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Abstract

Introduction and hypothesis

Patients with 22q11 deletion syndrome (22q11.2DS) present, in about 75% of cases, typical

patterns of cardiac defects, with a particular involvement on the ventricular outflow tract and

great arteries. However, in this genetic condition the dimensions of the pulmonary arteries

(PAs) never were specifically evaluated.

We measured both PAs diameter in patients with 22q11.2DS without cardiac defects,

comparing these data to a normal control group. Moreover, we measured the PAs diameter

in Tbx1 mutant mice. Finally, a cell fate mapping in Tbx1 mutants was used to study the

expression of this gene in the morphogenesis of PAs.

Methods

We evaluated 58 patients with 22q11.2DS without cardiac defects. The control group con-

sisted of 54 healthy subjects, matched for age and sex. All cases underwent a complete

transthoracic echocardiography. Moreover, we crossed Tbx1+/- mice and harvested fetuses.

We examined the cardiovascular phenotype of 8 wild type (WT), 37 heterozygous (Tbx1+/-)

and 6 null fetuses (Tbx1-/-). Finally, we crossed Tbx1Cre/+mice with R26RmT-mG Cre reporter

mice to study Tbx1 expression in the pulmonary arteries.

Results

The echocardiographic study showed that the mean of the LPA/RPA ratio in 22q11.2DS

was smaller (0.80 ± 0.12) than in controls (0.97 ± 0.08; p < 0.0001).

Mouse studies resulted in similar data as the size of LPA and RPA was not significantly

different in WT embryos, but in Tbx1+/- and Tbx1-/- embryos the LPA was significantly
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smaller than the RPA in both mutants (P = 0.0016 and 0.0043, respectively). We found that

Tbx1 is expressed near the origin of the PAs and in their adventitia.

Conclusions

Children with 22q11.2DS without cardiac defects show smaller LPA compared with healthy

subjects. Mouse studies suggest that this anomaly is due to haploinsufficiency of Tbx1.

These data may be useful in the clinical management of children with 22q11.2DS and

should guide further experimental studies as to the mechanisms underlying PAs

development.

Introduction

Patients with 22q11.2 deletion syndrome (22q11.2DS) present specific conotruncal defects

[1,2, 3] including tetralogy of Fallot with or without pulmonary atresia [4, 5], Truncus Arterio-

sus [6, 7], Interrupted Aortic Arch [8, 9], other aortic arch anomalies or minor congenital

heart defects [10, 11], and ventricular septal defect [12].

In more than 90% of them a 3 Mb deletion was detected [13], spanning LCR22-A to

LCR22-D that contains at least 30 genes including TBX1 in the proximal region. This encodes

a T-box transcription factor identified as the major player of this syndrome throughout both

modeling mice [14–17] and mutational analysis in patients [18]. In Tbx1 mutant mice some

cardiovascular anomalies similar to those found in 22q11.2DS patients have been described

[15, 19]. These observations can be explained by the fact that Tbx1 is expressed in precursors

of outflow tract cells and its loss of function reduces cell contribution to the outflow tract [20–

22].

Additional anomalies of pulmonary arteries (PAs) including diffuse hypoplasia, discontinu-

ity, and crossing, were sporadically reported in 22q11.2DS patients [1, 3, 23–26] but not exten-

sively studied. The aim of this study is to investigate the dimensions of both PAs in patients

with this syndrome. In addition, we have analyzed the PAs diameters in Tbx1 knockout mice

and found that its haploinsufficiency is associated with PAs asymmetry, indicating that this

gene is the candidate for the PA phenotype reported here.

Materials and methods

This is a prospective multicentric observational and experimental study conducted in three

different Italian Centers: Department of Pediatrics, Sapienza University of Rome, Bambino

Gesù Children’s Hospital and Research Institute, and Institute of Genetics and Biophysics of

National Research Council, Naples.

Mouse studies were carried out at the Institute of Genetics and Biophysics under the aus-

pices of the animal protocol 257/2015-PR (licensed to the AB lab) reviewed, according to Ital-

ian regulations, by the Italian Istituto Superiore di Sanità and approved by the Italian

Ministero della Salute. The laboratory applies the "3Rs" principles to minimize the use of ani-

mals and to limit or eliminate suffering.

Echocardiographic study

Patients data were collected from our hospital database of patients attending the Pediatric Car-

diology Division of Sapienza University and Bambino Gesù Children Hospital from October

2010 to April 2017. Informed consent was obtained from each patient (or legal guardians).
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The echocardiographic measurements are derived from routine ultrasound exams. The study

conforms to the ethical guidelines of the 1975 Declaration of Helsinki.

We included 58 pediatric and adult patients with 22q11.2DS without intracardiac malfor-

mations. Six of them presented isolated non-obstructive abnormalities of aortic arch or epiaor-

tic vessels. We excluded from our cohort subjects with cardiac defects because of possible

flow-related bias in our PAs measurements. The group of 58 cases consisted of 23 females

(39.6%) and 35 males (60.4%), mean age of 12.8 ±10 years, with a mean body surface area

(BSA) of 1.17±0.5; our control group consisted of 54 subjects (41% females) with a mean age

of 10.8 ±10 years and a mean BSA of 1.18±0.5.

All patients underwent genetic counseling, and fluorescent in situ hybridization was per-

formed to confirm the specific microdeletion. Echocardiographic measurements were com-

pared with healthy subjects matched for age, sex, and BSA. All patients and healthy controls

underwent a complete transthoracic echocardiographic examinations using GE Vivid E9

(Medical Systems, Oslo, Norway) with M6SD and 7S convex probe and Philips Ie33 Machine

(Philips Medical Systems, Andover, MA) with X-5 and X-7 probes. M Mode, 2-Dimensional,

and Doppler examinations were performed in all subjects. In particular, pulmonary branches

were measured in parasternal short axis view during systole. Aortic arch anomalies were diag-

nosed in jugular view. According to BSA, Z score values were reported for M Mode results and

for 2D PA branches diameters. Images were digitally stored and measurement were made off-

line according to the American Society of Echocardiography guidelines by two independent

readers for both centers (GM, PV, and GC, EP).

Mouse studies

To perform phenotypic analyses, Tbx1+/- mice [15] were intercrossed and pregnant females

(3–6 months-old) were sacrificed using CO2 inhalation at plug day (E) 18.5, and fetuses har-

vested. Prior to observation. fetuses were washed in PBS and dissected under a Zeiss Stemi

2000-CS Stereo Microscope. Photographs were taken using a Z-stack software. In order to

improve the view, we injected ink into the pulmonary trunk. Overall we have dissected and

examined the cardiovascular phenotype of 8 wild type (WT), 37 heterozygous (Tbx1+/-), and 6

null fetuses (Tbx1-/-). PA measurements (in pixels) were taken from good quality images at the

same magnification using software tools. Statistical significance was evaluated using the

Mann-Withney test. To reveal Tbx1-expressing cells and their descendants, we crossed

Tbx1Cre/+ mice [27] with RosamT-mG mice a Cre reporter [28]. Hearts of E18.5 Tbx1Cre/+;

RosamT-mG embryos were dissected, photographed whole mount under Stemi 2000-CS Stereo

Microscope with epifluorescence illumination, and then processed for cryosectioning. Sections

were immunostained with an anti PECAM1 antibody (mouse monoclonal 2H8, Thermo

Fisher MA3105, diluted 1:200) and/or an anti GFP antibody (Abcam ab13970, 1:800) as

described elsewhere [21]. Sections were photographed using a Leica fluorescence microscope.

Digital images were mounted using Photoshop to generate the figures shown here.

Results

22q11.2DS patients have smaller LPAs than controls, independently from

intracardiac anomalies

We identified 58 patients with isolated abnormalities of aortic arch or epiaortic vessels disease

according to our criteria. Table 1 summarizes major clinical findings. All 22q11.2DS patients

had variable expressivity and incomplete penetrance of dysmorphic features typical of the syn-

drome. A similar group of healthy volunteers was analyzed (Table 2). Using echocardiography,
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Table 1. Echocardiographic data of 22q11.2DS patients without intracardiac defects.

Case Sex Ao Arch Anomalies PAs Anomalies Age Weight (kg) High (cm) BSA LPA d z-score LPA RPA d z-score RPA LPA/RPA

1 M CPAs 0 8 79 0.42 3.9 -2.95 4.1 -3.43 0.95

2 M 1 8.7 80 0.44 4.7 -2.03 5.7 -1.63 0.82

3 F 1 10 72 0.46 7.7 0.8 8 0.29 0.96

4 F 1 9.7 75 0.46 5.4 -1.32 6.8 -0.7 0.79

5 F RAA 2 12 83 0.53 7.8 0.29 9.3 0.56 0.84

6 M 2 8.5 80 0.44 5.4 -1.15 6.6 -0.69 0.82

7 M 2 13 86 0.56 6.6 -0.93 7.9 -0.67 0.84

8 M CPAs 2 11 83 0.51 5 -2.19 10 1.2 0.50

9 F RAA, Retroesophageal ARSA 3 14 93 0.6 6.1 -1.67 6.8 -1.87 0.90

10 F 3 13 95 0.59 5.4 -2.28 6.3 -2.21 0.86

11 M 4 17 100.3 0.69 9.1 0.24 10 -0.04 0.91

12 M 4 28 107 0.93 5.7 -3.47 7.8 -2.47 0.73

13 F 4 16 100 0.67 5.6 -2.55 6.5 -2.53 0.86

14 F 4 12.4 93 0.57 5.4 -2.15 6.5 -1.88 0.83

15 M DAA 4 15 102 0.65 6.6 -1.47 8.3 -0.94 0.80

16 M 4 17 106 0.71 5.4 -2.96 8.4 -1.18 0.64

17 M 4 18 101 0.72 7.3 -1.2 9.2 -0.67 0.79

18 F Retroesophageal ARSA 5 15.5 105 0.67 5.8 -2.38 6.9 -2.18 0.84

19 M RAA, Retroesophageal ALSA 5 28 115 0.96 7.6 -1.82 8.3 -2.16 0.92

20 F 5 13 97 0.59 7.2 -0.59 7.6 -1.1 0.95

21 F 5 18 108 0.73 7 -1.54 9 -0.89 0.78

22 M 7 25.5 118 0.92 6.2 -2.94 7.2 -2.93 0.86

23 M 8 43 142 1.31 7.6 -2.38 10 -1.62 0.76

24 F 8 22.6 115 0.85 6.7 -2.27 10 -0.72 0.67

25 F Retroesophageal ARSA 9 31 132 1.07 12 0.67 12 -0.15 1.00

26 M RAA 9 30 128 1.01 6.8 -2.61 8.2 -2.36 0.83

27 M 9 35 138 1.16 7.9 -1.98 11 -0.83 0.72

28 F 9 46 148 1.38 9.9 -0.87 13 -0.12 0.76

29 F Retroesophageal ARSA 10 35 138 1.16 7.9 -1.98 9.1 -1.99 0.86

30 M 10 34 134 1.13 9.4 -0.89 11 -0.78 0.85

31 M 11 41 145.5 1.29 7.5 -2.44 8.2 -2.8 0.91

32 M 11 39 138 1.23 8.8 -1.42 10 -1.51 0.88

33 F RAA 12 45 149 1.37 7 -2.93 8.8 -2.47 0.80

34 M 12 34 144 1.16 7.5 -2.29 9 -2.05 0.83

35 M RAA, ALSA CPAs 12 45 150 1.37 10 -0.8 14 0.35 0.71

36 F 13 16 100 0.67 6.1 -2.04 6.5 -2.53 0.94

37 M CPAs 13 57 154 1.5 13 0.73 15 0.47 0.87

38 M RAA, ALSA 14 54 163 1.56 8 -2.32 8.9 -2.76 0.90

39 M CPAs 15 55 170 1.6 8.3 -2.15 12.3 -0.9 0.67

40 M 15 51 170 1.54 8.9 -1.66 9.6 -2.25 0.93

41 M 16 50 166 1.51 8.3 -2.04 12 -0.83 0.69

42 F 18 54 161 1.55 7 -3.11 10 -2.04 0.70

43 F 19 63 166 1.71 10.61 -0.85 14.34 -0.32 0.74

44 F 19 66 167 1.76 11 -0.71 13.6 -0.81 0.81

45 M 19 59 152 1.59 9 -1.65 11 -1.55 0.82

46 M 19 70 160 1.78 9.6 -1.58 16 0.07 0.60

47 M RAA, ALSA CPAs 20 61 176 1.72 7 -3.34 13 -0.93 0.54

(Continued)
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we have measured the diameter of PAs in a healthy subgroup and we found that LPAs were

smaller than RPAs (9.4± 2.4 vs 10.0±2.8. P< 0.05). This finding was confirmed also in in

22q11.2DS cases, which exhibited LPAs measurements smaller than RPAs (8.2± 2.4 vs 9.4±2.4;

P = 0.016) and in Z score (-1.57± 1.2 vs -0.65± 1.0; P<0.001). No differences were found com-

paring diameters of RPAs in cases and controls. In contrast, LPA/RPA ratios showed a signifi-

cant difference between the two groups: 0.80±0.09 in cases vs 0.95±0.11 in controls

(P< 0.001) (Tables 1 and 2).

Tbx1 haploinsufficiency is associated with smaller LPAs in mice

TBX1 is the candidate gene for many of the clinical and developmental features of 22q11.2DS

patients including aortic arch anomalies and intracardiac anomalies. However, to our knowl-

edge, anomalies of PAs in mouse mutants have not been reported to date. To understand

whether loss of Tbx1 may be a candidate also for the observed size asymmetry of the PAs, we

measured them in Tbx1+/+, Tbx1+/-, and Tbx1-/- E18.5 fetuses in a homogeneous congenic

background C57Bl6/N. Results are plotted in Fig 1. In WT (Tbx1+/+) fetuses, we found no sig-

nificant difference (Mann-Whitney test) in the diameters of LPAs and RPAs (ratio LPA/

RPA = 0.92. n = 8). However, in Tbx1+/- fetuses, the LPAs were significantly smaller than the

RPAs (P = 0.0016, ratio LPA/RPA = 0.79, n = 37). Similarly, the Tbx1-/- fetuses also had signifi-

cantly different PAs (P = 0.004, ratio LPA/RPA = 0.63, n = 6). All WT fetuses had normal arch

and epiaortic vessels. Of the 37 heterozygous animals analyzed, 14 had aberrant origin of the

right subclavian artery (37.8%) of which, 2 had high aortic arch, 3 interrupted aortic arch type

B, and 1 right aortic arch. All 6 Tbx1-/- fetuses had truncus arteriosus, as previously described

[15]. In all Tbx1-/- fetuses the pulmonary arteries rose separately from the posterior wall of the

arterial trunk proximal to the branches of aortic arch (Truncus Arteriosus—type II of Collett

and Edwards or type A2 of Van Praagh).

Tbx1-expressing cells contribute to structural components of the

pulmonary arteries

To provide insights as to how Tbx1 may affect the development of the PAs, we looked into the

expression of the gene. To do this. we used genetic marking of Tbx1-expressing cells and their

Table 1. (Continued)

Case Sex Ao Arch Anomalies PAs Anomalies Age Weight (kg) High (cm) BSA LPA d z-score LPA RPA d z-score RPA LPA/RPA

48 M 20 65 165 1.73 7 -3.37 8 -3.95 0.88

49 M CPAs 21 62 166.5 1.7 12 N.A. 13 N.A. 0.92

50 F RAA, ARSA 21 73 156 1.8 10 N.A. 14 N.A. 0.71

51 M 22 61.5 174 1.72 10 N.A. 13 N.A. 0.77

52 M 22 69 162 1.78 13.4 N.A. 12.7 N.A. 1.06

53 M CPAs 23 59.5 163 1.65 12.8 N.A. 13.2 N.A. 0.97

54 F CPAs 34 71 165 1.82 7 N.A. 13 N.A. 0.54

55 F 34 74 167 1.87 7 N.A. 12 N.A. 0.58

56 F 37 91 162 2.06 12 N.A. 16 N.A. 0.56

57 M 40 87 172 2.06 8 N.A. 13 N.A. 0.62

58 M 45 122 176 2.5 11.4 N.A. 17 N.A. 0.67

Abbreviations: Ao: aortic–PAs: pulmonary arteries; CPAs: crossed pulmonary arteries; DAA: double aortic arch; RAA: right aortic arch; ARSA: aberrant right

subclavian artery; ALSA: aberrant left subclavian artery; ret: retroesophageal.

https://doi.org/10.1371/journal.pone.0211170.t001
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Table 2. Echocardiographic data of control patients.

Case Sex Ao Arch Anomalies PAs Anomalies Age Weight (kg) High (cm) BSA LPA d z-score LPA RPA d z-score RPA LPA/RPA

1 M 0 9 74 0.44 6.4 0.06 7.3 0.14 0.88

2 M 1 12 82 0.53 6 -1.26 6.2 -1.89 0.97

3 F 1 12.5 87 0.55 5.9 -1.54 6 -2.28 0.98

4 F 1 5.7 70 0.33 9 2.88 8 1.58 1.12

5 F 2 10.7 47 0.4 8 1.52 8.6 1.29 0.93

6 M 2 15 110 0.67 7.2 -1.06 7.3 -1.84 0.99

7 M 2 11.2 90 0.53 6 -1.22 6.8 -1.28 0.88

8 M 3 15.5 95 0.64 7.5 -0.67 7.5 -1.53 1

9 F 3 15.5 102 0.66 7.2 -1.01 7.5 -1.63 0.96

10 F 3 14 90 0.6 6.7 -1.06 7.2 -1.47 0.93

11 M 4 21 110 0.8 6.4 -2.37 6.8 -2.9 0.94

12 M 4 19 106 0.75 9.6 0.28 9.8 -0.45 0.98

13 F 4 15 98 0.64 7.6 -0.57 7.8 -1.26 0.97

14 F 4 17 108 0.71 8.1 -0.56 8.6 -1.06 0.94

15 M 4 14 103 0.63 6.2 -1.72 6.6 -2.21 0.94

16 M 4 23 100 0.81 10.1 0.32 12.2 0.62 0.83

17 M 3 18 104 0.72 7.9 -0.77 8.6 -1.12 0.92

18 F 5 22 123 0.86 7.6 -1.55 7.5 -2.51 1.01

19 M 5 29 126 1.01 9.7 -0.49 11.9 -0.09 0.81

20 F 5 26 124 0.95 7.4 -1.95 7.7 -2.59 0.96

21 F 5 20 117 0.8 8.5 -0.67 7.5 -2.3 1.13

22 M 7 27 121 0.96 8.5 -1.1 10 -0.79 0.85

23 M 8 27 138 1.01 8.4 -1.4 8.5 -2.2 0.99

24 F 8 25.5 129 0.95 8.4 -1.21 7.9 -2.45 1.06

25 F 9 32 128 1.07 7.4 -2.23 7.5 -3.02 0.99

26 M 9 40 139 1.25 11 -0.11 11 -0.96 1

27 M 9 30.8 138 1.08 8.5 -1.5 9.3 -1.7 0.91

28 F 8 35 142 1.17 10.4 -0.35 13.2 0.26 0.79

29 F 10 45 150 1.37 9.9 -0.86 9.9 -1.76 1

30 M 11 66 162 1.74 12 -0.15 13.4 -0.81 0.89

31 M 11 42 158 1.35 10 -0.78 11 -1.09 0.91

32 M 11 42 140 1.28 12 0.37 13 0.01 0.92

33 F 12 36 148 1.21 10 -0.63 11 -0.9 0.91

34 M 12 41 150 1.3 11 -0.17 10 -1.61 1.1

35 M 12 40 148 1.28 7.2 -2.68 7.4 -3.41 0.97

36 F 13 72 168 1.84 13 0.09 12.8 -1.6 1.02

37 M 14 48 164 1.47 13 0.68 10 -1.86 1.3

38 M 14 59 170 1.67 9.5 -1.43 9 -2.98 1.05

39 M 16 70 163 1.8 10 -1.6 12 -1.3 0.83

40 M 16 60 175 1.7 9.3 -1.61 9.3 -2.9 1

41 F 18 80 160 1.92 12 1.1 11 -1.9 1.09

42 F 20 55 165 1.58 12.12 0.08 13.58 -0.24 0.89

43 M 20 68 168 1.79 8 -2.68 8.6 -3.74 0.93

44 M 20 67 172 1.79 10 -1.36 10 -2.83 1

45 M 21 82 190 2.08 11 N.A. 9 N.A. 1.2

46 F 22 85 165 2.00 7 N.A. 7.1 N.A. 0.98

47 M 22 76 177 1.94 9.1 N.A. 10 N.A. 0.91

(Continued)
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descendants in Tbx1cre/+; RosamT/mG embryos in which these cells are marked by membrane-

bound green fluorescent protein (GFP). At E10.5, the PAs connect the aortic sac (through the

proximal end of the 6th pharyngeal arch arteries) to the lung buds. GFP+ cells were observed

in the mesoderm adjacent to the arteries, in the adjacent dorsal pericardial wall, and in the

inner, endothelial layer of the arteries (Fig 2). In the mature PAs at E18.5, the distribution of

GFP+ cells were observed in the endothelial layer and in the outer mesenchymal tissue adja-

cent to the arteries (Fig 3). We did not observe contribution of GFP+ cells in the smooth mus-

cle layer of the arteries, in contrast to the pulmonary trunk.

Table 2. (Continued)

Case Sex Ao Arch Anomalies PAs Anomalies Age Weight (kg) High (cm) BSA LPA d z-score LPA RPA d z-score RPA LPA/RPA

48 M 21 63 170 1.73 9.8 N.A. 11 N.A. 0.89

49 M 23 87 170 2.05 14 N.A. 15 N.A. 0.93

50 F 33 58 170 1.65 12.69 N.A. 13.36 N.A. 0.95

51 F 33 61 162 1.66 13 N.A. 14 N.A. 0.93

52 F 38 78 170 1.94 13 N.A. 13.8 N.A. 0.94

53 M 40 107 170 2.29 17 N.A. 16 N.A. 1.06

54 M 45 90 178 2.13 17.1 N.A. 19 N.A. 0.9

Abbreviations: Ao: aortic—PAs: pulmonary arteries—RAA: right aortic arch–ARSA: aberrant right subclavian artery–DAA: double aortic arch–ALSA: aberrant left

subclavian artery.

https://doi.org/10.1371/journal.pone.0211170.t002

Fig 1. Pulmonary artery size in mouse fetuses. Distribution of pulmonary arteries measurements in WT, Tbx1+/-,

and Tbx1-/- fetuses at E18.5. n.s.: not significant; ��: P value< 0.005, Mann-Whitney test. The data source used to

generate this graph is in the Supporting Information Table 1.

https://doi.org/10.1371/journal.pone.0211170.g001
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Fig 2. Tbx1 expression in mouse embryos. Transverse section of a E10.5 Tbx1cre/+; RosamT/mG embryos immunostained with an anti

GFP antibody (green). GFP positivity indicate cells that have expressed Cre recombinase. A, B, and C refer to 3 adjacent sections

(cranial -> caudal) that span the junction between the 6th pharyngeal arch arteries (PAAs) and the putative pulmonary arteries (PAs).

PP: pharyngeal pouches; DPW: dorsal pericardial wall. Scale bar is 100 micrometers.

https://doi.org/10.1371/journal.pone.0211170.g002
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Discussion

The junction between LPA and DA is a crucial segment for the cardiovascular development

and it is frequently affected in patients with conotruncal anomalies [29–32]. Also in healthy

people a smaller diameters of the LPA was reported in comparison with the RPA. Moreover,

malformations of the pulmonary arteries, in particular of the left, including stenosis, diffuse

hypoplasia, discontinuity or crossing, are not unusual in children with 22q11.2DS with or

without conotruncal defects [33, 34, 3, 35, 36, 25, 24, 37]. The detailed morphogenesis of the

pulmonary arteries is not definitively ascertained. However, recent studies on mouse and

human embryos contribute to better clarify this difficult topic [38, 39]. According to recent

Fig 3. Distribution of Tbx1-expressing cells and their descendants in mouse fetuses. A.B: Whole mount fluorescent photographs of the outflow region of a E18.5

Tbx1cre/+; RosamT/mG fetus. A: external appearance. B: internal optical plane. Note the heavy contribution of GFP+ cells to the pulmonary myocardium, pulmonary trunk

(PT) and pulmonary valves, but superficial contribution (endothelial and adventitial) to other great vessels, including the ductus arteriosus (DA). which appears to have

a more dense endothelial contribution. aAo: ascending aorta. C: immunofluorescence of a transverse section of a E18.5 Tbx1cre/+; RosamT/mG. Anti GFP staining is

shown in green, anti PECAM1 staining (endothelial-specific) is shown in red. DAPI staining (cell nuclei) is shown in blu. C’-C’’: green and red channels are shown

separately. aAo: ascending aorta; PT: pulmonary trunk and pulmonary leaflets; LPA, RPA: left and right pulmonary arteries. Scale bar is 50 micrometers in A and B, 100

micrometers in C-C".

https://doi.org/10.1371/journal.pone.0211170.g003
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data, while on the right side the VI pharyngeal arch artery disappears, on the left side it is

formed by a ventral bud from the aortic sac and by a dorsal bud from the dorsal aorta. This

ventral bud, with the contribution from the post-branchial pulmonary plexus, forms the LPA.

The dorsal bud on the left side of the VI aortic arch forms the ductus arteriosus (DA), which is

in continuity with the LPA. Our echocardiographic studies show that even in the absence of

conotruncal defects, patients with 22q11.2DS have a smaller LPA compared to healthy

subjects.

Our data demonstrate that the LPA is smaller than the RPA in Tbx1+/- fetuses but not in

WT fetuses, indicating that Tbx1 haploinsufficiency affects significantly the LPA size. Expres-

sion data indicate that structural components of the PAs (endothelium and adventitia) derive

from Tbx1-expressing cells. This is also true for the DA, thus suggesting that Tbx1 is involved

in the development or growth of this cardiovascular segment. Mouse data are in agreement

with echocardiographic measurements on patients with 22q11.2DS.

It is of interest to note that in mice Tbx1 haploinsufficiency affects the IV but not the VI

aortic arch artery development [19, 40], while in Tbx1-/- embryos the VI does not develop [19].

The phenotype that we have described here suggest that a) the absence of the VI aortic arches

does not have a dramatic impact on PAs development, and b) the reduced size of the LPA is

probably not secondary to abnormalities of the VI aortic arch. The finding that Tbx1-express-

ing cells contribute to structural component of the PAs provides a support for a direct, though

limited role of Tbx1 in determining the size of the PAs.

In the past, stenosis, diffuse hypoplasia or atresia of the proximal LPA was mainly ascribed

to the extension of the ductal tissue into the LPA lumen. This pathogenetic mechanism known

as “coarctation of the LPA” maintains its validity. However, our data suggest that molecular

causes may influence the morphogenesis of this peculiar cardiovascular region, in particular

the effect of Tbx1 in this region may influence the morphology and dimensions of the LPA

and its loss of function may cause some of its specific defects.

The reduced dimensions of LPA observed in our patients could be considered a subclinical

sign associated with 22q11.2DS. We suggest that in subjects with 22q11.2DS the junction

between the DA and the LPA may be at risk of hypoplasia or additional anomalies and

deserves specific diagnostic investigation, also in patients with conotruncal defects.
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