1

Soil ingestion rate IRo mg/day 100
Soil inhalation rate IRb m3/day 20
Exposure frequency EFv and EF day/year 365 and 350
Exposure duration ED year 24

Body weight BW kg 58.53 1

Averaged contact time AT day ED × 365
Particle emission factor PEF m3/kg 1.36 × 109

Dermal absorption factor ABS unitless 0.001
Skin surface area SA cm2 5218.3 2

Adherence factor AF mg/m2·day 0.07
1 data are actual local population information obtained from survey data; 2 data were calculated from the survey.

The explanation and quantification of indicators are shown in Table 2. It is more
appropriate for a region to quantify indicators by using the proportion of people with higher
vulnerability. People with higher incomes feel more satisfied [53] and can afford more
local daily consumption. Therefore, we measured the economic level of the research areas
by the proportion of local people who have reached the per capita disposable income in
Daye. Sleeping time and working time reflect people’s social pressure [54], and reasonable
sleeping and working time (8 h) are conducive to health [55]. The psychological and
physiological conditions of a person after 13 years tend to be mature [56], while the Chinese
legal retirement age is 65 years old in common [57]. People aged 14–65 are in good
condition and usually able to resist potential social or physical threats. People under 14 or
over 65 years old in the research areas, on the other hand, are too young or too old to face
off threats. Therefore, under 14 or over 65 years are regarded to be ages with much higher
vulnerability. It is easy to identify the vulnerable population in various indicators according
to previous research, such as educational level, occupation [58], working environment,
labor intensity, gender [59], and disease.

2.3.3. Environmental Health Vulnerability Assessment

Multiple models are widely used in some regional vulnerability models and cumula-
tive impact frameworks. However, for a group of population living in particular area rather
than individual research subjects, it is interesting to simultaneously consider environmental
health risks with physical and social vulnerability. The interplay of group behavior, habits,
and population characteristics should not be ignored even in research of environmental
health risk, which typically reveals social vulnerability. The environmental health vulnera-
bility index is obtained by multiplying the quantitative physical-vulnerability value with
the social vulnerability index, which can synthetically reflect the vulnerability of villages.

Vulnerability thus consists of physical and social vulnerability. On the basis of these
two dimensions, a four-quadrant chart is presented in Figure 3 for confirming the grade
of overall vulnerability. Physical vulnerability is defined as a threshold of when the
pollution hazard index is less or more than 1.0. According to relevant USEPA research, the
pollution hazard index is lower than 1.0. In addition, for social vulnerability, appropriate
discontinuous scores of top to bottom limitation are 0 to 1.0. However, integrating discrete
values with continuous values may cause conflict in general vulnerability assessments, so
social vulnerability is defined as the threshold when the score of social vulnerability is less
or more than 0.5 to 1.0. Therefore, a quantified conceptual frame was applied to classify
vulnerability into four categories, and different villages were sorted into different areas of
the quadrant.
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Table 2. Explanation and quantification of social vulnerability indicators.

Aspects Indicators Indicators Explanation Quantization Method Weight

Socioeconomic conditions
(SEC)
0.343

Education

Divided into 6 categories:
undergraduate or above, junior college,
secondary school or high school, junior
high school, primary school and below,

and others

Ratio of qualifications
below senior high school 0.109

Occupation Structure

Divided into 7 categories: agriculture,
industry and mining, construction,

housewives, self-employed, students,
and others

Ratio of occupations with
more exposure to

heavy-metal pollution
0.117

Income Per capita disposable income Ratio of households below
average income 0.117

Receptor characteristics
(EB)
0.357

Working conditions Divided into three categories: good,
medium, and poor

Ratio of people in
relatively poorer working

conditions
0.128

Labor intensity Divided into three categories: high,
medium, and low

Ratio of people with
relatively higher labor

intensity
0.086

Working time - Ratio of people working
more than 8 h 0.078

Sleeping time -
Ratio of people suffering
from deficient sleeping

time
0.065

Self-sensitivity
(SS)

0.300

Gender Males and females Female ratio 0.086

Age -
Percentage of people

younger than 14 or older
than 65

0.105

Disease Situation
Divided into two categories: people
who have suffered from disease and

those who have not

Percentage of people who
have suffered from

chronic or major diseases
0.109

Note: the higher the quantified value of the 10 indicators is, the higher the social vulnerability is.
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3. Results
3.1. Physical Vulnerability Assessment

According to the physical vulnerability evaluation method, the physical vulnerability
value was calculated using Equations (1)–(5), and the evaluation results of 16 villages in the
study area are shown in Table 3. The pollution hazard index in the table is the quantitative
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value of physical vulnerability, which is presented according to different exposure routes
and different kinds of heavy metals.

Table 3. Physical vulnerability assessment results of different villages.

Village HI

Pollution Hazard Index for Different
Exposure Pathways

Pollution Hazard Index for Different
Heavy Metals

HQo
HQd

(10−4)
HQi

(10−6) HQv HICu HIZn HIAs HICd HIPb

SW 0.86 0.05 4.48 1.28 0.81 0.19 0.07 0.42 0.09 0.09
ZS 1.75 0.04 3.69 1.04 1.71 0.17 0.07 1.27 0.14 0.11
MS 0.52 0.07 4.66 1.72 0.45 0.16 0.05 0.16 0.05 0.10
FD 0.57 0.06 4.42 1.45 0.51 0.12 0.09 0.13 0.16 0.07
WD 0.74 0.06 4.89 1.67 0.68 0.20 0.08 0.34 0.09 0.04
YQ 1.55 0.04 3.29 8.79 1.51 0.12 0.07 1.07 0.14 0.15
SZ 1.01 0.07 5.32 1.76 0.94 0.16 0.07 0.58 0.11 0.09
GT 4.05 0.29 17.9 7.86 3.76 0.19 0.07 3.54 0.10 0.14
CL 2.41 0.12 15.6 2.65 2.29 0.23 0.08 1.22 0.84 0.03
CG 2.37 0.19 19.5 4.55 2.18 0.26 0.07 1.32 0.55 0.16
HJ 2.52 0.17 17.9 4.34 2.34 0.27 0.09 1.38 0.62 0.16

WJZ 3.87 0.10 8.25 2.41 3.78 0.35 0.09 2.76 0.40 0.27
WW 8.55 0.14 18.2 3.14 8.41 0.36 0.13 6.40 1.32 0.34
JQ 7.30 0.12 12.4 2.88 7.18 0.35 0.17 3.91 2.30 0.58
LQ 3.86 0.09 7.26 2.29 3.77 0.37 0.15 2.46 0.31 0.57
TN 1.02 0.07 5.24 1.92 0.94 0.26 0.05 0.58 0.10 0.03

The physical vulnerability of different villages was in the order of WW > JQ > GT >
WJZ > LQ > HJ > CL > CG > ZS > YQ > TN > SZ > SW > WD > FD > MS. The physical
vulnerability of the villages in the polluted area was significantly higher (p < 0.05) than
that in the reference area through each exposure route. The calculated average values of
population physical vulnerability in the polluted and reference areas were 3.99 and 1.00,
respectively. Values of physical vulnerability of all villages in the polluted area and ZS,
YQ, and SZ in the reference area were significantly higher than the upper threshold of 1.0,
among which the highest was 8.55. From the perspective of physical vulnerability, ZS, YQ,
and SZ in the reference area were also key villages of heavy-metal contamination.

The pollution hazard index of each exposure route showed the order of vegetable
intake > soil ingestion > dermal contact > inhalation. More than 90% of the pollution
hazard index was contributed by vegetable intake for every village in the study areas.

The average physical vulnerability value contribution of different heavy metals
showed the order of As (63.9%) > Cd (17.0%) > Cu (8.7%) > Zn (6.8%) > Pb (3.2%). In
fact, heavy metals with a major contribution to the physical vulnerability were not the
same in different exposure routes. As and Cd similarly contribute to physical vulnerability
by the pathway of vegetable intake, reaching 36.5% and 37.3%, respectively. Additionally,
As contributed the most among other metals to the physical vulnerability value through
the exposure routes of soil ingestion and inhalation, reaching 76.9% and 87.8%, respectively.
There was little difference in the contribution of Pb, As, and Cd through dermal contact,
reaching 45.9%, 29.5%, and 23.0%, respectively.

3.2. Social Vulnerability Assessment

The higher the score of social vulnerability is, the weaker the ability of the population
to resist and protect themselves against potential pollution hazards and other pressure
disturbances. That is to say, the group with higher social vulnerability may lose more when
facing the same pollution threat. Scores of each index in the social vulnerability evaluation
system and the composite score are shown in Table 4.

The total social vulnerability scores of 16 villages from high to low are as follows: LQ
(0.770), FD (0.690), SW (0.688), MS (0.639), ZS (0.592), GT (0.543), TN (0.499), CL (0.490),
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JQ (0.464), WJZ (0.459), YQ (0.453), WW (0.360), WD (0.348), SZ (0.342), HJ (0.334), and
CG (0.188). From the total score of each village, LQ had the highest social vulnerability,
and CG had the lowest social vulnerability. Indicators of self-sensitivity show the local
residents’ own sensitivity to pollution hazards. The higher the SS composite score is, the
higher the sensitivity, and the more likely it is to have negative health effects in the face of
pollution threats.

The score of social and economic conditions reflects the occupancy of social resources.
The higher the social vulnerability score is, the fewer social resources the village requires.
The population of MS needed the fewest social resources among 16 villages, with the
highest SEC composite score of 0.31. The indicators of receptor behavioral characteristics
represent the social life stress of the local population. The higher the score is, the greater
the pressure they are under. The population of SW was burdened by the heaviest social
stress among the 16 villages with the highest BE composite score of 0.28.

In fact, the correlation analysis of each index score in the social vulnerability evaluation
system could roughly reflect the local population and social characteristics. SPSS was used
to analyze the correlation of each index, and results were shown in Table 5. The population
of LQ had the highest sensitivity among the 16 villages, with the highest SS composite
score of 0.29.

The correlation of some indicators related to our research was consistent with the
results of large sample data analysis in many studies. As a result, a significant positive
correlation was found between the proportion of people with a low educational back-
ground and the proportion of people with income lower than the local average income
(p = 0.034 < 0.05). This result is consistent with the research of Tachibanaki [60] and Li [61].
There was significant positive correlation between the proportion of vulnerable age groups
and the proportion of people suffering from diseases (p = 0.048), which is consistent with
the finding that age and gender are both risk factors for chronic diseases [62]. There is
significant positive correlation between the proportion of people with a bad working en-
vironment and the proportion of people with excessive labor intensity (p = 0.007 < 0.05).
There was significant positive correlation between the proportion of women and the pro-
portion of vulnerable age groups (p = 0.020 < 0.05). These two phenomena are related to
the survey area. Because the survey area is rural, and its geographical location is remote,
local adult males may go out to work more, so the proportion of females and the number
of vulnerable age groups in the 16 surveyed villages was higher. In Chinese rural areas,
there are many people engaged in heavy manual labor in harsh working environments.

3.3. Comprehensive Environmental Health Vulnerability Assessment

The comprehensive score of environmental health vulnerability was obtained by
multiplying the physical and social vulnerability scores, and villages were marked in
the quadrant (Figure 4) according to the hierarchical evaluation of physical and social
vulnerability.

The environmental health vulnerability of the 16 villages ranged from high to low
was as follows: JQ (0.40), WW (0.36), LQ (0.35), GT (0.26), WJZ (0.21), CL (0.14), ZS (0.12),
HJ (0.10), YQ (0.08), SW (0.07), TN (0.06), CG (0.05), FD (0.05), SZ (0.04), MS (0.04), and
WD (0.03).

Figure 4 shows that the evaluated villages were classified into four categories by
the hierarchical evaluation matrix: WD had low physical vulnerability and low social
vulnerability; MS, SW, and FD had low physical vulnerability and high social vulnerability;
SZ, CG, HJ, and WW had high physical vulnerability and low social vulnerability; YQ, TN,
ZS, and FD had high physical vulnerability and low social vulnerability. Five villages near
mining activities (JQ, LQ, GT, WJZ, CL, and TN) and two villages (ZS and YQ) far from the
mining-affected area have high physical vulnerability and high social vulnerability, which
are the urgent areas in environmental health risk management.
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Table 4. Scores of social vulnerability assessment.

Village

Social Vulnerability
Total
SV

Score

Socioeconomic Conditions (SEC) SEC
Composite

Score

Behavior Characteristics (BE) RE
Composite

Score

Self-Sensitivity (SS) SS
Composite

ScoreEducation Occupation
Structure Income Working

Conditions
Labor

Intensity
Working

Time
Sleeping

Time Gender Age Disease
Situation

SW 0.09 0.08 0.12 0.29 0.13 0.09 0.04 0.03 0.28 0.03 0.04 0.05 0.12 0.69
ZS 0.09 0.09 0.07 0.25 0.11 0.07 0.02 0.03 0.23 0.01 0.05 0.05 0.11 0.59
MS 0.11 0.11 0.09 0.31 0.02 0.06 0.07 0.05 0.20 0.01 0.05 0.07 0.13 0.64
FD 0.05 0.09 0.05 0.19 0.08 0.08 0.03 0.06 0.25 0.07 0.08 0.11 0.25 0.69
WD 0.02 0.00 0.02 0.04 0.06 0.04 0.08 0.05 0.24 0.00 0.00 0.07 0.07 0.35
YQ 0.03 0.08 0.05 0.15 0.07 0.04 0.03 0.05 0.19 0.01 0.03 0.06 0.11 0.45
SZ 0.00 0.10 0.04 0.14 0.00 0.03 0.04 0.03 0.09 0.01 0.03 0.07 0.11 0.34
GT 0.02 0.07 0.12 0.20 0.07 0.06 0.02 0.04 0.19 0.03 0.06 0.06 0.15 0.54
CL 0.11 0.03 0.09 0.23 0.02 0.04 0.06 0.03 0.14 0.00 0.06 0.05 0.11 0.49
CG 0.02 0.00 0.00 0.02 0.00 0.00 0.04 0.03 0.07 0.04 0.02 0.05 0.10 0.19
HJ 0.03 0.03 0.05 0.11 0.01 0.03 0.02 0.02 0.08 0.04 0.03 0.07 0.15 0.33

WJZ 0.06 0.07 0.07 0.20 0.00 0.04 0.03 0.06 0.12 0.05 0.03 0.06 0.13 0.46
WW 0.05 0.03 0.06 0.14 0.02 0.00 0.00 0.00 0.02 0.07 0.06 0.07 0.19 0.36
JQ 0.09 0.01 0.07 0.17 0.07 0.06 0.03 0.05 0.22 0.05 0.03 0.00 0.07 0.46
LQ 0.09 0.12 0.09 0.30 0.05 0.02 0.05 0.07 0.18 0.09 0.11 0.10 0.29 0.77
TN 0.03 0.08 0.09 0.20 0.09 0.02 0.00 0.04 0.15 0.04 0.03 0.07 0.15 0.50
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Table 5. Relevance analysis of indicators.

Correlation Index Education Occupation
Structure Income Working

Condition
Labor

Intensity
Working

Time
Sleeping

Time Gender Age Disease
Situation

Education
Pearson Correlation 1 0.217 0.531 1 0.223 0.414 0.278 0.179 0.055 0.453 −0.215

Significance (bilateral) 0.419 0.034 0.406 0.111 0.297 0.507 0.840 0.078 0.424

Occupation Pearson Correlation 0.217 1 0.490 0.250 0.331 −0.050 0.387 0.117 0.557 1 0.504 1

Significance (bilateral) 0.419 0.054 0.350 0.210 0.855 0.139 0.666 0.025 0.046

Income
Pearson Correlation 0.531 1 0.490 1 0.453 0.474 −0.147 0.093 0.073 0.474 −0.066

Significance (bilateral) 0.034 0.054 0.078 0.064 0.588 0.732 0.787 0.063 0.808

working Pearson Correlation 0.223 0.250 0.453 1 0.647 2 −0.182 0.157 −0.030 0.118 −0.088
Significance (bilateral) 0.406 0.350 0.078 0.007 0.501 0.562 0.913 0.664 0.746

Labor Intensity Pearson Correlation 0.414 0.331 0.474 0.647 2 1 0.183 0.305 −0.233 0.110 −0.120
Significance (bilateral) 0.111 0.210 0.064 0.007 0.497 0.251 0.386 0.686 0.658

Working Time Pearson Correlation 0.278 −0.050 −0.147 −0.182 0.183 1 0.411 −0.427 −0.086 0.057
Significance (bilateral) 0.297 0.855 0.588 0.501 0.497 0.113 0.099 0.750 0.835

Sleeping Time Pearson Correlation 0.179 0.387 0.093 0.157 0.305 0.411 1 0.183 0.234 0.239
Significance (bilateral) 0.507 0.139 0.732 0.562 0.251 0.113 0.498 0.384 0.372

Gender
Pearson Correlation 0.055 0.117 0.073 −0.030 −0.233 −0.427 0.183 1 0.576 1 0.339

Significance (bilateral) 0.840 0.666 0.787 0.913 0.386 0.099 0.498 0.020 0.200

Age Pearson Correlation 0.453 0.557 1 0.474 0.118 0.110 −0.086 0.234 0.576 1 1 0.502 1

Significance (bilateral) 0.078 0.025 0.063 0.664 0.686 0.750 0.384 0.020 0.048

Disease Situation
Pearson Correlation −0.215 0.504 1 −0.066 −0.088 −0.120 0.057 0.239 0.339 0.502 1 1

Significance (bilateral) 0.424 0.046 0.808 0.746 0.658 0.835 0.372 0.200 0.048

Note: 1 shows significant correlation at 0.05 level (bilateral). 2 Shows significant correlation at 0.01 level (bilateral).
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4. Discussion
4.1. Villages with High Values of Physical Vulnerability and Social Vulnerability Are Screened

Soil and vegetable pollution data were obtained through experimental detection, and
population and social characteristic data were obtained through investigation, with the
environmental health vulnerability evaluation performed with the tentative comprehensive
evaluation method. Results indicated that the average physical vulnerability values of
the population in the polluted and reference areas were 3.99 and 1.00, respectively. For
villages with sampling sites, WW had the highest physical vulnerability value of 8.55.
Considering exposure pathways, vegetable intake is the exposure type that should be paid
more attention, as it contributes more than 90% to physical vulnerability among the four
exposure pathways. Arsenic and cadmium should be the priority pollutants, with average
physical vulnerability value contributions of 63.9% and 17.0%, respectively. According to
the social vulnerability assessment, LQ had the highest social vulnerability with a value
of 0.77. Comprehensive environmental health vulnerability assessment showed that five
villages near mining activities (JQ, LQ, GT, WJZ, CL, and TN) and two villages (ZS and
YQ) far from the mine-affected area are urgent areas in environmental risk management,
with high physical and social vulnerability.

4.2. Advantage of Establishing Physical and Social Vulnerability

For environmental health risk, there is an entire solving structure presented by EPA or
CDC authorities in the U.S., which is widely recognized in the era of scientific research to
receive hazard index of physical pollutants. We omitted the process and focused more on
introducing social rather than physical aspects. Social and physical vulnerability contribute
to the population’s environmental health risk. On the basis of the results, social and physical
vulnerability in research of heavy-metal exposure leading to environmental health risk
are not significantly related with each other. Considering divergent factors of population
vulnerability in a certain area, population distribution, regional development, and mining
activities are likely to influence these two types of vulnerability. Our previous study showed
that heavy-metal exposure in soil is a cause of environmental health risk, particularly in a
long-term mining city such as Daye, China.

From our research, we learned that risk and vulnerability likely band with each other,
even in the aspect of environmental health risks. The result shows that social and physical
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vulnerability cause significant population environmental health risk. It is appropriate
not to add social to physical vulnerability to solve the calculation of the environmental
health risk modelling, but to combine the two types of vulnerability and calculate each
type individually as presented above. Furthermore, population environmental health risks,
which focus the research subject on a group of people or residents in a certain place, need
to be carefully considered with the social conditions and characteristics of the group.

It is innovative to create a systematic approach with social and physical vulnerability
to deal with population environmental health risk that uses the hazard index for the
evaluation of physical vulnerability and creates a novel social vulnerability index system
to evaluate the later vulnerability on the basis of a large-scale of door-to-door survey of
residents of 24 villages in the research area. Therefore, the research would not assume
individuals to be one subject, but consider a number of local residents to be a population.
The critical problem lies in the fact that it is inadvisable to ignore population distribution
and characteristics in the research of population vulnerability and the environmental health
of local residents.

4.3. Selected Village-Scale Dimension Applied to Draw Specific Contrasting Differences

Results indicated that long-term mining activities may influence a percentage of the
population and in a large range of areas. According to the researching dimension, village-
scale areas are specific and with significant differences, which helped us to confirm the
suitability of geographic division between the polluted the reference areas.

By filtering the results of physical vulnerability assessment in the case study, villages
in the polluted area are more likely to be exposed to environmental health risk than the
ones in the reference area. Sample analysis and health risk calculation revealed that the
adjacent contiguous villages of WW, WJZ, JQ, and LQ, had a high value of HI (HI > 3.50).
The adjacent contiguous villages of MS, FD, and WD, on the other hand, had a lower
value of HI (HI < 1.00). An adjacent–contiguous feature indicates a spatial characteristic of
physical vulnerability.

Regarding social vulnerability, the adjacent contiguous villages of SW, ZS, MS, and FD
in the reference area had a higher assessment value (score > 0.59). The adjacent contiguous
villages of LQ, TN, and JQ in the reference area had a higher assessment value (score > 0.45).
However, the difference between physical and social vulnerability is that the former one is
specific and the latter is universal, with or without the environmental health risk problem.
The population’s social vulnerability widely exists according to the result (score > or =0.19),
but comprehensive population vulnerability is more meaningful with both the social and
the physical aspect. Furthermore, when considering population social vulnerability, there is
an adjacent–contiguous feature that indicates a spatial characteristic of social vulnerability
without zoning differences, and this feature was notable in both the reference and the
polluted area.

4.4. Research Novelty and Limitations

There is a continuous and cumulative risk of heavy-metal exposure in mining areas
that can be obtained both from sample analysis and questionnaire survey. Social vulnera-
bility indicates people’s livelihood, population effects, group behaviors, and population
differences under a certain stress or risk or multiple sources, which should not be neglected
in environmental health risk assessment activities. The cohorts, as a large number of
residents living locally in the two studied areas, considering exposure to environmental
health risk of heavy-metal exposure, had significantly different social vulnerability. A non-
randomized control study of the polluted and reference areas by the village-scale zoning
is applicable.

Different environmental protection measures and risk management control strategies
should be adopted more meticulously for different vulnerability characteristics. Social
vulnerability is related to many more factors, and some cannot be entirely obtained, such
as the local educational background structure, income level, the proportion of people
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in industries with large opportunities of direct contact with pollutants such as mining,
construction, and agricultural planting.

The research area in the case study belongs to rural areas of the city of Daye, where
the economic development level is lagging behind that of cities and towns. In addition, a
major feature of the local rural areas is that there have been more mining activities resulting
in a higher proportion of the local population with industrial employment and mining
as the main occupation. The reasonable distribution of industries in rural areas and their
improvement need to be considered.

5. Conclusions

On the basis of sample analysis and field investigation of heavy-metal pollution in soil
and vegetables, and population and societal survey data in Daye, China, physical and social
vulnerability were modeled, and the comprehensive environmental health vulnerability
of the area was analyzed with each village as an evaluation unit. The significant result of
comprehensive environmental health vulnerability assessment on heavy-metal exposure
showed that study areas could be divided into four categories according to the evaluation of
environmental health vulnerability. Physical vulnerability indicates the extent of exposure
to heavy metals, which is mainly impacted by pollution degree of environmental media and
ways for residents to contact pollutants according to the method for calculating physical
vulnerability. Areas with high physical vulnerability may be more polluted or more
frequently exposed to pollutants by local residents. Therefore, pollution control strategies
should be adopted, and education for personal protection awareness and health monitoring
should be strengthened. Regions with low physical vulnerability should pay attention to
environmental planning and personal protection guidelines. Social vulnerability represents
the ability and sensitivity of communities to respond to pollution threats.

The priority control of contaminated areas and pollutants should be effectively iden-
tified. According to the analysis of physical vulnerability, the physical vulnerability of
villages near mining activities is significantly higher than that of areas far away from
mining-affected areas. The physical vulnerability of 10 villages near mining activities and
some villages far away from mining activities, such as YQ and SZ, was higher than the
acceptable level, which should be listed as the focus of environmental health risk manage-
ment. In addition, arsenic, cadmium, and copper are the main pollutants in the area, which
greatly contribute to physical vulnerability.

In order to promote environmental risk management, it is necessary to give priority to
effectively and accurately identifying and controlling pollution areas. Moreover, accuracy
means identifying vulnerable populations on the village scale. Furthermore, it is necessary
to appropriately adjust the industrial structure and cooperate more to form a complete
economic zone.
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Abbreviations

USEPA U.S. Environmental Protection Agency
EJ Environmental justice
CEHII Cumulative Environmental Hazard Inequality Index
EJSM Environmental Justice Screening Method
CCVSM Climate Change Vulnerability Screening Method
CEVA Cumulative Environmental Vulnerability Assessment
CalEnviroScreen California Community Environmental Health Screening Tool
Villages in polluted area:
WW Weiwang, where sampling sites 1 and 2 were set
JQ Jinqiao, where sampling sites 3 and 4 were set
WJZ Wangjiazhuang, where sampling sites 5 and 6 were set
LQ Luoqiao, where sampling sites 7 and 8 were set
HJ Huajing, where sampling sites 9 and 10 were set
CG Chunguang, where sampling sites 11 and 12 were set
CL Changle, where sampling sites 13 and 14 were set
GT Guantang, where sampling sites 15 and 16 were set
TN Tuannao, where sampling sites 17 and 18 were set
Villages in reference area:
SW Shangwang, where sampling sites 19 and 20 were set
ZS Zhushan, where sampling sites 21 and 22 were set
MS Mingshan, where sampling sites 23 and 24 were set
FD Fandao, where sampling sites 25 and 26 were set
WD Wuduan, where sampling sites 27 and 28 were set
YQ Yangqiao, where sampling sites 29 and 30 were set
SZ Shangzhuang, where sampling sites 31 and 32 were set
SV Social vulnerability
PV Physical vulnerability
SEC Socioeconomic conditions
EB Receptor characteristics
SS Self-sensitivity
HQv Hazard quotients caused by vegetable intake
HQo Hazard quotients caused by soil ingestion
HQd Hazard quotients caused by dermal contact and inhalation
HQi Hazard quotients caused by inhalation

RfDv
Corresponding reference dose for each toxic metal through the exposure
pathway of vegetable intake

RfDo
Corresponding reference dose for each toxic metal through the exposure
pathway of soil ingestion

RfDd
Corresponding reference dose for each toxic metal through the exposure
pathway of dermal contact

RfDi
Corresponding reference dose for each toxic metal through the exposure
pathway of inhalation

ADDv Average daily dose from vegetable intake
ADDo Average daily dose from soil ingestion
ADDd Average daily dose from dermal contact
ADDi Average daily dose from inhalation

Cv
Measured by the average heavy metals content of vegetables sampled in each
village (mg/kg)

Cs
Measured by the average heavy metal concentration of soils from two sample
Sites in each village (mg/kg)

IRv Intake rate of vegetable (mg/day, m3/day)
IRo Ingestion rate of soil (mg/day, m3/day)
IRb Inhalation rate of soil (mg/day, m3/day)
EF Exposure frequency (day/year)
ED Exposure duration (year)
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BW Average bodyweight of the exposed individual (kg)
AT Averaged contact time (day)
PEF Particle emission factor (m3/kg)
SA Exposed skin surface area (cm2)
AF Adherence factor (mg/m2·day)
ABS Dermal absorption factor (unitless)
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