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Abstract

Alterations in the substantia nigra are strongly associated with Parkinson’s disease. How-

ever, due to low contrast and partial volume effects present in typical MRI images, the sub-

stantia nigra is not of sufficient size to obtain a reliable segmentation for region-of-interest

based analysis. To combat this problem, the approach proposed here offers a method to

investigate and reveal changes in quantitative MRI parameters in the vicinity of substantia

nigra without any a priori delineation. This approach uses an alternative method of statisti-

cal, voxel-based analysis of quantitative maps and was tested on 18 patients and 15 healthy

controls using a well-established, quantitative free water mapping protocol. It was possible

to reveal the topology and the location of pathological changes in the substantia nigra and

its vicinity. Moreover, a decrease in free water content, T1 and T2* in the vicinity of substan-

tia nigra was indicated in the Parkinson’s disease patients compared to the healthy controls.

These findings reflect a disruption of grey matter and iron accumulation, which is known to

lead to neurodegeneration. Consequently, the proposed method demonstrates an

increased sensitivity for the detection of pathological changes—even in small regions—and

can facilitate disease monitoring via quantitative MR parameters.

Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder with rising incidence

due to an ageing population [1, 2]. Motor dysfunction in PD is linked to a loss of dopaminergic

neurons and the accumulation of iron in the substantia nigra (SN) [2–4]. Consequently,

understanding changes in the SN is essential for diagnosis and treatment monitoring. How-

ever, this is particularly challenging, due to its small size. Although the underlying
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mechanisms, i.e. protein misfolding and aggregation, oxidative stress and mitochondrial dys-

function, associated with PD are known and have been studied extensively [5, 6], establishing

quantitative biomarkers, crucial indicators for monitoring the disease, has been more difficult.

Magnetic resonance imaging (MRI) enables the detection and monitoring of the pathophysio-

logical substrate of the disorder non-invasively, while quantitative MRI gives more sensitive

and unbiased information about the tissue properties. Most of the quantitative MRI studies in

PD have focused on the evaluation of iron deposition in the SN solely using R2
� or susceptibil-

ity imaging [7–9]. There are very few studies reporting R1 changes [10] and, to the best of our

knowledge, none investigating total free water content (FW) in this pathology. Recently, Ofori

et al. [11] reported an increase in the fractional volume of free water using bi-tensor diffusion.

This is, to date, the most important finding related to water content variations in PD patients,

since it is also supported by the longitudinal study of Burciu et al. [12] However, this should

not be confused with FW since the latter depicts the total MR-visible free water. It is known,

that during normal ageing, the concentration of neuromelanin increases in order to facilitate a

higher concentration of iron and to protect the cell from its toxicity and ferroptosis [13–15].

In the case of PD, however, as dopaminergic neurons die, iron-saturated neuromelanin is

released extracellularly, leading to iron-mediated toxicity, which in turn activates microglia

and causes inflammation [16]. Therefore, it is apparent that the multiple pathological sub-

strates of PD require simultaneous investigation of multiple quantitative parameters e.g. T1,

T2
� and FW, which–thus far–has not been reported.

Although the aforementioned studies have attempted to investigate the manifestation of the

pathophysiology in the SN via quantitative MR parameters, they are based on either manual

segmentation or thresholding using contrast provided by one of the employed sequences. This

introduces a source of bias, as each sequence is sensitive to different biological changes in the

tissue. Therefore, the shape and size of the region-of-interest (ROI) might differ. Furthermore,

segmentation of the pathological SN is very difficult, especially in patient cohorts, due to low

contrast, insufficient resolution in the MRI images and inevitable partial volume effects caused

by the movement of the subject and misregistration. Typically, gradient echo sequences with

an isotropic 1 mm in-plane resolution and a slice thickness of 1 or 2 mm are employed to

access quantitative water content mapping [17, 18]. However, the SN only consists of approxi-

mately 300 voxels–too few for detailed investigation.

It is a common practice to perform manual segmentation of small structures. For example,

Keuken et al. [19] used the superposition of voxels selected independently by two researchers.

With ultra-high-field MRI providing higher signal-to-noise-ratio and an adequate inter-rater

reliability metric (e.g. dice coefficient)—manual segmentation is, in many cases, the most

robust approach. Some studies report that the best contrast for revealing the SN is magnetisa-

tion transfer contrast (MTC). For example, Bolding et al. [20] compared MTC with T2-

weighted images using histological brain sections as a reference and concluded that MTC

images were more suitable for manual segmentation. This knowledge has been subsequently

employed, for instance, by Chen et al. [21] to calculate the volume of SN regions in a healthy

cohort. A multi-modal approach, suggested by Visser et al. [22], involved machine learning by

means of a Bayesian framework to find the expected appearance of edges on a training data-

set. This information was then used to deform an initial rough mesh of the feature of interest,

based on intensity profiles across the boundaries. Ali et al. [23] defined the probability density

function based on a training data set which was then used (via Bayesian decision theory) to

classify the voxels of the target image. In a recent variation of the gold-standard unified seg-

mentation method of Ashburner and Friston [24], where spatially normalised images are parti-

tioned into different tissue probability maps, Lambert et al. [25] utilised a modified

multivariate mixture of Gaussians on magnetisation transfer and proton density maps.
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Recently, Milletari et al. [26] proposed employing convolutional neural networks (CNN) for a

fully automated segmentation of the brain. However, although this method is very robust,

multi-modal and multi-regional, it does not perform well for small ROIs, including the SN.

Finally, Archer et al. [27] managed to train SVM (support vector machine) to detect the

pathology in a diffusion-weighted MRI image. The approach demonstrated very good perfor-

mance; however, a priori delineated data was used. The main aim of this work is to present a

method for quantifying the changes seen in the SN of PD patients. The method aims to over-

come the dual challenges of low statistics and poor detectability of the area of interest (SN) due

to low SNR and insufficient resolution in “standard” MRI techniques. Here, together with con-

trast enhancement via a joint metric, clustering is used as an alternative to sophisticated cor-

rection methods for type-1 errors and to further decrease partial volume effects. As it requires

a priori knowledge about the existence of the pathology and does not provide an accurate con-

tour, it cannot be treated as a typical segmentation method. It is noted that, very often, it is not

segmentation of the SN or its topological contours that are important but rather statistically

significant deviant voxels; the method described herein delivers such voxels. Due to its simplic-

ity, the described methodology can offer an interesting alternative to existing strategies. More-

over, it is, to the authors’ knowledge, the first study investigating all three quantitative

parameters i.e. T1, T2
� and FW together in a PD cohort.

Material and methods

Study cohort

A total of 33 participants, 18 with PD and 15 age- and gender-matched healthy controls were

scanned in this study. The PD patients were recruited in collaboration with the Department of

Neurology, Aarhus University Hospital, Denmark, and fulfilled the U.K. Parkinson Disease

Society Brain Bank criteria for PD [28]. The healthy control subjects had no known neurologi-

cal or psychiatric disorders or any MR visible manifestation of other pathological conditions.

Note that, the information regarding the full medical history of patients was not available to

the authors, and, therefore, this study is not intended to give insight to quantitative parameters

response to treatment. The demographic data of the cohort are shown in Table 1. After receiv-

ing detailed study information, written consent was acquired from each subject or their legal

representative. The study was approved by the research ethics committee of Region Midtjyl-

land and The Danish Data Protection Agency and was conducted in agreement with the Dec-

laration of Helsinki.

Measurement protocol

Participants were scanned with a Siemens multi-slice, multi-echo RF spoiled gradient-recalled

echo sequence (GRE) optimised for the quantitative mapping of cerebral water content [17,

18]. For details relating to the applied water mapping protocol, the reader is referred to Neeb

Table 1. Demographic and clinical characteristics of the study cohort.

Demographic and clinical variables Healthy Controls Patients
Age (median, min, max, std) 66, 52, 76, 8.5 68, 53, 81, 8.5

Gender Male: Female 8:7 11:7

Education level in years (median, min, max, std) 15, 9.5, 23, 3.2 14, 6, 19, 3.5

PD duration in years (median, min, max, std) 9, 7, 15, 3

Hoehn & Yahr staging (number of patients) 2 (8), 3 (6), NA (4)

https://doi.org/10.1371/journal.pone.0247552.t001
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et al. [17], Gras et al. [29], and Abbas et al. [18] but a general overview will be given here.

Unless stated, all sequences used were standard.

As a foundation for further calculations, a proton-density-weighted image (Siemens GRE

sequence) was acquired using partially parallel acquisition (GRAPPA) with an acceleration fac-

tor of 2 and 24 auto-calibration lines, TR = 1800 ms, TE = 5.8 ms, FA = 40˚ and band-

width = 210 Hz/pixel. Two interleaved concatenations (32 slices each) were used, resulting in a

gap-free acquisition. This finally led to 64 transverse slices of 2 mm thickness and 1 mm in-

plane resolution, measured in 6 minutes.

The transmit profile (B1
+) was measured via a multiple flip angle technique (MFA) [29–31].

This technique employs 4 echo-planar images (EPI) with different FAs (30˚, 60˚, 90˚ and 120˚)

with a TR of 20 seconds (for full relaxation), acquired in 1.5 minutes.

For the estimation of T1 relaxation times, the two-point method was used [18, 32] employ-

ing two acquisitions, i.e. proton-density-weighted GRE and T1-weighted GRE (TR = 500 ms,

TE = 5.8 ms, FA = 90˚) along with B1
+ information. The total time required for the two-point

method acquisitions was 2 minutes.

Receiver profile correction (B1
-) was achieved using a low-resolution GRE sequence. This

was performed through two measurements, first using the phase array and then using the

body coil for the signal reception. The same parameters were used in both cases, i.e. TR = 500

ms, TE = 5.8 ms, FA = 40˚ [30] adding 1 minute to the total acquisition time.

In order to sample the T2
� decay, a 3D GRE was acquired (3 minutes) with 8 echoes [18]

(1x1x2 mm, TE1 = 2.3 ms, ΔTE = 2.3 ms). This also allowed the T2
� decay of the proton-den-

sity-weighted scan to be corrected.

For all sequences, the same orientation and field-of-view were used. All mentioned parame-

ters were as presented in Abbas et al. [18].

Additionally, a T1-weighted 3D, magnetisation preparation rapid gradient-echo sequence

(MPRAGE) was acquired and used for further registration to a standard MNI template (Mon-

treal Neurological Institute [33]). This scan was acquired with the following parameters:

TR = 2250 ms, TE = 3.37 ms, TI = 1100 ms, FA = 15˚, FOV = 256x256x256 mm, with isotropic

resolution of 1 mm and 176 sagittal slices. The T1-weighted 3D sequence added 8 minutes to

total acquisition time. In the end, the whole acquisition protocol took 18.5 minutes for each

subject.

Estimation of relaxation parameters and total free water content

Following the acquisition of the MR images, FW, T1 and T2
� were estimated and additional

corrections, as presented by Abbas et al. [18], were applied. However, after the corrections for

T1, T2
� and transmit/receiver profiles, the proton-density-weighted scan is not yet ready to be

treated as a quantitative water content map and requires further correction for receiver bias

profile [18]. This was achieved using the well-known linear relation between proton density

contrast and T1 relaxation time in certain brain regions (60 ms> T2
� > 50 ms).

Finally, instead of choosing arbitrary voxels within the cerebrospinal fluid (CSF), a more

sophisticated procedure for normalisation was used [18, 34]. Valid regions were located based

on T1, T2
� thresholds and stability in terms of their transmit profile. The normalisation factor

was then computed via the weighted average across the stable regions.

Registration

Quantitative maps were registered to a common template (MNI152 1x1x1 mm) by means of

the combination of linear and non-linear registration methods. The pre-processing chain is

presented in Fig 1.
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Twelve-parameter affine linear registration was applied to match the quantitative maps

with the MPRAGE image. In order to stay in the same modality, T1-weighted acquisition was

considered as being most similar to MPRAGE. Good inter-subject matching was obtained by

non-linear registration of the MPRAGE image to the MNI template. Here, diffeomorphic

demons registration was applied. This step was performed using an in-house solution based

on the method presented by Vercauteren et al. [35], with all the computationally exhaustive

elements such as gradient calculations, convolution and interpolation implemented on a

GPGPU (OpenCL).

Finally, by defining Tr1 as an intra-subject, linear transformation between MPRAGE and

quantitative maps, and Tr2 as a non-linear transformation between MPRAGE and the MNI

template, the complete transformation was constructed as a composition of both: Tr = Tr1 �

Tr2. A single registered slice, together with the reference, is shown in Fig 2.

Region of interest definition

Although the exact location and shape of the SN was not assumed a priori, a rough contour

(ROI) was defined in order to highlight the changes around its expected location. To make

Fig 1. Registration procedure for quantitative maps with the assistance of an MPRAGE image for nonlinear

alignment. Raw data is registered to the additional MPRAGE image (Tr1) which is then non-linearly deformed (Tr2) to

match the MNI template. Composition of both deformations provides the final transformation.

https://doi.org/10.1371/journal.pone.0247552.g001

Fig 2. Registration performance for the example T1 quantitative image. The green outline represents the rough

contour of the search region.

https://doi.org/10.1371/journal.pone.0247552.g002
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analysis easily replicable, a radiologist manually delineated the SN region on an MNI template

using the ITK-SNAP toolbox [36]. The ROI was then dilated with a spherical kernel to contain

around 1000 voxels. The final contour is presented in Fig 2. Note, that the contour can be in

fact arbitrary since it acts only as additional mask revealing area of interest around the SN.

Statistical analysis

Following registration, global statistical analysis was performed by calculating the average val-

ues of the quantitative parameters of white matter (WM) and grey matter (GM) in the whole

brain and inside the ROI. Voxels belonging to WM and GM were selected based on SPM tem-

plates [24], since all the volumes were already registered to a common coordinate space. Partial

volume effects were suppressed by using a 0.95 threshold for the SPM template. Note that, this

method does not specifically consider possible misregistration, and consequently, the voxels

close to the borders may still be affected by partial volume, leading to a bigger variance of the

data used for statistical tests. This is a significant issue, particularly in terms of the correction

of type-1 errors. Every method that corrects for family-wise-errors is based on certain assump-

tions. For example, in the case of Random Field Theory, there is a dependence between Euler

Characteristics and data topology i.e. smoothness, number of resells, shape and size of the vol-

ume [24]. Hence, in the case of a small signal-to-noise ratio, an adjustment of the Z-score

threshold is required, which ultimately reduces confidence in the results. In the following sec-

tion, an alternative approach, which is based on analysis of raw p-values distributions, will be

described.

First, the quantitative parameters were abstracted into a metric estimator, E, which was

defined as either the value of T1, T2
�, FW or combination of all three:

Ejoint ¼ FW=nFW þ T�
2
=nT�

2
þ T1=nT1

ð1Þ

ET1 ¼ T1

ET�
2 ¼ T2�

EFW ¼ FW

where normalisation factors (n) are defined as CSF values for the corresponding modalities,

taken from calculated quantitative maps. Note that, this way, the weighting is strongest for

FW, while T1 with T2
� are acting as contrast-enhancing factors, as long as they follow the same

trend. Therefore, firstly, the standard metrics, i.e. ET1 ; ET�
2 and EFW must be checked and then

applied to the joint metric with appropriate signs enhancing the final contrast.

For each metric, two 4D volumes were created—a first one, where each voxel in space was

characterised by a vector of 15 values from co-registered controls (Ec) and a second, where

each voxel was characterised by a vector of 18 values from co-registered patients (Ep), as pre-

sented in. In order to reduce the possible effect of misregistration, voxels with a signal varia-

tion that was too high were eliminated. The exclusion criterion was based on the standard

deviation. If a vector from either a control or a patient had at least one value deviating from

the mean by more than four standard deviations, then both vectors, and hence the voxel itself,

were eliminated from the analysis. This reduced the number of voxels for analysis by a factor

of 2 (from around 1x106 to 0.4x106). The final mask can be defined simply as a logical conjunc-

tion of a WM mask, GM mask and voxel elimination mask.
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A voxel-wise comparison was performed using a simple two-means, one-tailed t-test with a

null hypothesis stating "metric has not decreased". The p-value threshold for the null hypothe-

sis was set to 0.05 and the alternative hypothesis H1 binary map was calculated. There, high val-

ues represent the regions rejecting the null hypothesis. This map was further processed in

order to eliminate small clusters using an arbitrary threshold of 27 voxels, which corresponds

to the 3x3x3 cube, normally considered as noise limit for segmented data [37]. Here, an addi-

tional step was performed in order to further reduce the influence of misregistration and type-

1 errors at the same time. With the assumption that the highest misalignment takes place at

the interfaces between GM, WM and CSF, the H1 map was labelled with 18 connected compo-

nents (ignoring weak connections at voxels corners). For each cluster, following Oriani et al.

[38], solidity was defined as a ratio between the convex hull volume and the total volume. Clus-

ters with very low solidity (0.1) were subsequently removed from the analysis. Finally, all clus-

ters were sorted from biggest to smallest.

Additionally, the differences between estimators were defined as in Eq (2):

dðEÞ ¼ Ep � Ec ð2Þ

Where Epand Ecare the average values of estimators in patient and control vector respectively.

The histograms of d(E) were computed both globally and for the selected ROI. This was

useful for the observation of signal variation around the SN since hypothesis testing only pro-

vides a binary map and p-value distribution.

Results

Normalised histograms of the differences between the estimators for each quantitative parame-

ter globally and within the ROI are presented in Fig 3.

Globally, the histograms were either symmetric (FW, T1) or eventually slightly shifted

towards the decrease of the metric (T2
�), indicating a very small value of average change for a

given metric. Any attempt of quantification based on the global average failed (Table 2).

Even when only considering the region in the vicinity of the SN (ROI), very little change

was found and any change was practically hidden within the range of standard deviation.

Although the histograms are shifted towards negative values inside the ROI, the non-gaussian

shape suggests that misregistered voxels play an important role in this small region.

Voxel-based statistical analysis showed a similar result, as long as all voxels were considered.

In Fig 4, the dark-grey shaded area represents the fraction of voxels rejecting the null hypothe-

sis, therefore confirming the decrease in the metric with a p-value at 0.05. In fact, the com-

monly used value of 0.05 is far too permissive in the case of multiple comparisons, and

therefore, around half of the voxels in the one-tailed t-test reject the null hypothesis. This is

clearly visible in Fig 4A for each metric, except the T2
�, which shows different behaviour, sup-

porting, in this case, the statement that T2
� values decreased globally. Inside the ROI, this state-

ment is supported even more strongly and for each metric. Binary histograms, representing

the fraction of voxels rejecting the null hypothesis, as shown in Fig 4B, indicate that most of

the voxels decreased in value, even if the difference was small. Although the magnitude of

change is not provided with enough significance, it is clear that the values of T1, T2
� and FW,

are reduced for most of the voxels inside the ROI.

The H1 binary map shown in Fig 5, together with the corresponding distribution of differ-

ences and raw p-values for each metric, reveal the bilateral clusters of voxels rejecting the null

hypothesis in the vicinity of the SN. The distribution of differences (last column) shows the

greatest contrast in the case of the joint estimator. Moreover, the detected clusters are bigger

and more homogenous than those revealed by individual metrics.
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Following the removal of any small or irregular clusters, based on solidity, it can be seen

that the biggest clusters are the two located in the vicinity of the expected location of the SN.

This is visualised in Fig 6. Notice a very small number of remaining clusters and a significant

difference in the volume between the first two clusters and the rest. The same situation was

observed for each metric with the exception of T2
�, where the decreased value was distributed

across large regions within the whole brain and more clusters were detected globally. A

Fig 3. Normalised histograms of differences for all voxels (left column) and inside the ROI (right column). The

shift towards the negative values is more apparent inside the ROI. Notice that histograms are cropped for readability

and hence do not show outliers.

https://doi.org/10.1371/journal.pone.0247552.g003

Table 2. Mean values for water content and relaxation parameters for all GM/WM voxels and ROI.

Quantitative variables GM WM

Global ROI Global ROI

Controls Patients Controls Patients Controls Patients Controls Patients

FW [%] 83±1 83±1 81±1 79±2 73±2 73±2 77±1 75±2

T1 [ms] 1501±40 1469±55 1422±77 1375±91 1169±85 1171±86 1167±73 1172±79

T2
� [ms] 56±5 54±7 36±3 36±6 48±5 48±5 40±4 41±6

https://doi.org/10.1371/journal.pone.0247552.t002
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summary of this can be seen in Table 3. The consistent location of the two biggest regions

inside the expected location of the SN for T1, FW and, most importantly, the joint estimator,

confirms that the observed decrease in parameters is not the result of random effects.

There is a good overlap (around 80%) between the clusters detected by each metric within

the SN search region. In Fig 7, for clarity, the overlap between the convex hulls and 2D outlines

are shown. The clusters, according to Duvernoy’s Atlas of the Human Brain Stem and Cerebel-

lum [39], span across several brain regions located in the midbrain, i.e. the ventral tegmental

area (VTA), cerebral peduncle (CP), retrorubal field (A8), and the anterior and posterior SN

(see Table 4 for details). Notice that, while T2
� clusters are smallest; they are located precisely

inside the SN. Others, including the joint estimator, are extending outside the SN and towards

the centre of the midbrain.

Discussion

Segmentation and statistical analysis

Assuming that the region of the SN is affected by PD and that the pathological changes are

reflected in the quantitative MR parameters, the voxel-wise statistical approach presented here

was able to identify the pathological regions. The voxels rejecting the null hypothesis, hence

indicating a reduction in the metrics, are contained within the ROI. This allows conclusions to

be drawn about the decreased MR parameters i.e. T1, T2
� and FW in the vicinity of the SN, i.e.

VTA, CP, A8 and the SN itself. Although the approach relies on the assumption of the

Fig 4. Fraction of voxels rejecting the null hypothesis (dark-grey) with a p-value of 0.05, hence supporting the

statement that “the metric has decreased” for all voxels (a) and inside the ROI (b).

https://doi.org/10.1371/journal.pone.0247552.g004

Fig 5. Null hypothesis rejection indicator (first column, white = rejected), raw p-values (middle column) and

differences between estimators (last column) for each metric selected for the analysis.

https://doi.org/10.1371/journal.pone.0247552.g005
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existence of the pathology, this disadvantage is balanced by the simplicity of the method itself

and the good final contrast. This can be seen in Fig 5, where the H1 clusters are located inside

and in the vicinity of the SN. More advanced strategies, i.e. based on machine learning [22] or

employing additional modalities [40], may provide the valid contour, but this comes with the

cost of higher implementation complexity and reduced robustness. On the other hand, a man-

ual approach, which can be accurate, especially with a higher SNR provided by ultra-high-field

MRI, is still prone to human error and is extremely time inefficient [19]. The proposed method

uses no spatial priors and initially checks the number of voxels with changed signal intensities.

Therefore, it counteracts the low statistical power and the problem of signal averaging or par-

tial volume effects inside the ROI. Moreover, it does not require a sophisticated approach for

multi comparison correction–this is bypassed by clustering and voxel elimination step–and

hence, a standard p-value threshold can be used, even if it initially results in a large number of

sparse voxels rejecting the null hypothesis.

Although this method may not provide the exact contour of the SN, it indicates the direc-

tion of change for a given metric. It is shown that, although variations in quantitative parame-

ters were small, and hence not detected by global statistics, voxel-wise analysis reveals a cluster

consistent with decreased MR parameters. This cluster coincides with the pathological region

of the SN. In future studies, the size of the cluster could potentially provide a better marker for

monitoring disease progression than the average value of a given quantitative parameter,

which can easily be disturbed by partial volume effects. Clearly, the existence of multiple clus-

ters outside the ROI, as seen in Fig 7, might be disturbing, and this is the biggest disadvantage

Fig 6. Eight biggest clusters for the joint metric. The green outline in 3D visualisation represents the convex hull of

the cluster and the corresponding central slice is shown on the left with a red cross indicating the centre of the mass.

https://doi.org/10.1371/journal.pone.0247552.g006

Table 3. Summary of detected clusters of voxels in the whole brain.

Metric Number of clusters Number of clusters after

elimination

Were clusters within SN search region

biggest?

T1 99 42 Yes

T2� 129 51 No

FW 43 18 Yes

Joint 40 17 Yes

https://doi.org/10.1371/journal.pone.0247552.t003
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of the method. Without a priori knowledge of the pathomorphology of the disease, it is impos-

sible to draw conclusions. In the case of the presented work, the authors could not interpret

the smallest clusters distributed sparsely among the brain. However, two clusters located in the

vicinity of the SN were much bigger, i.e. ~700 voxels vs ~100 voxels, hence giving confidence

in the results.

Relaxation times

The shortening of T1 and T2
� times in the SN coincides with most of the findings in the litera-

ture [9, 10, 41] and can be explained based on the pathophysiological substrate underlying the

disease. Dopaminergic neuronal loss in the SN pars compacta causes T1 shortening [5], while

iron and Lewy body accumulation results in both lower T2
� and T1 values [42]. However, there

are some studies that contradict these findings. For example, Reimão et al. [43], found no sig-

nificant difference in T2
� between controls and patients at baseline and after 2–5 years of dis-

ease duration. However, there is evidence that iron accumulation happens years before the

symptomatic manifestation of the disorder and by the time clinical symptoms become appar-

ent, half of the neurons are already dead [43, 44]. Nevertheless, attention is drawn to the small

sample size and manual segmentation as limitations of this study. Similarly, Menke et al. [40]

were not able to find any significant changes in T1 values using DESPOT1. Their sample size

consisted of only 10 patients and 10 control subjects. Hence, the low statistical power might

have been a hindrance for detecting the manifested changes.

In the presented work, it is shown that T1 decrease extends outside of the area of the SN

and mostly covers the ventral tegmental area, as well as the retrorubral field and cerebral

peduncle. Similarly, Baudrexel et al. [10] have shown T1 changes beyond the SN in the

Fig 7. H1 clusters overlap for the SN region. In the top row, sagittal view (first picture) is presented for orientation,

together with 3D visualisation of SN clusters (middle) and their convex hulls (last picture). In the second and third

row, outlines of SN regions detected by each metric are shown for selected slices.

https://doi.org/10.1371/journal.pone.0247552.g007

Table 4. Regions of the brain overlapping with H1 clusters.

Metric Right hemisphere Left hemisphere

T1 SN post.; CP SN post.

T2� SN ant.; VTA; CP; A8 SN ant.; VTA

FW SN ant.; CP; VTA; A8 SN ant.; VTA

Joint SN; VTA; CP; A8 SN; VTA

https://doi.org/10.1371/journal.pone.0247552.t004

PLOS ONE Method for detection of small changes in the vicinity of substantia nigra in Parkinson’s disease patients

PLOS ONE | https://doi.org/10.1371/journal.pone.0247552 February 24, 2021 11 / 16

https://doi.org/10.1371/journal.pone.0247552.g007
https://doi.org/10.1371/journal.pone.0247552.t004
https://doi.org/10.1371/journal.pone.0247552


midbrain regions of PD patients. Interestingly, VTA and the retrorubral field contain dopami-

nergic neurons and have been shown to degenerate in PD [45].

Total free water content

Although numerous studies have explored the behaviour of water diffusion in the SN of PD

patients using DTI, this is, to the best of the authors’ knowledge, the first attempt to investigate

total water content in this region using relaxometry. Many authors have reported decreased

fractional anisotropy in the SN, reflecting neurodegeneration [46, 47]. Recently Ofori et al.

[11], demonstrated a longitudinal increase in free-water using a bi-tensor diffusion model. At

first glance, these data contradict the finding of lower total water content values presented in

this work, however, the difference between the physical phenomena observed with each tech-

nique must be considered. Ofori used two terms in the model equation: Ctissue and Cwater—

modelling grey matter or a single bundle of white matter and a fractional volume of free water,

respectively. Therefore, Cwater is mainly influenced by the extracellular water molecules, while

the water content quantified in the present work depicts total free water content both in the

extra- and intracellular compartments. Later, Guttuso et al. [48], replicated the results of

Ofori’s study, but with longer disease duration, and showed the increase of fractional free

water only takes place in the anterior part of the SN.

The total free water content measured in the presented study is a sensitive measure of

oedema. At a glance, one might think that increased extracellular fluid should also be reflected

in the increased FW. However, considering the fact that water is the major source of the MR

signal in the tissues, and grey matter has a higher FW content than white matter [49, 50], neu-

ronal cell loss should lead to a reduction in total water. Therefore, it is possible that the

increase in extracellular water might not be enough to compensate for the decrease in total

water content caused by the disruption of the deep grey matter integrity.

Limitations and future work

As previously stated, the assumption of the existence of pathology at a severity sufficient to be

manifested by a change in quantitative parameters is the main requirement of the proposed

method. Furthermore, the contour of the region does not necessarily represent anatomical

boundaries, but rather the area in which pathological changes occur, which could be either big-

ger or smaller than the actual anatomically-defined structure. The small sample size is another

limitation of this study. However, the proposed approach uses the affected voxels to evaluate

the changes and is actually more robust for the low statistical power encountered by having a

relatively small number of subjects. Nonetheless, in the future, it would be desirable to intro-

duce a larger cohort, where the mean values of the quantitative MR parameters are also signifi-

cantly changed, making it possible to cross-validate the presented voxel-wise statistical

approach. Note that, to date, the method has only been tested on a quantitative dataset

acquired with a specialised water mapping protocol, and extra care was taken for proper nor-

malisation and correction against inhomogeneities (as in [18, 29]), therefore, the cohort size is

small and cannot be easily extended by using publicly available PD data. In the future, this

proof-of-concept should be generalised and applied to multiple, large datasets, including dif-

ferent pathological states. In this case, any quantitative metric could be used, with the impor-

tant condition, however, that pathology actually exists. Otherwise, since the initial threshold

for p-values distribution and filtering the segmented H1 image (see method section) are rather

permissive, it might lead to the incorrect interpretation of results. Moreover, the combined

metric will not always be beneficial or even possible to compute at all, especially when there is

no (or only one) pathophysiological connection between the parameters. However, in specific
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cases, like the one presented in this work, a combination of weighted parameters highlights the

importance of detected clusters, as presented in Table 3. It would be interesting to compare

the existing segmentation methods directly with the contour given e.g. by a H1 binary map

(Fig 5B). Note however, that in many cases, especially when the segmentation is trivial and

changes are apparent, it will be probably easier to segment manually or rely on simple thresh-

olding. On the other hand, even if delineation is easy, statistical analysis might provide only

weak; or no proof for (H1) hypothesis. In such a case, the presented method would be still

advantageous, since the data clustering is taken into account.

Therefore, a longitudinal study including disease progression and analysis of the evolution

of the affected region is the ultimate goal for forthcoming work.

Conclusions

In this study, a new approach is introduced which was able to demonstrate the decrease in all

measured quantitative parameters; T1, T2
� and FW, in the clusters of voxels reflecting the

shape and the location of the pathological region. This was achieved without the a priori spatial

constraint of a manually segmented mask. The proposed method overcomes the limited spatial

resolution, small number of subjects and poor statistics "per subject" (few voxels of interest). It

is expected that this method will help to provide a better understanding of the underlying

mechanisms of PD via the measurement of quantitative MR parameters. The observed

decrease in relaxation parameters is in agreement with the literature and it is speculated that

the reduced FW is most likely due to neuronal cell death. This insight gives an indication of

changes both in intra and extracellular space and supplements previous findings showing

increased fractional water content in the SN of PD patients.

Finally, the presented approach can be abstracted to a more general method–that of "if-

instead-of-how-much" and, by selecting an appropriate null hypothesis, easily extrapolated to

other pathologies affecting different brain regions, even if completely different metrics are

used as imaging markers.
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