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Abstract: Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, espe-
cially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge 
discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human 
monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D 
protein structure. In this study, we identified 8,117mutations in 805 proteins with known three-dimensional structures that were known 
to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, 
functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single 
amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/.
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Introduction
Single nucleotide polymorphisms (SNPs) refer to a 
genetic change in which one nucleotide is replaced 
by another one. SNPs represent one of the most com-
mon forms of human genomic variation. SNPs are 
highly abundant, stable and distributed throughout 
the genome.1 Although SNPs are primarily associated 
with population diversity and individuality, they can 
also be linked to the emergence of or predisposition 
to a disease, influencing its severity, its progression or 
its drug sensitivity.

SNPs that are directly linked to the emergence of 
a disease are considered to be deleterious. These del-
eterious SNPs occur in both non protein-coding and 
protein-coding regions. In the first case, the varia-
tion will often affect gene expression by disrupting 
transcription factor-binding sites, splice sites or other 
functional sites at the transcriptional level. Protein-
coding SNPs can be further divided into synonymous 
and non-synonymous (nsSNPs). nsSNPs, also called 
missense mutations, result in the alteration of the 
amino acid sequence of the encoded protein. nsSNPs 
have been linked to a wide variety of diseases; for 
example, by affecting protein function, by reduc-
ing protein solubility or by destabilizing protein 
structure.2 These protein alterations are considered 
to be the primary molecular phenotype linked to the 
missense mutation, with a cascade of consequences 
that finally leads to the emergence of a genetic dis-
ease and the associated phenotype. The elucidation of 
the complex relationships linking genotypic and phe-
notypic variations is a major challenge in the post-
genomic era.

With the huge amount of information now avail-
able in various biological databases, including 
sequences, structures, functions, pathways, interac-
tions and variations,3 it is now feasible to develop 
in silico analysis tools to better understand and/or to 
predict the correlation between a missense mutation 
and the associated molecular phenotypes. Several 
research groups have addressed this topic and have 
developed tools aimed at predicting the effects of 
nsSNPs on the function of a protein, with varying 
degrees of success.4

Current methods of prediction can be divided into 
two main categories. The first category encompasses 
sequence-based methods, generally based on multi-
ple sequence alignments and incorporating different 

approaches to quantify the conservation of a resi-
due during evolution. This category includes SIFT,5 
PANTHER,6 PMUT,7 PhD-SNP,8 SNAP9 and LRT.10 
The second category combines both sequence and 
protein 3D structure data. Although these methods 
are limited by the availability of structural data, vari-
ous studies have shown that the inclusion of struc-
tural information can improve the performance of 
prediction methods based only on sequence data.11 
These studies also provide evidence that a majority 
of nsSNPs has an impact on the structure.12 The most 
widely used methods in this category are PolyPhen,13 
nsSNPAnalyzer,14 SNPs3D,15 AutoMute16 and more 
recently Polyphen-2.17

The effectiveness of a prediction method is mainly 
based on the choice of predictors and on the underly-
ing computational approaches. The latter are numer-
ous and include the use of empirically derived rules,13 
Support Vector Machines,8,15 neural networks,7,9 ran-
dom forests,14,16 Hidden Markov Models,6 statistical 
models,5 or Naïve Bayes.17 All these methods have 
their strengths and weaknesses (for a review, see4). 
While it is not straightforward to compare these 
methods using the same quality criteria, most of them 
seem to perform well for classification purposes. In 
particular, most of them classify nsSNPs as either 
deleterious (strong functional effect) or neutral (weak 
functional effect) with high accuracy. Unfortunately, 
little explanation concerning the decision computed 
by these prediction tools is available. PolyPhen pro-
vides the rules to predict the effect of nsSNPs on pro-
tein function and structure, but these rules are derived 
empirically. Access to such information is essential 
in order to understand how genetic alterations affect 
gene products at the molecular level and subsequently 
to elucidate the relationships between genotypic and 
phenotypic variations.

In this context, the extraction of knowledge from 
large-scale mutation data is an increasingly challeng-
ing task and KDD approaches are now being applied 
in many domains of biomedicine. KDD is commonly 
defined as the “non trivial process of identifying 
valid, novel, potentially useful and ultimately under-
standable patterns in data”.18 From an operational 
point of view, the KDD process is performed within a 
KDD system including databases, data mining mod-
ules, and interfaces for human interactions, such as 
editing and visualization. The KDD process involves 
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three main operations: selection and preparation of 
the data, data mining, and finally interpretation of the 
extracted units. Most data mining algorithms used in 
KDD accept as input a single database table where 
the data to mine are represented as objects displaying 
specific values for given properties. This constraint is 
very prohibitive in the case of biomedical data, where 
different types of objects are often stored in different 
tables. This has led to the exploitation of logic rea-
soning approaches, such as Inductive Logic program-
ming (ILP).19,20 ILP is a method by which a computer 
program can learn concepts, or rules, by example. It 
has been applied successfully to various bioinformat-
ics problems including breast cancer studies,21 protein 
structure prediction,22,23 gene function prediction,24 
protein-protein interaction prediction,25 protein-
ligand interaction prediction26 and microarray data 
classification.27

Recently, we implemented the ILP method in the 
KD4v system28 for the interpretation and prediction 
of the phenotypic effects of missense variants. The 
performance of the ILP prediction was shown to be 
comparable to SIFT and PolyPhen-2, the most com-
monly used methods in the field. The power of the 
KD4V approach has also been demonstrated in a 
number of recent studies devoted to specific human 
diseases, including multifactorial diseases (complete 
congenital stationary night blindness).29,30

In this paper, we describe a study dedicated to the 
impact of mutations on protein function in the con-
text of human monogenetic diseases. We extracted 
background knowledge from the MSV3d31 annotated 
mutation database, which integrates a large number 
of human mutations and phenotypes. We then applied 
ILP and a clustering analysis to learn a set of rules 
that can be easily interpreted by the biologist and 
reused for the prediction of the functional effects of 
a mutation.

Materials and Methods
MSV3d
The datasets used in this study were taken from the 
relational database MSV3d (“Database of human 
missense variants mapped to 3D protein structures”, 
publicly accessible online at decrypthon.igbmc.fr/
msv3d). MSV3d is designed to facilitate the inves-
tigation of the structural and functional impacts of 
missense mutations with regard to their phenotypic 

effects in the context of human genetic diseases. Based 
on Multiple Alignments of Complete Sequences 
(MACS)32 and 3D structures available in the SM2PH 
database,33 MSV3d annotates each mutation with 
various parameters describing the physico-chemical 
changes induced by the amino acid modification, as 
well as the conservation of the mutated residue and its 
position relative to functional features in the available 
or predicted 3D model.

The human missense variants in MSV3d are 
mainly retrieved from the dbSNP34 and UniProtKB 
databases,35 but also from several Locus Specific 
DataBases36 (LSDBs), such as the ALPL gene muta-
tions database. MSV3d classifies these variants in 
two categories: mutations linked to known human 
diseases (deleterious) and those associated with the 
“polymorphism” term (neutral), in accordance with 
the nomenclature used in the UniProtKB database.

MVS3d currently contains a total of 404,425 mis-
sense variants from 20,219 human proteins, among 
which 27,401 are considered as deleterious and 
377,024 as neutral. Concerning structure modelling, 
the database contains 58,726 variants mapped to 3D 
structure, among which 7,113 variants are associated 
with 1,278 OMIM disease annotations. The database 
facilities exploration of the relationships between 
genetic variations and 3D structure via a unified 
access to databases, including SOAP web services, a 
Java API, simple queries and full or partial database 
download services. In addition, the database repre-
sents a useful benchmark set for the development and 
evaluation of machine learning methods for classifi-
cation or prediction of deleterious/neutral mutations.

Inductive logic programming (ILP)
ILP37 combines machine learning and logic 
programming. Given a formal encoding of the back-
ground knowledge and a set of examples, an ILP 
system will derive hypotheses which explain all the 
positive examples and none, or almost none, of the 
negative examples. In this approach, logic is used as 
a language to induce hypotheses from the examples 
and background knowledge. Briefly, the basic form of 
the ILP problem is defined as follows.

Given

•	 A background knowledge B which is the knowl-
edge available before the learning.
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•	 A finite set of examples E, E = E+ ∪ E- where E+ 
is a nonempty set of positive examples, and E- is a 
set of negative examples.

Find: hypotheses H (set of rules), such that:

•	 All or almost all positive examples e ∈ E+ are cov-
ered by H.

•	 No or few negative examples are covered by H.

In comparison to other machine learning 
approaches, ILP has several advantages. Firstly, in 
data mining, ILP is able to discover knowledge from 
a multi-relational database consisting of multiple 
tables. Thus, ILP is also called multi-relational data 
mining.20 Secondly, using logic programming allows 
to encode more general forms of background knowl-
edge such as recursions, functions or quantifiers.38 
Finally, the learned rules are comprehensible by 

humans and computers and can be interpreted with-
out the need for visualization.

Here, our goal is to use ILP to translate a mutation 
database to a mutation knowledge base. The steps to 
achieve this goal are illustrated in Figure 1 and the 
following sections expand on each of the stages.

Problem definition and example 
construction
The first task involves identifying the problem and 
translating it into positive and negative examples. Here, 
we have limited our study to the task of discriminat-
ing deleterious/neutral mutations. The list of proteins 
known to be involved in human monogenic diseases 
was obtained from the OMIM database.39 Based on this 
list, we selected the 8,117 mutations related to mono-
genic disease with high quality 3D models in MSV3d. 

MSV3d 
annotated mutations

Problem definition and example construction

Background knowledge construction

Selection of ILP system

Rule analysis and interpretation by the experts

Setting the parameters

Evaluation of the model

Novel hypotheses: set of
pertinent rules (if-then rules)

K cross validation

Figure 1. Main steps for an ILP application include: (i) mutation selection from MSV3d, (ii) definition of negative/positive examples in the training set,  
(iii) background knowledge creation, (iv) selection of the ILP system, (v) selection of the ILP parameters (number of nodes, noisy..) and optimization of the 
predicates in the background knowledge, (vi) model evaluation using K-fold cross validation, and (vii) the final rules used for interpretation.
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Of these, 6,480 deleterious mutations constitute the 
positive examples. The remaining 1,637 neutral muta-
tions constitute the negative examples.

In this work, the positive and negative examples 
are formalized as facts in the Prolog language, which 
represents a logical formula in predicate logic. A fact 
is a predicate expression that makes a declarative 
statement about the problem domain. The predicate 
for the positive examples is “is_deleterious”. For 
example, a positive example in Prolog syntax is:

is_deleterious(m_Q13496_Asn180Lys)

indicating that, in protein Q13496, the replacement 
of the Asparagine at position 180 by a Lysine is 
deleterious.

The positive examples are written in a file with a 
“.f” extension. The negative examples use the same 
predicate “is_deleterious”, but they are written in a 
different file (with a “.n” extension).

Background knowledge construction
The molecular consequences of missense mutations 
are related to the functional and structural contexts 
of the affected position, as well as to the physico-
chemical characteristics of the substitution. All these 
types of information are represented in MSV3d for the 
stored missense mutations and they are used as back-
ground knowledge in this study. Detailed descriptions 
of this information are available in.31

Very recently, Kowarsch et  al40 noted that “we 
believe that researchers should not only look at con-
servation in their judgment of functional significance 
of residues in the protein sequence. Correlation pat-
terns between residues clearly provide additional 
evidence which should not be ignored”. To study the 
effect of neighbouring amino acid residues on a mis-
sense mutation, we enhanced the database by includ-
ing the following additional features:

•	 Neighbouring residues. Residues are considered to 
be neighbours of a mutation if they occur within a 
sphere of radius 10 A°. For example, Figure 2 shows 
the neighbouring residues of the missense mutation 
p.Asn180Lys in protein Q13496.

•	 Classification of amino acids. We used the amino 
acid classification system of Koolman41 in which 
the amino acids are divided into aliphatic, acidic, 

basic, sulfur-containing, aromatic, neutral and 
imino, based on the side chain chemical features.

The use of these features, together with physico-
chemical, functional, 3D structural and evolutionary 
features of the missense mutations allows us to discover 
hidden knowledge from different points of view of the 
missense mutations. The complete multi-relational data 
model used in our analysis is shown in Figure 3.

In order to use ILP, we used SQL scripts to trans-
late the information for each mutation stored in the 
MSV3d database (PostgreSQL) into Prolog facts 
(Fig.  4). Each feature associated with a mutation is 
represented in the form: p(ModeType, ModeType, …), 
where the ModeType is one of: (1) +ModeType speci-
fying the input, (2) -ModeType specifying the output 
and (3) #ModeType specifying a constant. Table  1 
describes all the Prolog facts derived from our mutation 
data model.

Selection of ILP system and parameters
Many ILP systems have been developed and success-
fully applied to diverse domains, eg, FOIL,42 Progol,43 
Tilde44 and Aleph45. We chose Aleph (Version 5) with 
the SWI-Prolog compiler (Version 5.6.47) to learn 
rules from our set of examples because of its popular-
ity, frequent update and flexibility. Aleph is also very 
attractive since it is coded in Prolog and is thus rela-
tively easy to modify. The Aleph algorithm is based on 
the classic ILP framework involving five main steps:

•	 Select an uncovered positive example
•	 Find all the Prolog facts that explain this 

example

— Acidic amino acide

— Basic amino acide

— Aromatic amino acide

— Neutral amino acide

— Sulfure amino acide

— Hydroxilyc amino acide

— ASN GLN
HIS 181

ASN 180
— ProPRO 179

GEY 177

HIS 182
ILE 185

TYR 206

ABG 184

Figure 2. Definition of neighbouring residues.
Notes: For the mutated residue, Asn180 of protein Q13496, a sphere of 
radius 10 A° is drawn with the residue in the centre. Any residues that lie 
within the sphere are defined as neighbours.
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• MutationID
• ProteinID
• Substitution
• Phenotype
• Physico-chemical features
• Evolutionary features
• Structural features

Mutation

• ProteinID
• Position
• Residue

Neighbor

• ClassID
• Description

Amino acid class

1, n0, n

1, 1

1, n

Has

Distance

Has

Distance

1, n

1, n

Figure 3. Mutation data model.
Notes: Each missense mutation is characterised by physico-chemical features (size, charge, polarity, hydrophobicity, etc), evolutionary information and 
3D structural features. In addition, it may have one or more than one neighbouring residues, each of which can belong to a single class, based on 
Koolman’s classification.

Neighbor table

Background knowledge expressed in Prolog

modeh(1, is_deleterious(+mutationid)).
modeb(1, modif_size(+mutationid, #value)).
modeb(1, conservation_wt(+mutationid,  –conservationwt)).
modeb(1, (+conservationwt) @>= (#conservationwt)).
modeb(1, (+conservationwt) @=< (#conservationwt)).
modeb(1, secondary_struc(+mutationid, #secondarystruc)).
modeb(*, neighbor(+mutationid, –aa)).
modeb(1, aa_class(+aa, #aaclass)).
…

Predicate:
modif_size

Predicate:
conservation_wt

Predicate:
secondary_struc

Prolog built-in 
comparison 
predicate:

@>= ,@=< 

MSV3d : PostgreSQL

38

39
40
41

42
43

44

45

46

47

433

434
435

436

437

439

440

443

445

446

12.8

12.8
6.4

39.2

39.2

47.2

39.2

60

92

52.8

SHEET

SHEET
HELIX

SHEET

SHEET

HELIX

SHEET

HELIX

SHEET

SHEET

Increase

Decrease
Decrease

Decrease

Decrease

Decrease

Decrease

Increase

Decrease

Decrease

+

+
=

−

−

−

−

+

−

+

id
integer

modif_size
character varying (2)

conservation_wt
double precision

secondary_struc
character varying (10)

deltag_variation
character varying (20)… …

Figure 4. Construction of background knowledge from MSV3d. 
Notes: Each mutation in the database is identified by a unique identifier ‘id’ and the values of each. Modeh defines the head of a hypothesised clause, 
while Modeb declares the predicates that can occur in the body of a hypothesised clause. The asterisk * in the mode declarations indicates that the cor-
responding predicate can be called many times during the construction of a hypothesised clause.
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Table 1. Predicates used as background knowledge.

Type of information Predicates Description
Physico-chemical changes 
induced by the substitution

modif_size(+mutationid, #value) Size, charge, polarity and 
hydrophobicity modificationsmodif_charge(+mutationid, #value)

modif_hydrophobicity(+mutationid, #value)
modif_polarity(+mutationid, #value)
g_p(+mutationid, #gp) Glycine or proline loss or apparition

Evolutionary features conservation_wt(+mutationid, -conservationwt) Percentage of the wild type residue in 
the alignment column

conservation_mut(+mutationid, -conservationmut) Percentage of the mutant residue in 
the alignment column

freq_at_pos(+mutationid, -freqatpos) Number of known mutations at this 
position

cluster_5res_size(+mutationid, -cluster5ressize) Number of mutations at a distance of 
less than 5 residues in the sequence

Structural features secondary_struc(+mutationid, #secondary_struc) Secondary structure element (helix, 
sheet, no)

gain_contact(+mutationid, -gaincontact) Contacts between
– � the wild type residue and its direct 

3D neighbours, based on the wild 
type 3D model

– � the mutant residue and its direct 
3D neighbours, based on the 
mutant 3D model

are computed and compared

lost_contact(+mutationid, -lostcontact)
identical_contact(+mutationid, -identicalcontact)

gain_n1_contact(+mutationid, -gainn1contact) Contacts between 
– � residues in contact with the wild 

type residue and their direct 3D 
neighbours, based on the wild type 
3D model

– � residues in contact with the 
mutant residue and their direct 3D 
neighbours, based on the mutant 
3D model

are computed and compared

lost_n1_contact(+mutationid, -lostn1contact)
identical_n1_contact(+mutationid, -identical_ 
n1_contact)

wt_accessibility(+mutationid, -wtacc) Accessibility of the wild type/mutant 
residuemut_accessibility(+mutationid, -mutacc)

cluster3d_10(+mutationid, -cluster3d10) Number of mutations in the 3D cluster 
at 10, 20 and 30 A°cluster3d_20(+mutationid, -cluster3d20)

cluster3d_30(+mutationid, -cluster3d30)
stability_decrease(+mutationid) The change in protein relative stability 

upon mutationstability_increase(+mutationid)
reliability_deltag(+mutationid, -reliabilitydeltag)

•	 Combine the facts to generate a clause and use an 
evaluation function to estimate the score of the 
clause on examples

•	 Add the clause with the best score to the current 
hypothesis

•	 Remove positive examples covered by the best clause

These steps are iterated until all the positive exam-
ples are covered.

Aleph allows customization of all the parameters 
involved in the learning task. In our experiments, we 
used the default settings for all parameters, except 
for three important ones. First, the parameter min-
pos, indicating the minimum number of positive 
examples to be covered by an acceptable clause, 
was set to 5. Second, we set the parameter nodes to 
50,000 (default 5,000), in order to provide a larger 
default search space. The nodes parameter defines 
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the maximum number of nodes in the search space 
to be explored by the algorithm. Finally, the param-
eter with the largest effect on the final results was 
the noise, defined as the maximum number of nega-
tive examples to be covered by an acceptable clause. 
To estimate this parameter, we tuned the model with 
different values. Six noise values (0.5%, 0.75%, 1%, 
2%, 3% and 4% of negative examples) were tested 
and the optimal value, ie, the value which resulted in 
the best performance on our data sets, was then used 
for the final model.

In order to perform a stringent evaluation, we con-
ducted a k-fold cross validation test. In this type of 
validation, the data set is randomly split into k equally 
sized subsets. The learning algorithm is then trained 
and tested k times. Each time, k-1 subsets are com-
bined for training and the remaining one is used as 
the test set.

In this study, we used sensitivity (Se) and specific-
ity (Sp) to evaluate the performance of our learning 
system:

Se TP
TP FN

=
+

Sp TN
TN FP

=
+

where True Positives (TP) and True Negatives (TN) 
are the number of correct predictions of the positive 
and negative examples, respectively, False Positives 
(FP) is the number of negative examples incorrectly 
predicted as positive, and False Negatives (FN) is the 
number of positive examples incorrectly predicted as 
negative.

As described earlier, we have an imbalanced 
data set (6,480 deleterious mutations and 1,637 

neutral mutations). We therefore also considered the 
additional quality measure that is suitable for class 
imbalance learning, the Adjusted Geometric-mean46 
defined as:

Gmean Se Sp= *

AGmean Gmean Se Np
Np

= +
+

( * )
1

where Np is the proportion of positive (majority) 
examples in the dataset.

Results and Discussion
Novel hypotheses related to monogenic 
diseases
A set of mutations known to be involved in human 
monogenetic diseases was identified by performing 
keyword searches in the OMIM database. These muta-
tions were then mapped to the MSV3d database and 
pertinent structural, functional and evolutionary fea-
tures were extracted and formalized as Prolog facts, as 
described in the Materials and Methods section. The 
examples of 6,480 deleterious mutations and 1,637 
neutral mutations constituted the initial knowledge 
base. We then used the ILP system implemented in 
the Aleph program to learn rules that define whether 
a mutation is ‘deleterious’ or ‘neutral’, based on its 
structural, functional and evolutionary characteristics. 
Table 2 shows the average sensitivity, specificity and 
AGmean for 3 fold cross-validation for each of the 
noise parameter values tested. As expected, the speci-
ficity decreases with increasing noise value, indicating 
that more negative examples are covered by the final 
set of rules. The best performance (with maximum 
AGmean value) was obtained by setting noise to 0.5%. 
A total of 173 rules were learned (decrypthon.igbmc.

Table 2. Results of 3 fold cross-validation for comparison between different values of the noise parameter.

Parameter Sensitivity (%) Specificity (%) AGmean (%)

Noise = 0.5% 87.97 50.89 76.25
Noise = 0.75% 87.79 50.89 76.10
Noise = 1% 89.34 46.97 75.65
Noise = 2% 90.52 45.26 75.72
Noise = 3% 92.08 42.08 75.47
Noise = 4% 91.64 43.67 75.83

Note: Gmean = geometric mean of accuracies.
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fr/kd4v/cgi-bin/rules), clearly indicating that a large 
number of factors are involved in the potential patho-
genicity of a mutation.

Figure  5  shows some examples of the inferred 
rules, as presented on the web site. The rules are 
ranked according to their ‘utility’ score, defined as 
P—N, where P, N are the number of positive and neg-
ative examples covered by the rule. By clicking on the 
first column, the user can obtain a list of all mutations 
covered by each rule. The second column contains the 
rule identification number. This information is used 
only to identify the rules in our experiments. The two 
next columns contain the most important information: 
the “if” and “then” clauses of the induced rules. The 
two rightmost columns indicate the number of posi-
tive examples (deleterious mutations) and negative 
examples (neutral mutations) covered by the if-then 
rule in each row. A filter is available to facilitate the 
exploration, validation and interpretation of the rules.

To illustrate how to transform ILP rules (expressed 
in the Prolog language) into English sentences, we can 
consider the fourth rule in Figure 5 (mutation67_97),

is_deleterious(A):-
conservation_class(A, sub_family_conservation)
and secondary_struc(A, no_helix_no_sheet)
and gain_contact(A, B) and B.=1
and stability(A, decrease)

This rule states that a mutation A is deleterious if:

•	 The mutated residue belongs to the “sub-family 
conservation class”

•	 The residue is found in neither an α-helix, nor a 
β-sheet

•	 The number of contacts gained after point muta-
tion is larger than or equal to 1

•	 The stability of the protein after point mutation is 
decreased

This rule correctly identified 111 deleterious muta-
tions, while misclassifying 7 neutral mutations as 
deleterious.

Human exploration of the rule set
In order to facilitate the human interpretation of the 
rules, the individual rules were grouped into rule 
subfamilies using the hclust library in R (cran.r-
project.org), which performs a hierarchical clus-
ter analysis based on similarity measures between 
individuals. In our case, the similarity between 2 
rules was defined as the number of common deleteri-
ous mutations covered by these 2 rules (Jaccard sim-
ilarity coefficient47). The result of the clustering can 
be represented by a dendrogram (Fig. 4 and http://
decrypthon.igbmc.fr/kd4v/download/mono67_
dendrogram.pdf) displaying the hierarchical rela-
tionships between rules.

In a manual examination of complete dendrogram, 
two interesting rule subfamilies were identified which 
together encompass more than 558 deleterious muta-
tions (8.6% of the dataset):

i.	 the subfamily containing the 4 rules: 67_96, 
67_140, 67_58 and 67_210
is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 

and 
  modif_charge(A, charge_opposite) and 

Figure 5. Part of a screenshot with four induced rules obtained using Aleph with noise = 0.5%, minpos = 5, nodes = 50,000. 
Notes: Users can click on the + icon to see the covered examples. The keyword “sub_family_conservation” was used as a filter in this screenshot.
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 � modif_size(A, size_increase) and (identical_
n1_contact(A, B) and B.=45)

is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 

and 
 � modif_charge(A, charge_opposite) and modif_

size(A, size_increase) and
 � (identical_n1_contact(A, B) and B.=37)
is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 

and 
 � modif_charge(A, charge_opposite) and (modif_

score(A, B) and B.=27) and secondary_
struc(A, helix)

is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 

and secondary_struc(A, helix) and
 � (cluster3d_10(A, B) and B.=2)

ii.	 the subfamily containing the 5 rules: 67_123, 
67_85, 67_97, 67_41 and 67_177
is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 

and 
 � (identical_n1_contact(A, C) and C.=20) 

and 
  (freq_at_pos(A, B) and B.=2)

is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 

and 
  (gain_n1_contact(A, C) and C.=5) and 
  (conservation_wt(A, B) and B.=51.67)
is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 

and 
  (gain_contact(A, B) and B.=1) and 
 � secondary_struc(A, no_helix_no_sheet) and 

stability(A, decrease)
is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 

and 
 � modif_polarity(A, polarity_decrease) and stability 

(A, decrease)
is_deleterious(A):-
 � conservation_class(A, sub_family_conservation) 
 � and (identical_contact(A, B) and B.=8) and 

modif_charge(A, charge_decrease) and
  (wt_accessibility(A, C) and C.=10.31).

The “sub_family_conservation” predicate was 
found in all the rules in these two subfamilies and 
was highly predictive for the deleterious state. This 
supports a well known hypothesis that conserved 
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Figure 6. Part of the clustering of the full set of 173 generated rules.
Notes: We performed rule alignment on each subfamily (indicated by red rectangles in the dendrogram). Two interesting rules are indicated by (*).
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positions in a protein are more likely to be functional 
and thus, that mutations of conserved residues are 
often deleterious. Nevertheless, the fact that the rules 
are complex and integrate other factors indicates that 
residue conservation alone does not determine the 
effect of the mutation.

As an example, the first subfamily highlights 
another important factor, represented by the “modif_
charge” predicate, which characterizes many 
deleterious mutations. In this case, the value of 
“charge_opposite” indicates a change in the residue 
charge from positive to negative or vice versa. This 
result confirms recent findings concerning the conser-
vation of the mutated residue and the alteration of the 
chemical and physical properties of the amino acids 
in a missense variant having a crucial effect on pro-
tein function.48

The second subfamily reveals the role played by 
the 3D context of the mutated residue in pathogenicity. 
The rules in this subfamily suggest that conserved 
wild type residues with a large number of contacts 
with other residues in the 3D structure of the protein 
are more likely to be deleterious. A similar effect is 
seen with a gain in the number of contacts by the 
mutant residue.

In order to further facilitate the validation and the 
interpretation of the discovered knowledge, we also 
calculated the frequencies of predicates in the set of 
rules. We then ordered the predicates from the most 
predictive to the least predictive. The top five predi-
cates are listed in Table 3. In addition to conservation 
features, the secondary structure element is identified 
as an important factor.28,33

Prediction service
Based on the rules learnt by the ILP algorithm 
described above, a function aimed at estimating 
nsSNP effects related to human monogenic disease 

has been added in the KD4v server. It can be accessed 
via the Prediction link on the KD4v web interface in 
the main menu. KD4v allows users to specify the 
amino acid position and substitution of a given protein 
to be predicted. This includes the Uniprot accession 
number of the protein, the mutation position, the wild 
type residue, the mutant residue and the knowledge 
base (proteins related to human monogenic disease) 
to be used for rule inference. The wild type residue 
must correspond to the current protein sequence.

Given the input mutation, KD4v sends a request 
to MSV3d to automatically generate a multi-level 
characterization. The process starts with the genera-
tion of mutant 3D models. Then, physico-chemical 
changes and structural modifications induced by the 
substitution, as well as functional and structural fea-
tures related to the mutated position are calculated. If 
a 3D model is available, these values are converted 
into Prolog facts, which then become the input for the 
prediction engine of KD4v.

The prediction engine was built based on the rules 
inferred in the previous section. Using Prolog, the 
deductive reasoning process immediately derives a 
conclusion (deleterious or neutral mutation).

Conclusions
The ILP approach is consistent with the database 
perspective where KDD is organized around que-
ries aimed at either selecting datasets for mining, or 
transforming these datasets, or querying and explor-
ing large sets of patterns extracted from the data. 
This study presents a novel application of ILP in the 
bioinformatics field, namely, the characterization 
of the effects of a mutation on protein function and 
the corresponding human monogenic disease. Using 
MSV3d, a database of annotated mutation and pheno-
typic data, we identified mutations related to human 
monogenic disease and constructed background 
knowledge and a training set of positive and nega-
tive examples. The resulting mutation knowledge 
base contains a set of rules for distinguishing delete-
rious and neutral mutations. The rules confirmed pre-
vious findings concerning the physico-chemical and 
evolutionary features that characterize a deleterious 
mutation, such as the importance of the conservation 
of the mutated residue or the detrimental effects of 
modification of the amino acid charge, volume and 
hydrophobicity.

Table 3. The top five predicates found in the rules defining 
deleterious or neutral mutations.

Predicates Frequency in set of rules
secondary_struc 12.7%
conservation_class 11.0%
modif_charge 7.6%
cluster_5res_size 6.3%
conservation_wt 6.1%
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An important feature of our system is the fact that 
almost all the mutations can be easily accessed via 
their associated set of rules. Our mutation knowledge 
base thus provides useful information for understand-
ing the relationships between the genotypic alteration 
and the phenotypic features in human monogenic 
diseases. The knowledge discovered by ILP should be 
helpful for the design of further research experiments. 
In addition, we have shown that the ILP approach can 
be effectively used for mutation effect prediction, as 
illustrated by the performances obtained which are 
similar to the common and widely used methods.

In the future, we plan to enhance the background 
knowledge by including more detailed genotypic and 
phenotypic information, as well as additional data 
related to the 3D structure, including structural surface 
topology descriptions.49 We will also include more 
functional information, for example log-odds scores 
based on the Gene Ontology.50 By integrating richer 
and more relevant background knowledge, we hope 
to not only improve the classification of deleterious 
from neutral mutations, but also to shed light on the 
complex relationships that exist between phenotype 
and genotype. In the longer term, these developments 
should contribute to a more complete elucidation of 
the chain of events leading from a molecular defect to 
its pathology.
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