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Abstract
HER2-targeted therapies effectively control systemic disease, but their efficacy against brain

metastases is hindered by their low penetration of the blood-brain and blood-tumor barriers (BBB

and BTB). We investigate brain uptake and antitumor efficacy of transferrin receptor (TfR)-tar-

geted, therapeutic nanoparticles designed to transcytose the BBB/BTB in three murine models.

Two known models involving intracranial (IC) or intracardiac (ICD) injection of human breast cancer

cells were employed, as was a third model developed here involving intravenous (IV) injection of

the cells to form whole-body tumors that eventually metastasize to the brain. We show the

method of establishing brain metastases significantly affects therapeutic BBB/BTB penetration.

Free drug accumulates and delays growth in IC- and ICD-formed brain tumors, while non-targeted

nanoparticles show uptake and inhibition only in IC-established metastases. TfR-targeted nanopar-

ticles accumulate and significantly delay growth in all three models, suggesting the IV model main-

tains a more intact BBB/BTB than the other models.
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1 | INTRODUCTION

Human epidermal growth factor receptor 2 (HER2) protein overexpres-

sion is observed in about 25% of human breast cancers. It confers a

more aggressive phenotype and, historically, has been associated with

poor patient prognosis.1 HER2-targeted therapies, such as the anti-

HER2 antibody (Ab) trastuzumab, have been shown to improve out-

comes in patients with HER2-positive, metastatic disease. However,

with improved control of systemic disease and prolonged survival, the

incidence of brain metastases is increasing in these patients.2,3 Cur-

rently, as many as half of patients with HER2-positive, metastatic breast

cancer develop brain metastases over time.4 Treatment of these brain

tumors is a growing clinical challenge, in large part due to the poor pene-

tration of HER2-targeted agents through the blood–brain barrier

(BBB).4,5

There is considerable debate in the literature regarding the extent

to which the BBB remains intact with brain metastases (in the form of

the blood–tumor barrier [BTB]). In general, chemotherapy has not

proven to be effective in the clinic.6 However, there have been a few

examples of specific combinations showing clinical activity.7 Recent

studies in experimental brain metastasis models reveal that, although

the majority of metastases have some increased vascular permeability,

their uptake of chemotherapeutics is limited.8 Furthermore, significant

heterogeneity in therapeutic uptake is observed in brain metastases

resected from patients, both among patients and within individual

lesions.9 Additionally, an investigation of breast cancer subtypes

showed that there is no significant disruption of the barrier by brain

metastases resected from patients with HER2-positive breast can-

cer.10 Thus, while brain metastases may have some increased perme-

ability, approaches to overcome limited drug delivery to the brain will

be important to improve clinical outcomes, particularly for

HER2-positive, metastatic disease.

Of the many strategies to increase brain penetration of systemic

therapeutics, perhaps one of the most promising is the use of
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receptor-mediated transcytosis (RMT).11,12 Transferrin receptor (TfR)

has been actively explored for RMT across the BBB, due to its high

expression on BBB endothelium.13 In particular, anti-TfR Abs has gar-

nered the most interest because of their ability to bind TfR with high

affinity without interfering with endogenous transferrin (Tf ).14,15

Results from initial studies suggested that reducing the affinity of

anti-TfR Abs to TfR maximizes their uptake into the brain paren-

chyma.16 Further investigation revealed that affinity influences intra-

cellular trafficking; high-affinity anti-TfR Abs are trafficked to the

lysosome, while lower-affinity variants are more capable of transcyto-

sis.17 Recently, it has been shown that bivalent Ab:TfR binding leads

to lysosomal sorting, whereas monovalent binding facilitates transcy-

tosis.18 In addition to affinity and valency, in vitro results suggest that

pH-sensitivity of TfR binding also affects trafficking of anti-TfR Abs;

an Ab with reduced affinity at endosomal pH 5.5 showed a greater

ability to transcytose than pH-independent Abs of comparable affini-

ties at extracellular pH 7.4.19 However, despite a more detailed under-

standing of the properties that promote transcytosis, several

challenges exist in translating anti-TfR Abs into the clinic, including

the need to: (a) dose very high quantities,15 (b) mitigate effector-

function driven safety concerns,20 and (c) develop species-specific

Abs.21

Motivated by the results from anti-TfR Ab trafficking at the BBB,

we began to investigate how fundamental properties of TfR-targeted

nanoparticles affect their transcytosis capacity.22 Targeted nanoparti-

cles were chosen for their ability to deliver large quantities and a vari-

ety of drugs to specific tissues at well-controlled release rates.23 In

analogy to the results obtained with anti-TfR Abs, Tf-coated gold

nanoparticles (AuNPs) with reduced avidity to TfR demonstrated the

greatest ability to cross the BBB.22 Despite showing promise, ques-

tions regarding the need for very high systemic dosing to achieve suf-

ficient brain accumulation led to alternative nanoparticle designs.

Recently, an acid-cleavable targeting strategy was incorporated into

the nanoparticle design to increase the ability of high-avidity

nanoparticles to enter the brain.24 With this design, nanoparticles can

bind TfR with high avidity on the blood side of the BBB to enable

practical, systemic dosing, but shed the targeting ligands upon acidifi-

cation during transcytosis,25 allowing free diffusion into the paren-

chyma (Figure 1a). Incorporation of an acid-cleavable linkage between

Tf and the nanoparticle core increased brain uptake of high-avidity Tf-

coated AuNPs nearly threefold.24 In contrast, no improvement was

observed with high-affinity anti-TfR-coated AuNPs with the cleavable

linker, consistent with their trafficking to the lysosome. These results

suggest that intracellular trafficking may also be affected by the par-

ticular targeting ligand.

Here, we determine whether nanoparticles can be prepared to

deliver therapeutic quantities of drug across the BBB. We focused on

HER2-positive breast cancer brain metastasis because of the inade-

quate drug concentrations achieved in these tumors in the clinical set-

ting. Although a number of preclinical models for this disease have

emerged in the literature, the effect of the method used to establish

metastatic brain tumors on therapeutic brain penetration has not been

examined. To address these questions, we adapted a targeted nano-

particle delivery system for camptothecin (CPT) previously developed

in our lab for its use at the BBB.26,27 Tf was attached to nanoparticles

consisting of a mucic acid polymer (MAP) conjugate of CPT (MAP-

CPT) through a pH-dependent, boronic acid-diol complexation to form

TfR-targeted MAP-CPT nanoparticles (Figure 1b). We investigated

antitumor efficacy and brain uptake of these nanoparticles in two

types of models from the literature, as well as a new, third model we

developed that more closely mimics the metastasis process in

patients. We found that this targeted nanoparticle delivery system

can be used to deliver CPT to HER2-positive breast cancer brain

metastases. Importantly, we also observed significant differences in

efficacy as well as brain penetration of both TfR-targeted and nontar-

geted therapeutics between the models, showing that the method of

establishing brain metastases can affect brain uptake of therapeutic

agents.

FIGURE 1 (a) Scheme of acid-cleavable targeting strategy. Following endocytosis, rapid acidification of endosome triggers separation of Tf

ligands from the nanoparticle core, allowing free diffusion of the nanoparticle into the brain parenchyma after transcytosis. (b) Preparation of TfR-
targeted and nontargeted MAP-CPT nanoparticles and pH-dependence of nitroPBA-diol complex. x ~ 82 for 3.4 kDa PEG; y ~ 20 for material
used in this study; z ~ 120 for 5 kDa PEG
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2 | MATERIALS AND METHODS

Complete details of the materials and methods used in this study are

provided in Supporting Information.

2.1 | Synthesis of MAP-CPT conjugate

Mucic acid was modified to prepare mucic acid di(Asp-amine). Mucic

acid di(Asp-amine) was polymerized with di(succinimidyl proprionate)-

PEG to prepare MAP. Polymer molecular weight was determined by

GPC. MAP was reacted with 20-O-Glycinylcamptothecin trifluoroace-

tic acid salt (CPT-gly.TFA) to prepare MAP-CPT conjugate. A portion

of this solution was lyophilized to determine CPT content, and the

remaining was formulated into 0.9% (wt/vol) saline and stored

at −20 �C.

2.2 | Synthesis of CO2H-PEG-nitroPBA and OMe-
PEG-nitroPBA

3-carboxy-5-nitrophenyl boronic acid (nitroPBA) was reacted with

oxalyl chloride to prepare 3-acyl chloride-5-nitrophenyl boronic acid.

The acyl chloride was reacted with either CO2H-PEG-NH2 or OMe-

PEG-NH2 to prepare CO2H-PEG-nitroPBA and OMe-PEG-nitroPBA,

respectively.

2.3 | Synthesis of Tf-PEG-nitroPBA

Tf was coupled to CO2H-PEG-nitroPBA using EDC/NHS chemistry to

prepare Tf-PEG-nitroPBA. Protein conjugation was verified by

MALDI-TOF, using a sinapinic acid matrix.

2.4 | Preparation of nanoparticles

Either OMe-PEG-nitroPBA or Tf-PEG-nitroPBA conjugates were

added at 20x molar excess to MAP-CPT nanoparticles to form nontar-

geted and TfR-targeted nanoparticles in PBS, pH 7.4 (20 OMe or Tf

per particle).

2.5 | Nanoparticle characterization

Particle sizes and zeta potentials were measured with a Brookhaven

Instruments ZetaPALS. Reported values are the average of five runs

for nanoparticle size and of five runs with a target residual of 0.02 for

zeta potential.

2.6 | Nanoparticle Transwell assay

bEnd.3 cells were grown on polyester membrane transwells (Corning)

until transendothelial electrical resistance was more than

30 Ohm/cm2. Nanoparticles were added to the apical compartment at

1 μg of CPT/well in serum-free DMEM. The entire basal well volume

was removed at 8 hr. High-performance liquid chromatography

(HPLC) was used to measure the CPT content in the basal well

aliquots.

2.7 | Antitumor efficacy in IC, ICD, and IV brain
metastasis models

All animals were treated according to the NIH guidelines for animal

care and use as approved by the Caltech Institutional Animal Care and

Use Committee. BT474-Gluc cells were intracranial (IC)-, intracardiac

(ICD)-, and intravenous (IV)-injected into female Rag2−/−;Il2rg−/− mice,

and formation of brain tumors was monitored by MRI. Mice were ran-

domized into four groups of six mice per group: saline, CPT, nontar-

geted MAP-CPT nanoparticle, and TfR-targeted MAP-CPT

nanoparticle groups. The different formulations were freshly prepared

and administered intravenously once per week for 4 weeks at a dose

of 4 mg/kg (CPT basis), and tumor volume was measured weekly by

MRI. For the IC model, tumor size was also monitored by measuring

blood Gluc activity. Statistical significance for pairwise group compari-

sons was tested using the Wilcoxon-Mann–Whitney test.

2.8 | Measurement of CPT concentration in brain

Four mice per group were systemically administered an additional

dose of each treatment at the end of the efficacy study. After 24 hr,

the mice were anesthetized and perfused with PBS. Tumor and

healthy brain tissue samples were collected and lysed. The CPT con-

centration in tissue lysate was quantified by HPLC. Statistical signifi-

cance for pairwise group comparisons was tested using the Wilcoxon-

Mann–Whitney test.

2.9 | Brain metastatic tumor cell isolation and
cytotoxicity assay

BT474-Gluc brain metastatic tumor cells were dissociated from

resected brain tumors and cultured for 1 week. Sensitivity of

BT474-Gluc cells isolated from IC-, ICD-, and IV-established brain

tumors to CPT compared to parental cells was determined using the

CellTiter 96 Aqueous One Solution cell proliferation assay (Promega),

according to the manufacturer's protocol.

3 | RESULTS AND DISCUSSION

3.1 | Synthesis and characterization of TfR-targeted
and nontargeted MAP-CPT nanoparticles

MAP-CPT nanoparticles were chosen for this study because they

retained the optimal design parameters identified in our previous

AuNP formulations, including a sub-100-nm diameter and near-

neutral zeta potential.22 It has also been shown that these characteris-

tics facilitate the diffusion of nanoparticles through brain tissue.28 The

ketal linker previously investigated as the acid-cleavable moiety

between the Tf and the nanoparticle did not provide optimal cleavage

kinetics to remove all surface Tf during transcytosis.24 The MAP deliv-

ery system allows for assembly of TfR-targeted nanoparticles using an

improved acid-cleavable chemistry (Figure 1b), as discussed below.

Furthermore, MAP-CPT nanoparticles targeted with an antibody have

already been used to effectively treat breast cancer xenografts in

mice.27
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MAP-CPT conjugate was synthesized in a similar manner to that

previously described (Supporting Information Figure S1).26 Properties

of the material used in this study are provided in Supporting Informa-

tion Table S1. MAP-CPT conjugate was dialyzed against water to pro-

mote formation of nanoparticles with hydrophobic CPT molecules

preferentially clustered in the core and vicinal diols on the surface

(Figure 1b).

The boronic acid derivative, 3-carboxy-5-nitrophenyl boronic acid

(nitroPBA), was added to 5-kDa polyethylene glycol (PEG), followed

by conjugation of the polymer to human holo-Tf (Supporting Informa-

tion Figure S2A). A non-targeted analog was prepared using methoxy-

terminated 5-kDa PEG (Supporting Information Figure S2B). NitroPBA

was chosen because it forms a boronic acid ester with the MAP-CPT

diols and has a pKa of 6.8.26 The nearly instantaneous (relative to the

timeframe of BBB transcytosis) dissociation of Tf-PEG-nitroPBA from

the nanoparticle occurs at pH <6.8, to provide ligand detachment dur-

ing transcytosis.

To prepare the TfR-targeted and nontargeted MAP-CPT nanopar-

ticles, either Tf-PEG-nitroPBA or OMe-PEG-nitroPBA was added to

the nanoparticles at 20 M excess (Figure 1b). All nanoparticle formula-

tions had diameters near 40 nm, as measured by dynamic light scat-

tering, and near-neutral zeta potentials when measured in pH 7.4

buffer (Supporting Information Table S2). The moderate increase in

TfR-targeted nanoparticle size when formulated into pH 5.5 buffer is

consistent with slight steric destabilization following dissociation of

Tf-PEG-nitroPBA conjugates from the nanoparticle surface diols at

acidic pH. Importantly, no diameter increase was observed for TfR-

targeted nanoparticles after 24 hr, indicating the multi-PEGylated Tfs

in the crude Tf-PEG-nitroPBA mixture were not causing crosslinking

between nanoparticles (Supporting Information Figure S3).

3.2 | Specific binding of TfR allows targeted
nanoparticles to cross an in vitro model of the BBB

To perform an initial screen of transcytosis capacity, we used the

bEnd.3 immortalized mouse brain endothelial cell line in an established

in vitro model of the BBB.29 Nanoparticles were added to the apical

compartment of bEnd.3-coated transwells in serum-free DMEM and

allowed to cross the model BBB for 8 hr, after which the full volume

of the basal compartment was removed and CPT content measured

using HPLC.

After 8 hr, TfR-targeted MAP-CPT nanoparticles showed a signifi-

cantly increased capacity to cross the bEnd.3 cells compared to non-

targeted nanoparticles (Supporting Information Figure S4). In addition,

TfR-targeted nanoparticles showed a decreased ability to cross the model

BBB when coincubated with serum concentrations of Tf, indicating TfR

binding is essential to crossing. TfR-targeted nanoparticles also showed a

decreased ability to cross the transwells when coincubated with an equi-

molar amount of high affinity anti-TfR Abs, but not with anti-TfR Abs of

reduced affinity at endosomal pH 5.5, consistent with previous reports of

high-affinity Ab:TfR interactions leading to lysosomal trafficking.17

3.3 | Development of mouse model that replicates
the metastasis process in HER2-positive breast cancer
brain metastasis patients

In an attempt to create a clinically representative, impermeable barrier

to standard therapeutics, we developed a new model of

HER2-positive breast cancer brain metastasis that reproduces human

cancer dissemination. Metastasis models are illustrated in Figure 2.

HER2-positive BT474-Gluc cells were IV injected into Rag2−/−;Il2rg−/−

mice, and formation of brain metastases was monitored by MRI. Injec-

tion of cancer cells IV has been used to establish various metastasis

models, such as lung metastasis.30,31 This cell line was engineered to

express Gaussia luciferase (Gluc) that can be used as a surrogate for

tumor burden.32 Rag2−/−;Il2rg−/− mice were chosen because they have

shown the ability to allow multi-organ metastatic spread of

HER2-positive breast cancer cell lines injected IV.33

IV injection of BT474-Gluc cells reproduced the metastatic pattern

observed in breast cancer patients, with multiple metastatic sites

(Supporting Information Table S3). Importantly, brain tumors developed

in a majority of the mice (>90%) before they succumbed to visceral

tumor burden, with a distribution similar to that observed in patients

(Supporting Information Figure S5). The median time to establishment

of brain metastatic tumors visible by MRI was 4.2 months (range 2.9–

6.1 months). We tested the effects of a standard anti-HER2 therapy,

trastuzumab, on the growth of BT474-Gluc tumors established by IV

injection versus the commonly used IC method. Treatment with trastu-

zumab led to delay in tumor progression when tumors were established

FIGURE 2 Illustration of breast cancer brain metastasis models. (a) IC injection of tumor cells allows for direct establishment of brain metastases.

(b) Following ICD injection into the left ventricle, tumor cells can head to brain vasculature, as well as to other organs. Some cells will successfully
extravasate and form macroscopic brain tumors. (c) After IV injection, most tumor cells will arrest in the lung capillary bed, as well as other sites,
followed by subsequent metastasis to the brain
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by IC injection, suggesting this method of forming brain tumors may dis-

rupt the BBB/BTB (Supporting Information Figure S6). In contrast, tras-

tuzumab failed to control tumor growth for tumors established IV,

mimicking the clinical situation.

After our development work was completed, two additional

models gained popularity in the literature that use an ICD or intracaro-

tid (ICA) injection to establish brain metastases. While the ICA model

leads to the formation of fewer extracranial metastases than the ICD

model, it requires additional microsurgical expertise.34 Because of this

limitation, we chose to include the IC and ICD models from the litera-

ture in addition to our new model here to investigate the efficacy and

brain penetration of TfR-targeted MAP-CPT nanoparticles.

3.4 | Brain tumors show significant delay in growth
with TfR-targeted nanoparticles, but their response
differs when established by different methods

We compared the efficacy of TfR-targeted MAP-CPT nanoparticles,

nontargeted MAP-CPT nanoparticles and CPT on the growth of

BT474-Gluc brain metastatic tumors in Rag2−/−;Il2rg−/− mice estab-

lished by IC, ICD, and IV methods (Supporting Information Figure S7).

After IC, ICD, or IV injection of BT474-Gluc cells, formation of brain

metastatic tumors was monitored by MRI. Representative images and

metastasis locations for each brain cancer model are provided in Sup-

porting Information Figure S8 and Table S4, respectively. A total of six

mice were used for each treatment group per model, and treatment was

initiated when tumors reached 2 mm3 in volume. This metastasis volume

was chosen as an intermediate size between small micrometastases

(0.1–1 mm3) and large lesions (>4–10 mm3). The different formulations

were systemically administered by lateral tail vein injection once per

week for 4 weeks at a dose of 4 mg/kg (CPT basis). Brain tumor volume

was measured weekly by MRI. In addition, blood Gluc activity was mea-

sured to monitor brain tumors only for the IC model, due to presence of

metastases elsewhere in the mouse in the ICD and IV models.

In mice bearing IC-established brain tumors, TfR-targeted MAP-

CPT nanoparticles significantly delayed brain metastatic tumor growth

compared to saline, resulting in an 8.4-fold decrease in mean tumor

volume by the end of the study (Figure 3a and Supporting Information

Table S5). However, treatment with nontargeted MAP-CPT

nanoparticles or CPT also led to substantial tumor growth inhibition

(3.5- or 2.6-fold reduction in mean final tumor volume, respectively),

supporting the hypothesis that artificial transport pathways may be

introduced following IC tumor establishment. The blood Gluc activity

for each treatment group correlated well with tumor volume, as mea-

sured by MRI (Supporting Information Figure S9). Individual antitumor

data are provided in Supporting Information Figure S10.

In contrast to results from the IC model, only treatment with TfR-

targeted MAP-CPT nanoparticles resulted in substantial tumor growth

delay compared to saline when tumors were established by ICD injec-

tion (2.6-fold decrease in mean tumor volume; Figure 3b and Support-

ing Information Table S6). Interestingly, we observed a modest

response with CPT treatment, but not with nontargeted MAP-CPT

nanoparticles (although this difference was not significant).

Similar to the ICD model, with IV-established brain tumors, TfR-

targeted MAP-CPT nanoparticles markedly slowed tumor growth

compared to saline (2.5-fold decrease in mean tumor volume;

Figure 3c and Supporting Information Table S7). Notably, no tumor

growth inhibition was observed with CPT or nontargeted MAP-CPT

nanoparticles compared to saline in this model, more closely replicat-

ing the clinical situation.

3.5 | Brain uptake of therapeutics differs in tumor,
but not healthy tissue between models

To ascertain whether differences in brain penetration of the therapeu-

tics might explain the discordance in efficacy between brain metastasis

models, we systemically administered an additional dose of each treat-

ment at the end of the efficacy study. After 24 hr, mice were anesthe-

tized and perfused with PBS to clear any remaining nanoparticles or

free drug from the bloodstream. Drug uptake into tumor and healthy

brain tissue was quantified by HPLC as previously described.27

Tumor tissue collected from IC-established, but not from ICD-

and IV-established brain tumors showed significant accumulation of

CPT and nontargeted MAP-CPT nanoparticles, consistent with the

hypothesis that the barrier in IC-established tumors may be more per-

meable to therapeutics than what is observed in patients with

HER2-positive disease (Figure 4a). In addition, cells isolated from

BT474-Gluc tumors from all three models as well as the respective

FIGURE 3 Brain tumors established using different methods show differential response to therapeutics. Tumor growth curves of BT474-Gluc

metastatic brain tumors treated with CPT (orange, 4 mg/kg), nontargeted MAP-CPT nanoparticles (gray, 4 mg CPT/kg), and TfR-targeted MAP-CPT
nanoparticles (blue, 4 mg CPT/kg) compared to saline (black) when established by IC (a), ICD (b), and IV injection (c). Data shown are the average of
six mice per treatment group. Error bars indicate SE. p values for pairwise comparisons are provided in Supporting Information Tables S5–S7
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parental cells had comparable sensitivities to CPT in vitro (Supporting

Information Figure S11), ruling out permanent, model-specific drug

sensitivity as the origin for anti-tumor differences. Although there is

evidence that brain-specific drug resistance mechanisms may also be

important,7 these data strongly implicate BBB/BTB permeability to

the therapeutic agents as a key mediator of the differential treatment

response between the models in this study.

Importantly, TfR-targeted MAP-CPT nanoparticles showed the

highest accumulation in IC-, ICD-, and IV-established brain tumor tis-

sue. In addition, TfR-targeted nanoparticles demonstrated increased

penetration into healthy brain tissue relative to free drug and nontar-

geted nanoparticles in all three models (Figure 4b). As with the antitu-

mor efficacy data, these results further indicate the potential of the

TfR-targeted nanoparticle delivery system.

4 | CONCLUSIONS

Here, we focused on understanding whether two types of breast can-

cer brain metastasis mouse models from the literature as well as a

third, new model created in this study provide impaired drug delivery

to brain metastases like what is observed for patients with

HER2-positive, metastatic breast cancer. In patients, non-BBB-

permeable agents are unable to accumulate in brain metastases in

pharmacologically active amounts. However, we did not observe this

same delivery limitation in the IC model. Our results show that a non-

BBB-penetrant small molecule (CPT) and a nontargeted nanoparticle

therapeutic (ca. 30–40 nm diameter) can elicit a significant antitumor

response as well as accumulate in high amounts in IC-established

brain tumors. In contrast to the IC model, both the ICD and IV models

provide for a more intact BBB/BTB. Our results indicate that the ICD

model may allow for a slightly increased permeability to small mole-

cule drugs, but not to larger nanoparticle entities when compared to

the IV model. Consistent with a modest uptake in healthy brain tissue,

it is possible that the high number of microscopic tumor foci com-

monly observed throughout the brain following ICD injection may

contribute to a slight net increase in parenchymal penetration as a

whole. Nevertheless, this effect was minimal.

Most importantly, our data show that the method of establishing

brain tumors can dramatically affect the efficacy of therapeutics and

their brain penetration. Our findings suggest that, although the IC

model allows for consistent and reproducible tumor growth in the

brain parenchyma and thus may be useful for studying basic biological

mechanisms, this model must be used with caution for translational

research with diseases where a nonpermissive BBB is clinically rele-

vant. While tumor burden is not as consistent in the ICD and IV

models, our data support the use of these models if the experimenter

is interested in transport properties of a given therapeutic.

Additionally, we show that TfR-targeted nanoparticles are capable

of delivering a small molecule chemotherapeutic, CPT, to HER2-positive

breast cancer brain metastases. We observed that TfR-targeted MAP-

CPT nanoparticles significantly slowed tumor growth in the brain and

demonstrated increased accumulation in brain metastases relative to free

drug and nontargeted nanoparticles. The specific example of assembling

a TfR-targeted nanoparticle system for CPT was selected to test the

delivery strategy. CPT is not a particularly good drug for use with BT474

cells (relative to other breast cancer cell lines).26 Thus, it is encouraging

to observe tumor growth delay when delivering CPT via targeted nano-

particles to the BT474-Gluc brain metastases. It is expected that TfR-

targeted nanoparticles delivering therapeutic agents with greater

potency will reveal even more significant tumor size reductions.

Further, it is important to note that TfR-targeted nanoparticles

accumulated in significant amounts in healthy brain tissue when com-

pared to free drug and nontargeted nanoparticles in all three models.

This observed whole-brain penetration has implications for the selec-

tion of therapeutics that should be incorporated into this delivery sys-

tem and of target diseases. In the case of brain cancers, the ability to

penetrate not only tumor tissue, but also healthy tissue could be advan-

tageous in accessing micrometastases or fingers of glioma tumors that

are frequently the reason for treatment failure. At the same time, the

broad nanoparticle accumulation in the brain will require careful

thought as to which drugs are used in this application, due to potential

toxicity issues. For other brain diseases where whole-brain therapeutic

exposure is highly desired, such as neurodegenerative diseases, this tar-

geted nanoparticle system may offer a compelling approach to deliver-

ing therapeutics across an intact BBB.

Here, we show that the method used to establish breast cancer

brain metastases can affect efficacy and brain uptake of therapeutic

agents. We observed a significant antitumor response as well as brain

FIGURE 4 Brain uptake of therapeutics is model-dependent in tumor,

but not healthy tissue. (a) Brain uptake in BT474-Gluc tumor tissue as
calculated by percent injected dose per g of tissue for different
treatments. (b) Percent injected dose in healthy brain tissue. Brain
uptake was determined 24 hr after a 4 mg/kg dose (CPT basis). Data
shown are the average of four mice per treatment group. Error bars
indicate SE. ND, not detectable. p values for pairwise comparisons are
provided in Supporting Information Tables S8 and S9
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tumor accumulation of a non-BBB-penetrant small molecule and a non-

targeted nanoparticle therapeutic in tumors that were formed by IC

injection of human breast cancer cells. In contrast, both ICD and IV

injection of the cancer cells provided for a more clinically relevant,

impermeable BBB/BTB to nonpenetrant agents. Additionally, we show

that TfR-targeted MAP-CPT nanoparticles can accumulate in brain

metastases in greater amounts and lead to improved antitumor activity

compared with free drug and nontargeted MAP-CPT nanoparticles. Fur-

thermore, TfR-targeted nanoparticles showed an increased ability to

cross an intact BBB, resulting in whole-brain therapeutic accumulation.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Sup-

porting Information section at the end of the article.
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