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Abstract: Sepsis is a clinical syndrome with high mortality and morbidity rates. In sepsis, the abrupt
release of cytokines by the innate immune system may cause multiorgan failure, leading to septic
shock and associated complications. In the presence of a number of systemic disorders, such as sepsis,
infections, diabetes, and systemic lupus erythematosus (SLE), cardiorenal syndrome (CRS) type 5 is
defined by concomitant cardiac and renal dysfunctions Thus, our study suggests that certain mRNAs
and unexplored pathways may pave a way to unravel critical therapeutic targets in three debilitating
and interrelated illnesses, namely, sepsis, SLE, and CRS. Sepsis, SLE, and CRS are closely interrelated
complex diseases likely sharing an overlapping pathogenesis caused by erroneous gene network
activities. We sought to identify the shared gene networks and the key genes for sepsis, SLE, and
CRS by completing an integrative analysis. Initially, 868 DEGs were identified in 16 GSE datasets.
Based on degree centrality, 27 hub genes were revealed. The gProfiler webtool was used to perform
functional annotations and enriched molecular pathway analyses. Finally, core hub genes (EGR1,
MMP9, and CD44) were validated using RT-PCR analysis. Our comprehensive multiplex network
approach to hub gene discovery is effective, as evidenced by the findings. This work provides a novel
research path for a new research direction in multi-omics biological data analysis.

Keywords: sepsis; cardiorenal syndrome; systemic lupus erythematosus; differentially expressed
genes; miRNA

1. Introduction

Sepsis is a cause of high mortality and morbidity even in the most developed and
wealthiest countries. Globally, 31.5 million patients with sepsis and 19.4 million instances of
severe sepsis are expected to be diagnosed each year, with 5.3 million deaths possible [1]. In
sepsis, the abrupt release of cytokines by the innate immune system may cause multiorgan
failure, leading to septic shock and associated complications, including CRS [2–4] and an
autoimmune disease known as SLE [5–7]. Cardiovascular injury and acute kidney injury
(AKI) have been shown to be independent risk factors for increased mortality [8]. Combined
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cardiac and renal dysfunction amplifies the progression of failure in the individual organ,
ultimately leading to the failure of both organs (heart and kidney), often referred as
CRS, while SLE is a systemic autoimmune disease that occurs primarily due to poor
efferocytosis, uncontrolled complement activation, complex immune redundancy, and
systemic inflammation [9]. To avoid the unnecessary and tedious usage of antimicrobial
drugs in sepsis, early and distinctive detection is required. Conventional biomarkers for
sepsis, SLE, and CRS are not accurate and adequate due to the chance of false positive results
and delayed detection [10–12]. Therefore, more reliable biomarkers for early detection
and appropriate therapeutic targets are needed to decrease risk assessment. Elevated
inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, during sepsis do not provide
specific information regarding the development and severity of the disease, and hence
considering them as specific disease clinical markers is not suitable [13]. It has been
reported that patients with sepsis and SLE can develop type 5 CRS, where all of these
disorders can lead to disease in the heart and kidneys [14]. The severity of the illness,
the occurrence of septic shock, and mortality are greater in patients with septic CRS-5
compared with patients who only have sepsis [2]. All vital organs of the body share
biological information, which is termed organ cross-talk. CRS is an important example
of organ cross-talk, whereby interdependency exists between the function of the kidney
and heart and vice versa [9,15,16] Mostly, CRS is associated with cardiovascular disease
(CVD) and chronic kidney disease (CKD), both of which are intimately linked. Early
detection and effective treatments are the only ways to lower the death rates caused by
chronic diseases [17]. Due to the slow progression of chronic diseases (CDs), it is critical
to make an early diagnosis and administer efficient treatment. As a result, it is critical
to develop a decision model that may aid in the diagnosis of CDs and the prediction of
future patient outcomes [18]. We choose a broad term using the plural CRS to indicate the
presence of multiple syndromes. For instance, in sepsis-induced acute CRS-5, there is a
fulminant disease process that has a dramatic impact on both the kidneys and heart [19].
The microarray data profiling of sepsis, CRS, and SLE, and extensive gene techniques,
have been used to identify differentially expressed genes (DEGs) [20–23]. Incorporating,
integrating, and re-analyzing existing data using bioinformatics tools can provide new
strategies, methods, and relevant information. In network biology, there are numerous
approaches to this [18].

Despite tremendous advances in the diagnosis, treatment, and prognosis of CVD, new
diagnostic biomarkers and therapeutic techniques are still needed to reduce the prevalence
of these diseases [24], especially the ones that cover metabolic syndrome, which is a
group of conditions that includes diabetes and obesity. Biomarkers will be crucial in the
development of customized therapeutics for CVD [25]. Circulating microRNAs (miRNAs)
have been evaluated as emerging biomarkers for CVD, CRS, or renal diseases, and can be
used as a new therapeutic target [26–28].

The determination of essential and significant proteins in the network plays an in-
dispensable role in understanding and developing therapeutic strategies in a particular
disease. In this study, our current paradigm for studying CRS revolves around identifying
the key regulatory genes shared by sepsis and SLE and CRS and SLE, from a selection
of manually curated genes, by combining protein regulatory interactions, functions, and
disease networks, identifying those that can be employed as critical genes in future re-
search. The study is also confined to the topological properties of regulatory networks,
their activities, and mechanisms, which will ultimately enable us to predict key regulatory
miRNAs and genes among the millions of genes that could be targeted in the therapeutic
treatment of these diseases.

2. Research Design (Methodology)
2.1. Acquisition and Pre-Processing of Data

The mRNA expression profiles of SLE, CRS, and sepsis, as well as the CRS miRNA
expression profile, were obtained from the NCBI’s Gene Expression Omnibus (GEO)
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(www.ncbi.nlm.nih.gov/geo/, accessed on 10 May 2021). Six SLE GSE series (GSE30153,
GSE50772, GSE51997, GSE13887, GSE99967, GSE103760), six sepsis GSE series (GSE6535,
GSE5772, GSE28750, GSE64457, GSE12624, GSE13205), and four CRS GSE series were
extracted (GSE17582 and GSE125898 contain mRNA data, while GSE series GSE89699 and
GSE87885 contain data relating to miRNAs). The details of all GSE series are provided in
Table 1. The GSE series data were collected and pre-processed considering the standard
protocol, as described in Figure 1. The keywords searched in the GEO datasets were “SLE
(systemic lupus erythematous), Sepsis, septic shock, neonatal sepsis, CRS (Cardiorenal
Syndrome), syndrome, and heart and kidney disease”, with human sources and excluding
SRA-run data (NGS Data). Some GSE series data have other diseases in the sample, such
as MBD and diabetes. Therefore, we chose only the GSE series that had the disease of
interest (sepsis, SLE, and CRS), as shown in Tables S1 and S2. The inclusion and exclu-
sion criteria were applied to each of the 16 datasets. The current study contained a total
of 224/409 (healthy/patients) samples. The Illumina HumanRef-8 v3.0 expression bead
chip, Agilent-046064 Unrestricted_Human_miRNA_V19.0_Microarray, Affymetrix Human
Genome U133 Plus 2.0 Array, Affymetrix Human Genome U133A Array, NHICU Human
19K v1.0, Affymetrix 2.0 microarray, LC Sciences µParaflo human miRNA array, Affymetrix
Human Gene 2.0 ST microarray platforms were used in the selected datasets. The microar-
ray research also included PBMC, monocyte, B cells, T cells, among other tissues. Patient
samples from various sources were not differentiated during the data integration procedure
in order to show a common/overlapped gene signature. Table 1 lists the specific details
for each dataset, including the GEO accession number, the total number of samples (nor-
mal and disease samples) illness, platform, and authors. Gene expression patterns differ
in different organs and tissues of the body, and complex metabolic disorders, including
diabetes, obesity, and sepsis, etc., are influenced by gene expression patterns across a wide
range of organs and tissues. The expression microarray is a method for studying gene
expression on a genome-wide scale that is widely utilized. Nevertheless, the studies that
are published on a yearly basis by thousands of scientists performing microarray experi-
ments are tainted by the systemic inaccuracy known as batch effects. Batch effects can be
decreased through proper experimental design, but they cannot be eradicated until the
entire study is conducted in one batch [29]. Before analyzing the microarray data, a number
of algorithms were available to correct batch effects. We employed the empirical Bayes
method built-in function in limma, in combination with the fit2 function. Meta-analyses
based on microarray data integration require effective in silico methods. We may now use
in silico tools to efficiently merge numerous microarray datasets while ignoring differing
demographics, experimental designs, and specimen sources, with the advancements of
ever-growing theories and bioinformatics tools [30].

www.ncbi.nlm.nih.gov/geo/
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Table 1. Details of GSE series sample and their DEGs and DEMs. Column 2 shows the total number
of samples available in the particular GSE series, and column 7 indicates the fold change (FC) values.
These GSE series were preprocessed using GEO2R, with many in-built functions for normalization
and batch effect removal using empirical methods in limma. After applying the limma methods, the
resultant data were obtained in the form of various calculated values, such as B value, p-Value, adj
p-Value, fold change, and t values. The total up- and downregulated genes in each GSE series were
written in columns 5 and 6, respectively. In this table, column 11 indicates the platform of the GSE
series, which means that different platforms have different numbers of transcripts (Affymetrix Probe
Set ID). GPL-570 always has 54675 transcripts, whereas GPL-4274 contains 18666 only.

SERIES #Sample Normal Disease Up Down FC Illness Country Year Platform Author Reference

GSE6535 72 17 55 13 29 2 Sepsis Australia 2007 GPL-4274 Tang BM [31]

GSE5772 94 23 71 28 19 0.5 Sepsis Australia 2007 GPL-4274 Tang BM [31]

GSE28750 41 20 21 86 42 2 Sepsis Australia 2011 GPL-570 Gareth price [32]

GSE64457 23 8 15 53 63 1.5 Sepsis France 2015 GPL-570 Julien TT [33]

GSE12624 70 36 34 41 30 1 Sepsis Germany 2010 GPL-4204 Hamid Hossain

GSE13205 21 8 13 107 81 0.5 Sepsis UK 2008 GPL-570 Iain Gallagher [34]

GSE51997 36 22 14 662 205 0.5 SLE Germany 2014 GPL-570 Powel Durek [35]

GSE13887 27 17 10 129 45 1.5 SLE USA 2009 GPL-570 Frank A M [36]

GSE50772 81 20 61 169 53 1 SLE USA 2015 GPL-570 Michael TS [37]

GSE30153 26 9 17 61 62 0.5 SLE France 2003 GPL-570 Jean Nicolas [38]

GSE103760 16 8 8 489 103 1.5 SLE USA 2018 GPL-17585 Morel L

GSE99967 59 17 42 65 11 0.5 SLE Canada 2018 GPL-21970 Prokopec S [39]

GSE17582 48 12 36 11 10 1.5 CRS Canada 2009 GPL-6883 Braam B [40]

GSE125898 6 3 3 362 422 2 CRS Mexico 2019 GPL-10739 Rangel LA

GSE89699 8 1 7 0 81 0.5 CRS India 2017 GPL-18402 Ramanathan k

GSE87885 5 3 2 93 78 0.5 CRS China 2019 Gpl-22555 Rangjian Xu

2.2. Normalization of Raw Data

The majority of the data submitted to the NCBI or other databases, such as Array
Express and Affymetrix, are unnormalized. Data may not be normalized due to data noise,
redundancy, duplication, and the values of outliers. Data that have been normalized for the
accuracy and dependability of results reduces these errors. If we proceed with data without
normalization, the results of the DEGs may differ (false results). In R, there are several
methods for normalizing data (MAS5, RMA, and GCRMA) [15]. For background correction
and data normalization, we used the RMA (robust multi-array) method (see the R script
below). The boxplots of the GSE series before and after normalization show the differences
in expression. The data log 2 transforms were used in the normalization process to remove
outliers—the Benjamin Hackenberg methods are used by default for p-value correction. We
used the limma package in the GEO2R and R platforms to find DEGs. For DEGs selection,
various old methods (Edges, Seq2. Rank methods) were available in the R packages.
However, limma is the most reliable and usable method for microarray data analysis [41].
Because different probe ids have the same gene name, the results may be perplexing.
Furthermore, many genes have alternate names (synonyms). In the STRING app (version
11.3), there were no (false genes) data available. There was a significant probe level effect
after applying RMA to the data and noting that the probe set expression values among
the replicates correlated no better than among non-replicates. We reduced the amount of
total variation while maintaining diversity between couples by standardizing means and
variances across replicate groups. After normalization, there was no association between
non-replicates. As a result, all of these issues were filtered during the data processing
and prior to the final hub gene discovery. The probe numbers from the expression profile
were converted into gene symbols. The robust multi-array average in the R affy package
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was used to perform background correction and quartile data normalization (Affymetrix,
Sunnyvale, CA, USA). The convolution background was corrected, the missing values
were estimated, and the expression values were log2 transformed and normalized during
pre-processing. Genes with a p-value < 0.05 and a fold change greater than |0.5–2| were
chosen as differentially expressed genes (DEGs) between control and treatment samples.

>library(Biobase)
>library(limma)
>library(affy)
> data = ReadAffy()
>boxplot(data,which = ′pm′, col = ′red′)
>boxplot(expr.rma, col = c(1:12))
> affy.bg = bg.correct(data, method = ”rma”)
> boxplot(affy.bg, col = rainbow(8))
>affy.norm = normalize(affy.bg, method = ”quantiles”)
>boxplot(affy.norm, col = rainbow(8))

Genes 2022, 13, x FOR PEER REVIEW 5 of 28 
 

 

 

Figure 1. Methodology adopted for the series used in the study. SLE, sepsis, and CRS data were 

extracted from NCBI geo datasets, and these terms were also searched for in the Array Express 

database. The GSE series were available in the public databases, and we retrieved only human data 

by applying exclusion criteria. Data were filtered via GEO2R and selected after final mining, apply-

ing normalization and log 2 transformations. The resulting data are in the Excel sheet used for DEGs 

(based on fold change and p-value). The data were merged to find overlapping DEGs and DEMs, 

and finally, the PPIN network was constructed via overlapping DEGs-DEMs (shared network). 

2.2. Normalization of Raw Data 

The majority of the data submitted to the NCBI or other databases, such as Array 

Express and Affymetrix, are unnormalized. Data may not be normalized due to data noise, 

redundancy, duplication, and the values of outliers. Data that have been normalized for 

the accuracy and dependability of results reduces these errors. If we proceed with data 

without normalization, the results of the DEGs may differ (false results). In R, there are 

several methods for normalizing data (MAS5, RMA, and GCRMA) [15]. For background 

correction and data normalization, we used the RMA (robust multi-array) method (see 

the R script below). The boxplots of the GSE series before and after normalization show 

the differences in expression. The data log 2 transforms were used in the normalization 

process to remove outliers—the Benjamin Hackenberg methods are used by default for p-

value correction. We used the limma package in the GEO2R and R platforms to find DEGs. 

For DEGs selection, various old methods (Edges, Seq2. Rank methods) were available in 

the R packages. However, limma is the most reliable and usable method for microarray 

data analysis [41]. Because different probe ids have the same gene name, the results may 

be perplexing. Furthermore, many genes have alternate names (synonyms). In the 

STRING app (version 11.3), there were no (false genes) data available. There was a signif-

Figure 1. Methodology adopted for the series used in the study. SLE, sepsis, and CRS data were
extracted from NCBI geo datasets, and these terms were also searched for in the Array Express
database. The GSE series were available in the public databases, and we retrieved only human data
by applying exclusion criteria. Data were filtered via GEO2R and selected after final mining, applying
normalization and log 2 transformations. The resulting data are in the Excel sheet used for DEGs
(based on fold change and p-value). The data were merged to find overlapping DEGs and DEMs, and
finally, the PPIN network was constructed via overlapping DEGs-DEMs (shared network).
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2.3. Meta-analysis of Differentially Expressed Genes (DEGs)

The GSE17582, GSE99967, and GSE103760 obtained data samples series were already
normalized. The other 13 GSE series for the three conditions (sepsis, SLE, and CRS) were
processed for further analysis through the GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r/, accessed on 5 June 2021) tool. This is a web-based analytical tool with an in-built
linear models for microarray data (limma) R package and GEO query. Default parameters
were applied for the pre-processing of datasets. Differentially expressed microRNAs
were extracted using criteria p < 0.05 and |log fold-change| > 0.5 to 2 as the threshold
values. The up- and downregulated genes in each GSE series were overlapped in order
to find meta-analysis-critical genes that were used as shared genes in the PPIN network.
The upregulated genes from all sepsis series were submitted to Bioinfogps in order to
find overlapping genes (an online tool for finding common values and displaying Venn
diagrams). The same procedure was used for all the downregulated genes in the sepsis,
CRS, and SLE series. The final list of overlapping DEGs was used to build a network for
up- and downregulated DEGs separately.

2.4. Prediction of Target Genes of Differentially Expressed miRNAs (DEMs)

Four different approaches have been developed for the in silico target prediction of
DEMs. In the past five years, around twenty-five miRNA target prediction algorithms
for mammalian genomes have been reported so far. Of all of the programs that have
been developed, we used: TargetScan (http://www.targetscan.org/vert_72/, accessed on
15 June 2021). This predicts miRNA targets from multiple genomes. These algorithms
compare multiple genomes to predict targets [42]. miRmap (https://mirmap.ezlab.org/,
accessed on 16 June 2021) is an open-source, freely available python library that uses web
facilities to predict miRNA targets [43]. miRWalk (version 3.0) (http://mirwalk.umm.uni-
heidelberg.de/, accessed on 17 June 2021) is based on a computational approach, and is
coded in the Perl programming language to predict target sites [44].

Moreover, the mirDIP (http://ophid.utoronto.ca/mirDIP/, accessed on 17 June 2021)
database provides comprehensive, reliable, and user-friendly resources to predict miRNA
targets. Many users use mirDIP even with less knowledge of statistical analysis or compu-
tational approaches [45]. Predicted genes shared across the four databases were considered
to be target genes.

2.5. Protein–Protein Interaction (PPI) and DEmiRNA–Gene Network Construction

The DEGs were submitted to the STRING database with a confidence score of <0.9.
Cytoscape 3.8.1 or above was used to import the network. The probe IDs of the genes were
mapped to their corresponding gene symbols, and their related functional information
was collected to build the core network of DEGs. The gene regulatory network for SLE,
sepsis, and CRS was built using the simple notion of one gene, one protein. There are a
number of features that can be utilized to build and filter a network. Because the networks
can be formed around a specific gene or illness, they combine data from curated databases
with information from the literature. The Cytoscape plugin, molecular complex detection
(MCODE; version 1.31), and the Cytoscape plugin, cytoHubba (version 0.1), were adopted
to identify the significant modules’ top-ranked genes in the PPI network. The network’s
topological properties were calculated using Network Analyzer, a plug-in in Cytoscape
version 3.8.2, while for eigenvalue calculation, we used CytoNCA, another plug-in in
Cytoscape for topological properties calculation. This could further help cross-check the
results of Network Analyzer.

2.6. Characterization of Topological Properties of Networks

The behavior of topological parameters was utilized to characterize the structural
characteristics of complex networks. The topological aspects of the network (graph) were
researched to study the network’s basic behaviors: degree distribution, neighborhood

http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.ncbi.nlm.nih.gov/geo/geo2r/
http://www.targetscan.org/vert_72/
https://mirmap.ezlab.org/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
http://ophid.utoronto.ca/mirDIP/
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connectivity, clustering coefficient, and eigenvector centrality are all described using termi-
nology such as betweenness centrality, closeness centrality, and eigenvector centrality.

2.7. Module/Community Finding: MCODE Method

MCODE, the mechanism for detecting modules/communities, was used in Cytoscape.
Modules from a whole network, and sub-modules from modules at each level of orga-
nization, were identified until only motifs remained (i.e., three nodes and three edges).
The MCODE plugin is a popular tool for locating clusters in a network. To do so, it
iteratively adds surrounding vertices with similar weights to construct clusters (strong
nodes connections) from a vertex using vertex weighting (a type of clustering coefficient).
“Degree cutoff = 2”, “node score cutoff = 0.2”, “k-score = 2”, and “max. depth = 100” were
used as default values in MCODE settings for network scoring and cluster finding. These
modules were also tracked in order to locate our DEG(s) of interest.

2.8. Gene Ontology and Pathway Analysis

Gene ontology terms give us a controlled vocabulary of terms that are divided into
three categories: molecular function, biological processes, and protein class [46]. As a
result, gProfiler, an online database that can augment a set of DEGs with GO keywords,
was used to conduct a preliminary investigation into the functional differences among the
DEGs collected. To analyze target mRNA function and define the GO term, we employed
gene ontology using gprofile, an ensemble database, an enhanced database, and GOnet.
The DEG(s) involved in the shared PPIN clusters were subjected to the pathway and GO
word enrichment analysis. The top 10 routes and GO word hits were chosen for further
examination within this range, with a statistically significant cutoff of 0.05.

2.9. Experimental Mice

Eight C57BL/6J wild-type mice (age: 8–10 weeks, weight: 20–25 g) were obtained from
an in-house inbreeding facility at the Institute of Nuclear Medicine and Allied Sciences
(INMAS) Defence Research Development Organization (DRDO), New Delhi. The institute’s
animal ethics committee (IAEC) (INM/IAEC/2018/25/ext) approved the experimental
study and protocols, and they conducted their procedure according to the appropriate
guidelines. Mice were housed in a temperature-controlled condition room (22–25 ◦C
temperature), on a light/dark 12 h cycle, with access to food and water ad libitum.

2.10. Experimental Model Protocol

The experimental mice were allocated into two groups: sepsis (CLP-operated) and
control (SHAM-operated). Briefly, mice were anesthetized first with an intraperitoneal
administration of ketamine and xylazine (90 mg and 10 mg/kg, respectively). After
adequate anesthesia, the lower quadrants of the mice’s abdomens were shaved, and the
surgery area was disinfected. A longitudinal incision was made, and the cecum was located,
exteriorized, and ligated. After ligation, the cecum was perforated by a puncture (through
and through), fecal material was extruded, and then the cecum was relocated. Peritoneum
and skin were sealed via a running suture (absorbable 4.0 silk and non-absorbable 4.0
silk suture). Betadine was applied all over the surgery area after operation, and saline
was administered subcutaneously for fluid resuscitation. Control (SHAM-operated) mice
underwent the same procedure without puncture and ligation. After sixteen hours of
operation, the mice were sacrificed, and lung tissues were harvested, snap frozen, and
stored at −80 ◦C until RNA extraction was performed.

2.11. Extraction of RNA and qRT-PCR

According to the manufacturer’s procedure details, RNA was extracted from the
lung tissue using a Trizol reagent (Ambion, Carlsbad, CA, USA). RNA concentration
was quantified using nanodrop, and 1000 ng of RNA was reverse transcribed into cDNA
using Bio-Rad’s iScript cDNA synthesis kit. The reaction protocol for cDNA synthesis
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involved: priming at 25 ◦C for 5 min, reverse transcription at 46 ◦C for 20 min, and
reverse transcriptase inactivation at 95 ◦C for 1 min. qRT-PCR analysis was conducted for
pathogenic genes MMP9, CD44, and EGR1, which were obtained through our integrated
bioinformatics approach using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules,
California city, USA). The PCR analysis was conducted using the StepOne real-time PCR
system. Actin was used here as an endogenous control. The Livak method (∆∆Ct) method
was used for calculating the relative fold change in expression levels. Primers for respective
genes were obtained from Sigma (Table 2).

Table 2. Real time pcr primers (mouse).

Genes Forward Reverse

Cd44 GAATTAGCTGGACACTCAAG CACCTTCTCCTACTATTGACC
Egr1 CAGAGTCCTTTTCTGACATC GAGAAGCGGCCAGTATAG

MMP9 CTTCCAGTACCAAGACAAAG ACCTTGTTCACCTCATTTTG

2.12. Statistical Analysis

Statistical data analysis was conducted using GraphPad Prism 8 software (San Diego,
CA, USA). All the results are represented as mean ± standard error of the mean (SEM). The
statistical significance of the data was analyzed using Student’s t-test for comparing two
experimental groups. Statistical significance was taken at * p < 0.05 and *** p < 0.01.

3. Results
3.1. Normalization of Data Using R

In the box plots of data, the difference in the expression values is clearly visible (see
Figure 2). Before normalization, the data are randomly distributed, but after normalization,
the data align. The non-normalized GSE series were downloaded from the NCBI in .cel
format and saved in a folder for the RMA package in R before the data for the PPIN
network were filtered using GEO2R. The resulting DEGs were evaluated and cross-checked
in the GSE series literature, where genes, upregulated and downregulated, are published.
If our data reveal down expression for any genes that are described as upregulated in
the GSE series linked study, then this indicates that we chose the wrong samples. If the
reported genes and our discovered genes both have similar expression levels, either up
or down, then this verifies the study. A variety of graphs (density plot, volcano plot, and
MA plot) were employed to demonstrate data accuracy, data types, and data expressions.
The boxplot (whisker plot) is widely used due to its simplicity, clarity, and data accuracy.
Data will not be taken for further analysis if they are non-normalized and no normalizing
methods are available.

3.2. Gene Network Construction

Networks are a rich source of biomarkers for disease classification because they
combine mRNA profiling with protein networks to generate subnetwork biomarkers
(interconnected genes whose aggregated expression levels are disease state predictive).
Starting with an initial list of seed genes (47 upregulated and 13 downregulated in SLE and
sepsis, although there were no overlapping genes in the two mRNA GSE series for CRS,
GSE17582 (10 downregulated and 11 upregulated) and GSE125898 (10 downregulated and
11 upregulated)), we built an interaction network for CRS, SLE, and sepsis to infer gene–
disease associations from network properties (with 362 upregulated and 422 downregulated
genes) (see Table S3). Finally, three DEMs out of 252 were overlapped in two GSE series.
They are, therefore, known to be related to the disease. In the networks, we marked the seed
genes names so that each gene is represented by a single node in the interaction network,
enabling us to construct a disease-specific gene interaction network, where the nodes are
the seed genes and their neighbors, and the edges are the links between the nodes where
there is a known interaction. The STRING database generated a network with a confidence



Genes 2022, 13, 209 9 of 26

score of 0.9, with 1348 nodes and 45,699 edges for the upregulated network and 1351 nodes
and 52,455 edges for the downregulated network, shown in Figures 3 and 4.
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Figure 2. Boxplot of GSE94717. For all GSE series, the boxplot indicates data noise/data duplicity
and normalized/non-normalized data. If the data are not normalized, the whisker boxes are up and
down (not in proper lines). If data are random due to noise mixing or redundancy, data should be
normalized in order to solve this problem. If data are non-normalized, there may be false results; the
upregulated genes may be portrayed as downregulated, and vice-versa. After data are normalized,
we can rely on the data, and consider the DEGs for further studies. The blue color box plot shows the
normal samples and the pink color box plot shows the disease samples. In the boxplot, we can see
the number of samples and the GSM number of the GSE series (if the GSE series selection was wrong,
then the 12 disease samples and the 3 control samples will also give false results). The pre-processing
of the data is an essential step for data accuracy when working with manipulated data. The Y-axis of
the boxplot indicates a range of data values, and the X-axis indicates data samples in the GSE series.
(a) Non-normalized data; (b) normalized data.



Genes 2022, 13, 209 10 of 26

Genes 2022, 13, x FOR PEER REVIEW 10 of 28 
 

 

3.2. Gene Network Construction 

Networks are a rich source of biomarkers for disease classification because they com-

bine mRNA profiling with protein networks to generate subnetwork biomarkers (inter-

connected genes whose aggregated expression levels are disease state predictive). Starting 

with an initial list of seed genes (47 upregulated and 13 downregulated in SLE and sepsis, 

although there were no overlapping genes in the two mRNA GSE series for CRS, 

GSE17582 (10 downregulated and 11 upregulated) and GSE125898 (10 downregulated 

and 11 upregulated)), we built an interaction network for CRS, SLE, and sepsis to infer 

gene–disease associations from network properties (with 362 upregulated and 422 down-

regulated genes) (see Table S3). Finally, three DEMs out of 252 were overlapped in two 

GSE series. They are, therefore, known to be related to the disease. In the networks, we 

marked the seed genes names so that each gene is represented by a single node in the 

interaction network, enabling us to construct a disease-specific gene interaction network, 

where the nodes are the seed genes and their neighbors, and the edges are the links be-

tween the nodes where there is a known interaction. The STRING database generated a 

network with a confidence score of 0.9, with 1348 nodes and 45,699 edges for the upregu-

lated network and 1351 nodes and 52,455 edges for the downregulated network, shown 

in Figures 3 and 4. 

 

Figure 3. Network representing downregulated genes of sepsis, SLE, and CRS. This downregulated 

network contains 1351 nodes and 52,455 edges. The CRS GSE series GSE125898 contains 422 down-

regulated genes and GSE17582 contains 10 downregulated genes. Sepsis and SLE together contrib-

ute 13 downregulated genes. Green colors indicate our seed genes and blue are their interacting 

partner. A zoom view shows clear gene–gene interactions (green colors for seed genes). The nodes 

are the gene entity, and the edges are the interactions/connections. A gene has multiple connections 

in the network: gene to gene, gene to itself, and gene to many genes interactions. This complex 

network is undirected (no direction of edges) and unweighted. To retrieve biological information 

from the complex network, module analysis methods are used, which reduces complexity. 

Figure 3. Network representing downregulated genes of sepsis, SLE, and CRS. This downregulated
network contains 1351 nodes and 52,455 edges. The CRS GSE series GSE125898 contains 422 down-
regulated genes and GSE17582 contains 10 downregulated genes. Sepsis and SLE together contribute
13 downregulated genes. Green colors indicate our seed genes and blue are their interacting partner.
A zoom view shows clear gene–gene interactions (green colors for seed genes). The nodes are the
gene entity, and the edges are the interactions/connections. A gene has multiple connections in the
network: gene to gene, gene to itself, and gene to many genes interactions. This complex network
is undirected (no direction of edges) and unweighted. To retrieve biological information from the
complex network, module analysis methods are used, which reduces complexity.

Using the STRING results tab, we saved the networks as text and imported them into
Cytoscape version 3.8.2. The probe IDs for the genes were mapped to their corresponding
gene symbols, and their related functional information was collected in order to build the
core network of differentially expressed genes. The gene regulatory network for CRS, SLE,
and sepsis was built using the simple premise of one gene, one protein. Both networks
could be imported into Cytoscape and used to trace the seed genes. Because some seed
genes are absent from the network, we could only consider the seed genes that are present.
From a large number of genes to the final hub genes/biomarkers, the initial list of genes
became smaller. The upregulated and downregulated networks were combined using
Network Analyzer to form the merged network, shown in Figure 5.

As a .sif file, Cytoscape created a miRNA–gene network utilizing the three miRNAs
and their target genes in Table S4, Figure 6. Because miRNA molecules match the needed cri-
teria of high sensitivity, specificity, and accessibility, they are regarded as suitable biomark-
ers. Many researchers have looked into the involvement of miRNAs in sepsis [47,48].
For example, Chen et al found that patients with sepsis had altered profiles of particular
miRNAs and their targets [49]. Previous research has also found a link between the degree
of miRNA expression and the mortality of sepsis patients [50,51].
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Figure 4. Network representing upregulated genes of sepsis, SLE and CRS. This upregulated network
contains 1348 nodes and 45,699 edges. The CRS GSE series GSE125898 contains 362 upregulated genes
and GSE17582 contains 11 upregulated genes. Sepsis and SLE together contribute 47 upregulated
genes. The red color indicates our seed genes, and blue are their interacting partner. A highlighted
(zoom view) in the right corner highlights the clear interaction between seed genes and non-seed
genes. The nodes are the genes, and edges are the interactions/connections (G = V, E).
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Figure 5. Merged network of upregulated genes and downregulated genes. This network comprises
2091 nodes and 75,957 edges. Green colors nodes and red colors nodes indicates our key genes
(downregulated and upregulated, respectively), and blue nodes are their interacting partners (other
genes). Nodes are the gene entity and edges are the interactions/connections. This merged network is
prepared using the Network Analyzer function in Cytoscape. The genes have a common connection
in both networks and merge into one network: both networks, upregulated and downregulated,
have 1306 and 1348 nodes, respectively; after merging, the total genes should be 2698, but in the
merged network, this becomes 2091, because some of the genes are the same in both networks (i.e.,
we removed duplicate genes).
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Figure 6. A miRNA–mRNA network of three key miRNAs from two CRS miRNA series. This
represents a network of three miRNAs (selected on the basis of common miRNAs obtained from the
two series). This network represents miRNAs with their respective targets. The total number of target
genes of all three miRNAs are 1500 and the edges are 1609.

In the merged network, this miRNA–mRNA network merges. Because the merged
network already contains many target genes from the miRNA network, it is now known as
a shared network. There are now 2091 nodes in the common network, with three miRNAs
and 75757 edges (see Figure 7).
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Figure 7. Shared network: this shared network is formed from all the above networks (upregu-
lated network, downregulated network, and miRNA–mRNA network). It contains 2091 nodes and
75,957 edges. The red color indicates upregulated genes, the green color indicates downregulated
genes, the yellow color indicates the target genes of miRNAs, and the blue color indicates the
interacting genes.

This complex network is then examined and used to obtain useful information about
hub genes (based on centrality), seed genes tracking, gene enrichment analysis, and path-
ways. Overall, 45 modules are extracted from the native network. Out of the 45 modules,
we chose the top ten and traced our seed genes. Finally, we used degree centrality to
identify 27 seed genes from these 10 modules. We used degree centrality to extract the top
50 genes from each module while tracing our seed genes (see Table 3 Part A).

The final list (mixing the upregulated and downregulated genes) can be used to build
the network. The total number of shared up- and downregulated genes in SLE and sepsis
are 47 and 13, respectively, with 373 and 432 up- and downregulated genes in CRS Figure 8.

There was no need to integrate the network from STRING. However, we built the net-
work separately for upregulated and downregulated genes, resulting in a higher number
of non-seed nodes than in the mixed list. The more nodes there are, the more connec-
tions/interactions there are with the seed nodes. If there are a lot of nodes, it is possible
that some of them are significant for the disease. If non-seed nodes are at the top of the
list of hub nodes, there may be a biomarker that can be cross-checked in the literature to
see what role that gene plays in the body. After identifying an interaction between them,
we may rank the genes in the network using network centrality measures, such as degree,
eigenvector, betweenness, and proximity centrality. Network representation and analysis
are powerful tools for studying the complicated behavior of biological systems’ physiology
and pathology. The CRS network was discovered to have a hierarchical scale-free nature
through topological research. The network’s topological features show power law behavior,
indicating that it is fractal in nature. The fractal form of the network’s self-affine process
could be a symptom of the network’s self-organization (see Figure 9).
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Table 3. Part A: List of modules and their corresponding top 50 genes. Part B: Seed genes in top 10.

PART A

Modules Count Genes of Interest or Seed Genes (Top 50)

module 1 22
SRRM2, GSPT1, NOB1, SNRNP70, KRR1, SNRPA, SRSF1, POLR2K,

CCT5, PPP2R1A, HNRNPC, UTP6, BYSL, RPL3L, RPL18, RPL38, EIF2S3,
POLR2E, RPS27, SEC61A1, HEATR1, RIOK1

module 2 22
OASL, PSMD8, MPHOSPH6, PSME2, PSME3, CCNE2, BUB1B,

UBE2D1, PLK1, ISG15, KCND3, CDKN1A, KIAA0020, CDC20, RAD23A,
TCEB1, EXOSC5, PSME4, KCND2, RRP12, CCNA2, ANAPC4

module 3 35

ZWINT, KIF11, ASPM, CCNB1, RELA, KNTC1, NIFK, CENPN, TTK,
BUB1, NFKB2, KIF20B, KIF2C, PRICKLE1, CKS2, NUF2, TP53, TYMS,

ANLN, TDRD12, ECT2, NCAPG, CASC5, MDN1, TNF, ADRM1, CCNB2,
KIAA0101, CDC7, CENPE, TTC27, NCAPH, CTNNB1, MCM10, NFKBIA

module 4 24
CX3CR1, CCL4L1, CCR3, RMI1, TAF1, EP300, ATM, TAF6, GNB2,

TAF10, C3AR1, GNAI2, CCR2, GNG11, GTF2A1, ADCY1, CXCL1, CCL5,
ATAD5, TAF13, PF4, GNG2, CXCL9, C3

module 5 20
PSMA5, TRIM9, GLI2, WDHD1, SOCS3, HERC5, CDK4, SMURF1,

SPAG5, UBA1, HECW1, UBE2D3, ATAD2, TK1, FBXL5, EXO1, UBE2J1,
RBCK1, NEDD4L, POLE2

module 6 36

JUND, IFT140, DUSP1, ITGB1, ACTN2, CSF1R, LEPR, CCND3, PRMT5,
CACNA1S, IFT88, TNNT2, STAT4, PLCG2, NEB, VAV3, TPM1, TTN,

TNNI1, PLCB4, MYOM2, MYBPC2, HELZ2, MYL3, LCN2, MYH6, BTK,
CNOT1, MMP8, TNNT3, MAPK14, OSM, RETN, CSK, BLNK, GNAT2

module 7 10 FOS, IGF1, GNAQ, EGR1, PTGS2, IL1R1, NR3C1, PI3, MMP9, SMAD3

module 8 49

C4A, MX2, OAS2, IFI6, ENAM, VAMP2, OAS3, MX1, TF, FYN, ESR2,
HIST2H2BE, IFI35, DAB2, OAS1, BDP1, XAF1, ARRB1, FCHO1, CYBB,
SOS1, IFIT2, DDX58, IFIT1, RSAD2, NRG1, IFIT3, ENPP1, VAV1, LAT,

LYN, FCHO2, ENTPD3, ARG1, APOA2, ITPR1, CXCL8, CD163,
NCAPH2, ARHGEF12, RASGRF1, AMBN, CD44, USP18, TADA3, CD4,

CACNA1C, GUCY2C, KALRN

module 9 1 TIMM17B

module 10 33

COL1A2, CD177, OLFM4, ITGAL, MCEMP1, ATP2A2, MMP25, TGFB2,
SNAP23, CRISP3, COL12A1, IGFBP3, COL4A5, COL4A6, COL11A1,

COL14A1, OBSCN, HP, FYB, ATP2A1, LTF, CEACAM8, CYSTM1,
COL24A1, COL19A1, COL5A2, CD47, RHOB, F8, COL6A3, STOM,

SPARC, SELPLG

PART B

Modules Count Genes of Interest (Top 10)

module 2 1 PSME3

module 3 7 CCNB1, CCNB2, BUB1, NCAPH, TTK, KIF11, NCAPG

module 4 1 ATM

module 6 2 ACTN2, TNNT3

module 7 5 FOS, EGR1, MMP9, IGF1, PTGS2

module 8 5 MX1, CXCL8, CD44, MX2, DDX58

module 10 6 COL1A2, COL11A1, COL5A2, COL6A3, COL4A6, COL4A5
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Figure 8. Top ten modules selected from MCODE analysis. Network/modules/sub-modules at
different network levels that accommodate leading hubs (red) (fundamental key regulators) and blue
nodes indicate interactive partners (other genes).

These genes were utilized to build a gene network and to investigate their biological
importance. We found the top 10 modules based on the MCODE analysis. Our genes
of interest were found in each module. In these modules, we found 27 hub genes (see
Table 3 Part B). We identified three miRNAs, namely, hsa-miR-4476, hsa-miR-371a-5p, and
hsa-miR-345-3p. The miRNA–mRNA network was built using these miRNAs. Further, these
networks were merged into a shared network to identify key fundamentals biomarkers.
Based on degree centrality, we used each module and found out the hub genes. These
are: PSME3, CCNB1, CCNB2, BUB1, NCAPH, TTK., KIF11, NCAPG, FOS, EGR1, MMP9,
IGF1, PTGS2, MX1, CXCL8, CD44, MX2, DDX58, COL1A2, COL11A1, COL5A2, COL6A3,
COL4A6, COL4A5, ACTN2, TNNT3, and ATM. Gene product interaction networks (PPI
networks; G = (V, E)) are networks that are composed of gene products V and a collection
of undirected interactions E, which are linked together by their connections to one another.
The degree centrality of candidate genes is then ranked, and novel genes that are likely
connected with the disease of interest are found based on the degree score. Based on degree
centrality, 27 hub genes were selected, in which six genes (MMP9, CD44, EGR1, ACTN2,
TNNT3, and PTGS2) were selected on the basis of a multi-network variable selection
approach and validated in a well-established sepsis mice model. However, only three genes
(CD44, MMP9, and EGR1) were found to be significantly upregulated in the sepsis model,
correlating with our bioinformatic results.
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Figure 9. Topological properties of shared network: (a) clustering co-efficient (C(k)), (b) the behaviors
of degree distributions (P(k)), (c) neighborhood connectivity (CN(k)), (d) closeness (CC(k)), (e)
betweenness (CB(k)), and (f) eigenvector (CE(k)) measurements as a function of degree k for original
shared network.

The most basic centrality measure is degree centrality, which is used to identify an
important node participating in a large number of interactions. Because it is defined by the
number of its neighbors, it is a local centrality measure. When it comes to the analysis of
biological networks, it has been widely used. A higher degree centrality value indicates that
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a protein/gene is more likely to be required for the survival and growth of the organism,
while a lower degree centrality value indicates that a protein/gene is not required. Since
centrality measures are used to quantify the nodes or edges that are more important than
others, degree centrality measures are utilized to numerically characterize the importance
of genes in the biological system.

These important regulators are firmly embedded in the system. They serve as the
network’s backbone for all network activities and regulations, and they could be potential
disease control target genes.

3.3. Gene Ontology of Top Hub Genes and Target Genes

A set of 27 genes were submitted to gProfiler for gene ontology term analysis (molecu-
lar function (MF), cellular component (CC), and biological process (BP)) and for pathway
analysis using the enrichr database. Forming an idea of the effect of DEGs is only possible
when we have some preliminary insight into their individual functions. The gene ontology
(GO) term enrichment allows us to obtain information about the genes (see Table S5). The
fundamental genes were found to display the differential expression irrespective of the
condition, state of disease, and expression pattern (see Figure 10).
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Figure 10. The figure depicts the top 10 gene ontology of key genes with GO term analysis ID and
the padj molecular function, biological process, cellular components, and KEGG pathways.
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3.4. qRT-PCR Validation

After an integrated bioinformatics approach, the key genes obtained were validated
in a well-established sepsis mice model. qRT-PCR analysis was performed to quantify
the relative fold change in expression.. Our findings through bioinformatics analysis and
a validation study with qRT-PCR analysis in a well-established sepsis mice model were
correlated (see Figure 11).
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Figure 11. Validation through real-time qRT-PCR analysis of gene expression (MMP9, CD44, and
EGR1). Sepsis groups are CLP operated and SHAM groups are control groups. Real-time analysis
data showed their upregulated expression. Data are represented as mean ± S.E.M. * p < 0.05 and
*** p < 0.001.

4. Discussion

Sepsis is a life-threatening disorder caused by an aberrant immune response to infec-
tion that can result in tissue damage, organ failure, and death if not treated quickly and
effectively [52]. When an infection spreads beyond local tissue containment, sepsis devel-
ops, resulting in a cascade of dysregulated physiologic responses and organ failure. Septic
shock, which is marked by significant circulatory, cellular, and metabolic abnormalities, and
which is associated with a higher mortality rate, affects a minority of patients with sepsis.
The complicated interplay between the first inflammatory and later anti-inflammatory
responses was blamed for sepsis-induced organ failure and death. Early 30-day sepsis
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mortality has decreased as a result of breakthroughs in intensive care medicine and goal-
directed therapies, only to steadily increase long after "recovery" from acute events. Many
researchers have focused on the long-term sepsis-induced abnormalities in cellular immune
function, since so many sepsis survivors succumb to persistent, recurring, nosocomial,
and secondary infections. Immune suppression, persistent inflammation, and bacterial
persistence are all examples of how sepsis changes innate and adaptive immune responses
over long periods of time following clinical recovery [53]. Over the past several decades,
extensive basic and clinical research has elucidated underlying molecular pathways and
inevitable mechanisms of sepsis. However, mortality and morbidity always remain high
due to a lack of prompt treatment [54]. New technological explorations have identified var-
ious possible non-invasive treatments. In our study, the possible pathways to disseminate
and control sepsis-related deaths were explored. Multifarious studies have demonstrated
the intrinsic part miRNA plays in numerous sepsis-associated diseases, such as SLE [27,55]
and CKD [56]. These altered miRNA levels can serve as diagnosis and prognostic markers
of the diseases [57]. Significantly enriched levels of miR-181a, miR-92a, and miR-424 in the
blood of ARDS patients may serve as diagnostic markers, and were found to be closely
associated with inflammation and epithelial cell injury [58]. In numerous sepsis-associated
organ injuries, such as those to the lungs, kidneys, and other organs, miRNAs play an im-
portant role in cellular signaling, which then regulates the immune response and molecular
pathological outcomes [59,60]. Additional studies revealed a significant decrease in the
levels of miR-124 in the serum of SLE patients [61] and an upregulation of miRNA-21 and
miR-214 in CRS and CKD patients, respectively [26,62].

Sixteen GSE series summarize the genomic expression profile of sepsis, SLE, and CRS.
In the present study, a meta-analysis approach was adopted to identify the overlapping
upregulated 47 DEGs and 13 overlapping downregulated DEGs in sepsis and SLE. All
the DEGs (432 upregulated and 373 downregulated) of CRS and 252 target genes of three
DEMs from the CRS series were taken. The STRING database was used to create separate
upregulated and downregulated networks. Both the networks were then merged using
a network analyzer tool, which we referred to as a merged network of genes. Only three
overlapping DEMs, namely, hsa-miR-345, hsa-miR-371a, and hsa-miR-4476, from two GSE
series were selected to create a miRNA–mRNA network that was further merged with
the merged network of the genes, creating a very complex miRNA–mRNA interacting
network, which we referred to as a shared network. Finally, 45 modules were extracted
from the shared networks using MCODE, and the top 10 modules were selected based on
the MCODE score and other centrality measures. Each module was further used for gene
tracing (hub genes in each module) and a total of 27 hub genes were identified based on
degree centrality (see Table 4).

The 27 hub genes (in which only six were genes from SLE and sepsis, while the
other 21 were CRS DEGs) that we obtained were remarkably enriched in GO terms under
biological processes. However, not so much research has been conducted on these, and as
such there are few data related to CRS available that can be implemented to provide solid
support for their interrelated manifestations in sepsis and SLE. Therefore, more research
should be conducted to establish the interrelation. Moreover, we tried to establish one such
interrelation in our study. Out of the six genes that overlapped in SLE and sepsis, three
critical genes (MMP9, CD44, and EGR1) obtained through our bioinformatic approach were
validated in a well-established sepsis mice model and were found to be upregulated. As
sepsis, SLE, and CRS are interrelated, these genes may also be targeted in SLE and CRS.

In previous studies, CRP, IL6, and lactate could be used as biomarkers to evaluate the
diagnosis and prognosis of sepsis severity in humans. Among them, IL6 is the most valuable
biomarker for inflammation, and this has been reported in several studies [63]. In this study,
the genes were identified when establishing a network for elucidating the common genes
that might be involved in three inflammatory diseases (SLE, sepsis, and CRS). However,
the severity of the disease requires periodical assessment. Here, we euthanized the mice
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after 16 hours following the CLP procedure and determined the expression of the genes,
which limits our study.

Table 4. Twenty-seven hub genes were identified in the shared network based on degree centrality.

Sr. No. Genes Symbol Degree

1 PSME3 149

2 CCNB1 275

3 CCNB2 194

4 BUB1 242

5 NCAPH 132

6 TTK 151

7 KIF11 170

8 NCAPG 135

9 ATM 254

10 ACTN2 91

11 TNNT3 37

12 FOS 188

13 EGR1 126

14 MMP9 138

15 IGF1 120

16 PTGS2 116

17 MX1 57

18 CXCL8 246

19 CD44 134

20 MX2 39

21 DDX58 87

22 COL1A2 38

23 COL11A1 29

24 COL5A2 21

25 COL6A3 22

26 COL4A6 22

27 COL4A5 24

Intruding bacteria and inhaled particles and chemicals first encounter alveolar
macrophages, which provide the first line of defense. Macrophages recognize microor-
ganisms non-specifically via pattern recognition receptors and initiate the secretion of
inflammatory regulators in the lungs. Multiple pieces of evidence have confirmed that
potassium channels are involved, and that lipopolysaccharides (LPS) induce the activa-
tion of macrophages. The ether-a-go–go-related gene (ERG) potassium channel belongs
to the ether-a-go–go family of voltage-gated potassium channels. In preclinical models,
targeted medicines aimed against EGFR, such as cetuximab and panitumumab, and those
directed against VEGF, such as bevacizumab, have been demonstrated to generate a more
immunogenic tumor profile, and so could be useful adjuncts to CRC [64]. The present
study reinforces previously reported observations where ERG1 has been overexpressed
in different inflammatory diseases, including sepsis [65]. Therefore, EGR1 can be a di-
agnostic marker for SLE and sepsis. Matrix metalloproteinases 9 (MMP-9) is a 92 kDa
zinc-dependent gelatinase also known as type IV collagenase [66]. Secreted pro-MMPs
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converted to MMPs via enzymatic cleavage can influence the metastatic potency of immune
cells by decreasing the expression of extracellular matrix proteins [66]. Earlier, MMP-9 was
reported to be a biomarker in severe sepsis patients, and can also serve as a biomarker for
the severity of sepsis in pediatric patients [67,68]. A study by Alqahtani et al. found that
the protein levels of MMPs was detected to be high in the lungs of an acute lung injury
model induced by a cardiopulmonary bypass (CPB) [69].

The inhibition of MMPs reduces the lung inflammation mediated by neutrophils in a
ventilator-induced lung injury model [70], thus increasing survival rates [71]. Moreover,
MMP9-lacking septic mice had considerably decreased neutrophil infiltration, edema, and
lung injury [72]. IL-1β is known as an inflammatory marker in various diseases. The over-
expression of Il1b positively regulates MMP9 expression and its catalytic activity. Moreover,
MMP9 cleaves IL-1β and regulates it negatively [73]. In abdominal sepsis, MMP-9 con-
trols the shedding of platelet-derived CD40L and regulates neutrophil infiltration and
recruitment to the lungs, which was found to be regulated by MMP9 in abdominal sepsis
model [72]. Lesiak A et al., observed a significantly higher level of MMP9 in patients
with systemic lupus erythematosus [74]. Etiologies such as sepsis were implicated in the
activation of the RAGE-dependent NF-kB signaling cascade associated with inflammatory
processes and oxidative stress [75]. Zhang H et al. reported that MMP9 mediated the
shedding of RAGE, and might exacerbate sepsis-associated pulmonary inflammation by
controlling RAGE/NF-κB signaling [76]. MMP9 is also considered to be a macrophage
gene [77], where its overexpression in the lung tissue of septic mice model correlates with
our study. Therefore, MMP9 can serve as an effective bio-marker and prognosis assessment
tool for inflammatory diseases. It is critical to recognize that some pharmacogenes, for
which pharmacogenomic guidelines or prescription labels urge modifications in medical
therapy in the context of specific genetic variants, are also known to impart greater disease
risk. This is part of the study of how genes influence an individual’s response to phar-
macological therapy (pharmacogenomics) [78]. CD44, a transmembrane protein receptor
encoded by the cd44 gene, synthesizes constitutively and presents several cell types, such
as neurons, fibroblasts, leukocytes, keratinocytes, and epithelial cells. CD44 is involved in
cellular adhesion, migration, aggregation, and lymphocyte activation, such as with T cells
and B cells. Various studies demonstrated CD44’s role in the extravasation and recruitment
of lymphocytes to the lungs, kidneys, and joints in inflammatory diseases [79], including
sepsis, chronic kidney disease [80], cardiac fibroblast [81,82], and SLE [83]. It binds to
hyaluronic acid for downstream signaling, and is committed to host–pathogen interac-
tions [84]. It has been reported that the inhibition of CD44’s function effectively reduced the
buildup of neutrophils in the lungs in abdominal sepsis. Further study demonstrated that
blocking CD44 decreased pulmonary neutrophilia and also attenuated sepsis-induced lung
edema and tissue injury [79]. It is also reported that an alteration in the distribution of CD44
and hyaluronan has a consequential effect on SLE [83]. The inhibition of CD44 suppresses
lymphoproliferation in lupus-prone mice. In a recent study, H. Fu et al. reported that
targeting CD44 can be a therapeutic approach in renal fibrosis and CKD [85]. In the present
study, CD44 was found to be significantly upregulated in the lungs of septic mice. However,
further study and research are needed to establish the same trend in SLE and CRS models.
Therefore, overexpressed CD44 in SLE, sepsis, and CRS could serve as a disease biomarker.
However, based on bioinformatics analysis, three unexplored miRNAs, hsa-miR-4476, hsa-
miR-371a-5p, and has-miR-345-3p, were identified. However, it was previously reported
that miR-345-3p reduces the inflammation caused by oxidized low-density lipoprotein.
miR-345-3p plays a role in other diseases, such as diabetes mellitus [86,87], NSCLC lung
carcinoma [88], heart failure [89], and glioblastoma [90]; its role in CRS, sepsis, and SLE,
however, is unexplored. In their research, healthcare experts use a special category of
literature applications, known as non-medical applications, which are extremely valuable
for enhancing healthcare treatments and solutions to health problems [91]. Previously, a
similar study was conducted by Fajarda et al., where nine datasets related to heart diseases
were merged to obtain a gene expression signature (GES) set [92]. Such integrative analysis
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in the liver metastasis of colorectal cancer was performed [93]. Our study provides a
general scheme for new approaches to uncover and understand the detailed and intricate
structure of inflammatory diseases pathways. The datasets for sepsis and SLE are well
balanced, whereas the dataset for CRS is very small and needs to be used with caution,
even after the data have been normalized. For sepsis and SLE, we identified hub genes in
the network, but there were no more (only three genes) common genes between the CRS
GSE series. Therefore, we cannot compare the CRS common genes to sepsis and SLE. The
number of genes in the datasets (16 GSE series) is taken into account in our research. Based
on p values and fold-change criteria, we retrieved 3451 genes and 242 miRNAs, which we
refer to as DEGs and DEMs, respectively, with 2276 upregulated and 1175 downregulated
DEGs and 93 upregulated and 159 downregulated DEMs. To narrow down our research, we
looked for overlapping genes in two diseases (sepsis and SLE), resulting in 60 overlapped
DEGs. There were no overlapping genes in the two GSE series for CRS; therefore, we may
use these CRS DEGs as references and integrate them with the 60 DEGs from the other GSE
series. Only three genes (EGR1, MMP8, and cd44) were shown to be prevalent in the DEGs
of sepsis, SLE, and CRS. We cannot build a PPIN network with only three genes. Therefore,
we combined all of the CRS DEGs with the 60 DEGs (sepsis and SLE) and proceeded to
create the PPI network using STRING. Furthermore, the top 10 modules were chosen from
45 modules and 27 hub genes, and three miRNAs from the shared network were discovered
based on degree centrality. EGR1 was the only gene that was found to be present in all
three diseases, and it was also the gene that was extracted from the network based on
degree centrality (which shows the highest impact of the node in the native network as a
hub gene). This was further validated in the CLP-induced sepsis mice model where it was
found to be significantly upregulated.

5. Conclusions

In summary, the present study aimed to identify and discover the potential biomarkers
and associated pathways in sepsis, SLE, and CRS. An association between CRS type 5,
sepsis, and SLE has been discovered in a number of studies. Because of these findings, one
of our key objectives was to uncover genes that were shared by both sepsis and SLE. If these
two diseases shared gene signatures with CRS, these genes would be used as critical genes
in future studies. When the 60 genes revealed to be overlapping in sepsis and SLE were
compared to the CRS DEGs, three important genes were discovered to be overlapping in
CRS, SLE, and sepsis, according to our findings. Significant modules (strongly connected)
were obtained from the networks (especially the miRNA–mRNA regulatory network). The
key regulatory genes obtained through our multi-network variable selection approach
were MMP9, CD44, and EGR1. These regulatory genes were validated in a CLP-induced
sepsis mice model and were found to be significantly upregulated. As sepsis and CRS are
interrelated, and because the occurrence of sepsis may cause/promote CRS, the results
obtained emphasize the interrelated regulatory network of CRS, sepsis, and SLE, which may
be used to suggest possible therapeutic targets for CRS in the future. The key regulatory
genes reported in our study may help to unravel many unexplored regulatory pathways,
leading to the identification of critical molecular targets for increased diagnosis, prognosis,
and drug efficacy in CRS.
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