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A feature ofmetazoan reproduction is the elimination ofmaternal centrosomes
from the oocyte. In animals that form syncytial cysts during oogenesis, includ-
ing Drosophila and human, all centrosomes within the cyst migrate to the
oocyte where they are subsequently degenerated. The importance and the
underlying mechanism of this event remain unclear. Here, we show that,
during early Drosophila oogenesis, control of the Anaphase Promoting Com-
plex/Cyclosome (APC/C), the ubiquitin ligase complex essential for cell
cycle control, ensures proper transport of centrosomes into the oocyte through
the regulation of Polo/Plk1 kinase, a critical regulator of the integrity and
activity of the centrosome. We show that novel mutations in the APC/C-
specific E2, Vihar/Ube2c, that affect its inhibitory regulation on APC/C
cause precocious Polo degradation and impedes centrosome transport,
through destabilization of centrosomes. The failure of centrosome migration
correlates with weakened microtubule polarization in the cyst and allows
ectopicmicrotubule nucleation in nurse cells, leading to the loss of oocyte iden-
tity. These results suggest a role for centrosome migration in oocyte fate
maintenance through the concentration and confinement of microtubule
nucleation activity into the oocyte. Considering the conserved roles of APC/
C and Polo throughout the animal kingdom, our findings may be translated
into other animals.
1. Introduction
The centrosome is a major microtubule-organizing centre (MTOC) in many
animal cells and, through microtubule nucleation, regulates a wide range of cel-
lular processes during development and in adult tissues [1,2]. The centrosome
is composed of a pair of centrioles and an amorphous proteinaceous matrix, the
pericentriolar material (PCM), which recruits microtubule-nucleating proteins
such as γ-tubulins and also contributes to the stability of centrioles [3,4].
In dividing cells, the centrosomes facilitate the assembly and the orientation
of the mitotic spindle, thereby ensuring accurate chromosome segregation
and impacting cell fate decision and tissue architecture. In non-dividing cells,
centrosomes direct cell migration and intracellular transport by forming the
polarized microtubule network, or alternatively centrioles are converted to
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basal bodies to form primary cilia. Centrosome dysfunction
is linked to various human diseases including cancer,
microcephaly and ciliopathy [1,5].

In the fruit fly Drosophila melanogaster, the centrosome has
been implicated in the development of the oocyte through
their microtubule-organizing capabilities [6,7]. The Drosophila
oocyte develops through 14 stages that are delineated by
morphological changes of egg chambers [8,9]. In each ovar-
iole, oogenesis starts at the anterior tip in the germarium
where the female germline stem cell resides and divides
asymmetrically to produce a daughter stem cell and a cysto-
blast. The cystoblast then undergoes exactly four rounds of
mitotic divisions with incomplete cytokinesis to create a 16-
cell syncytial cyst, in which only one cell eventually becomes
the oocyte, whereas the other 15 cells take on a nurse cell fate.
During this process, germline centrosomes of the 16 cysto-
cytes exhibit a very peculiar behaviour: virtually, all the 32
centrosomes intercellularly migrate within the cyst to even-
tually accumulate in one cell, the future oocyte [7]. This
migration coincides with the events that mark the specification
of the oocyte: the concentration of fate determinants such as
Bicaudal-D (BicD), Egalitarian (Egl) and Oo18 RNA-binding
protein (Orb) [10–13], and the restriction of synaptonemal com-
plexes to the oocyte [14]. These observations suggest potential
involvement of germline centrosomes in the specification and/
or the subsequent differentiation of the oocyte [6]. Importantly,
the centrosome migration following the syncytial cyst for-
mation is likely to be a universal feature of oogenesis as it is
observed in animals as diverse as fish and mammals [15,16].
However, despite the universality of this phenomenon, its sig-
nificance, as well as the molecular mechanism directing this
process, remains elusive.

The microtubule cytoskeleton plays a critical role in Dro-
sophila oogenesis [17,18]. Shortly after the formation of the
16-cell cyst, microtubules start nucleating in the presumptive
oocyte and subsequently form an oocyte-centric polarized
network that runs through the cyst, which is believed to be
required for oocyte maturation as well as the subsequent
establishment of the body axes of the embryo [9,19,20].
Given the established role of the centrosome as a major
MTOC, it has been postulated that centrosomes may be
involved in the formation and/or the maintenance of this
oocyte-centred microtubule network through their microtu-
bule nucleation activity [6,17,21]. Nevertheless, the study
using loss-of-function mutations in sas4, a gene required for
centriole duplication, demonstrated that the oocyte develops
normally in homozygous sas4 mutant flies, despite virtually
no detectable centrioles in the female germlines [22]. Moreover,
it iswidelyacknowledged that germline centrosomes are degen-
erated by the end of oogenesis and do not contribute to the
embryo. It was recently demonstrated in Drosophila that forced
retention of centrosomes in the oocyte results in meiotic defects
and subsequent sterility [23]. Thus, there is a clear paradox: if the
centrosomes are unnecessary for oocyte development, and even
detrimental to embryogenesis, why do they need to be trans-
ported into the oocyte? Why is such a seemingly wasteful
phenomenon conserved through evolution?

In our previous study, we showed that the centrosome
migration requires neither microtubule polymerization nor
the activity of BicD and Egl, but does the function of the
minus end-directed microtubule motor dynein [24]. It was
also reported that mutations in the large cytoskeletal linker,
spectroplakin family protein, Short stop (Shot), block the
centrosome migration [25]. However, the function of dyneins
is also required for the normal morphology of the fusome, the
germline-specific membranous organelle that forms a large
branched network throughout the cyst and plays a critical
role in the asymmetric division of cystoblasts as well as in
the specification of the oocyte [21,24,26]. In the shot mutants,
although the fusome structure appears unaffected, the
polarized microtubule network is not formed and the fate
markers do not accumulate in the oocyte [25]. Thus, the
interdependency between the events that coincide upon
oocyte specification has been a stumbling block for assign-
ing a specific role for the centrosome migration during
Drosophila oogenesis.

Both the biogenesis and themicrotubule nucleation activity
of the centrosome are tightly coupled to the progression of the
cell cycle. An E3 ubiquitin ligase complex, Anaphase Promot-
ing Complex/Cyclosome (APC/C), plays a central role in
this coupling. Besides many proteins involved in cell cycle
regulation, the APC/C also targets proteins that are critical
for centriole biogenesis, such as Sas6, STIL and Securin, and
for microtubule nucleation, such as Plk1, Aurora A and
Spd2, for proteasome-mediated destruction within specific
time windows during the cell cycle [27–32]. Conversely,
APC/C activity is also regulated by the centrosome: the local
activity of APC/C at centrosomes depends on the physical
interaction between an APC/C regulatory subunit and a
centrosome component [31,33]. Ube2C is the E2 ubiquitin-
conjugating enzyme that is specifically required for the E3
ubiquitin ligase activity of APC/C [34,35]. The cellular levels
of Ube2C oscillate during the cell cycle through its autoubiqui-
tination, peaking at mitosis and dropping in the G1 phase
[34,36,37]. Importantly, in Drosophila and mammalian cells,
Ube2C is enriched at the centrosome and its over-expression
leads to the amplification of centrosomes [34,38]. Moreover,
excess Ube2C increases sporadic tumour formation in mice
and over-expression of Ube2C is associated with various
human cancers [38,39]. Therefore, strict control of Ube2C
activity is critical for the tight coupling of the centrosome
cycle to the cell cycle as well as for tumour suppression. How-
ever, the target(s) of the APC/CUbe2C that is critical for
centrosome integrity is as yet unidentified.

In this study, we report novel mutants of Drosophila
Ube2C Vihar (Vih), vihΔN, generated by CRISPR genome edit-
ing, in which the centrosome migration is intervened in the
female germline, despite apparent intact fusome structure
and proper oocyte specification. We show that vihΔN

mutations probably cause the upregulation of APC/C,
which in turn leads to the reduction of Polo kinase, one of
the APC/C substrates and the critical regulator of the integ-
rity and microtubule nucleation activity of the centrosome,
in developing egg chambers. The reduction of Polo interferes
with the transport of centrosomes into the oocyte, probably
through destabilization of germline centrioles. We further
show that, in the vihΔN mutant egg chambers with misloca-
lized centrosomes, the polarized microtubule network is
weakened and microtubule nucleation occurs at ectopic cen-
trosomes in nurse cells, resulting in the loss of oocyte fate and
the disruption of the oocyte–nurse cell membranes. These
results point to the critical importance of the centrosome
transport for the spatial regulation of microtubule nucleation
during the early oocyte development in Drosophila, which is
orchestrated by the evolutionarily conserved pathway:
APC/CVih-Polo pathway.
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Figure 1. CRISPR/Cas9-generated vihΔN alleles. (a) Vih protein domains. Protein homology in vertebrates for the gRNA-targeted region, the residues deleted in the
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2. Results
2.1. N-terminal deletion mutations in Drosophila vih

gene cause defects in early oogenesis
To investigate the function of the APC/C-dependent regu-
lation of centrosomes in animal development, we generated
novel mutations in the APC/C-specific E2 enzyme, Vih,
using the CRISPR genome editing technique in Drosophila
[40]. We targeted the conserved 27-amino acid N-terminus
extension of the Vih protein, which is unique to the Ube2C
family E2s and is involved in auto-inhibition of the APC/C
[37,41] (figure 1a). We have generated a series of vih alleles,
of which two are null alleles (vihNull), caused by frame-shifts,
and the other two are in-frame deletions which lack four
or nine residues in the N-terminal extension (vihΔN-4 and
vihΔN-9; figure 1b; see Material and methods for detailed
characterization). vihNull homozygous mutants were lethal at
the pupal stage and showed various mitotic phenotypes,
such as overly condensed chromosomes, lagging chromo-
somes and supernumerary centrosomes, in the larval
neuroblasts, similar to the previously reported vih null alleles
(electronic supplementary material, figure S1) [34]. By con-
trast, both vihΔN mutants are homozygous viable and
develop into adulthood. The endogenous expression of the
truncated forms of Vih proteins was confirmed by western
blot using the lysates of the vihΔN mutant ovaries (figure 1c).
vihΔN adult flies appear morphologically normal, except for
occasional minor defects. However, the females of both vihΔN

mutants showed a substantial decrease in cumulative fecund-
ity (total number of eggs laid), down to 55% of control
(figure 1d ). Homozygous and heterozygous vihΔN-9 mutants
showed comparable levels of fecundity reduction (figure 1d ),
suggesting a potential dominant effect of the mutation. In
addition, while the majority of eggs laid by vihΔN females
could produce larva, a small proportion of eggs showed
dorsal appendage defects (9%, n = 836, data not shown),
indicative of dorsal–ventral polarity abnormalities, which
are frequently caused by a defect in the microtubule-depen-
dent patterning of the egg chamber [18]. These data suggest
defects in oogenesis in vihΔN mutant females.

To elucidate the cause of the reduced fertility, we examined
developing ovaries in vihΔN homozygous mutants. The Droso-
phila oocyte undergoes 14 developmental stages (S1–14;
figure 2a) [8,9]. We found that a large proportion of vihΔN egg
chambers exhibit severe structural abnormalities as early as
in S3 (figure 2b,c). While follicular epithelia, with a somatic
origin, maintain the intact monolayer, the germline cell
membranes that intervene the oocyte and nurse cells
(‘oocyte–nurse cell membranes’, hereinafter) start collapsing
after S3 and subsequently form large aggregates in the centre
of the egg chambers (figure 2b, white arrows; electronic sup-
plementary material, movies S1 and S2). This phenotype was
observed in egg chambers in both homozygous and heterozy-
gous, vihΔN-9 and vihΔN-4 mutants (figure 2b) and increased
with age (electronic supplementary material, figure S2). As
this phenotype resembles that of mutations that affect
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Figure 2. Egg chamber structure and centrosome transport is disrupted using the vihΔN alleles. (a) Schematic of egg chamber development. (b) Development time-
series of phenotypic presentation for control, vihΔN-4 and vihΔN-9 egg chambers, stained for DNA (DAPI) in blue and F-actin (Phalloidin) in red. White arrows indicate
actin aggregates and asterisks the oocytes. (c) The quantification of ovarioles that exhibited the membrane phenotype. The proportion of ovarioles with the mem-
brane phenotype was determined for each of the genotypes indicated. (d ) Germarium-S1 and S4 control and vihΔN-9 egg chambers stained for DNA (DAPI) in blue,
fusome (Hts) in green, and F-actin (Phalloidin) in red, and centrioles (Asl) in white (arrowheads indicate centrioles and asterisks the oocyte). (e) The quantification of
centrosome puncta (stained with Asl) in S1–3 control and vihΔN-9 egg chambers, significance determined using Welch’s t-test for the control compared with the
phenotype ( p = 5.0 × 10−6) and with Wilcoxon signed-rank test with the control to no phenotype ( p > 2 × 10−1). All scale bars equal to 10 µm.

royalsocietypublishing.org/journal/rsob
Open

Biol.11:200371

4



royalsocietypublishing.org/journal/rsob
Open

Biol.11:200371

5
membrane integrity (for example, rab6D23D mutations) [42],
hereinafter, we refer to this phenotype as the ‘membrane
phenotype’. Considering its high frequency and severity, we
conclude that the membrane phenotype is the main cause of
the reduced fertility rate in vihΔN mutant females. Because of
the higher penetrance of the phenotype in vihΔN-9 mutants
than in vihΔN-4 mutants, we focus our subsequent analysis on
vihΔN-9 mutants unless stated otherwise.

2.2. Centrosome transport is compromised in vihΔN

egg chambers
To determine the primary cause of the membrane phenotype,
we examined the vihΔN mutant germline earlier than S3 when
the disruption of the oocyte–nurse cell membranes becomes
apparent. At the start of oogenesis, germline stem cells located
at the anterior tip of the germarium divide asymmetrically to
generate cystoblasts, which in turn undergo exactly four
rounds of mitotic division without complete cytokinesis to
form 16 syncytial cytocytes (figure 2a). In all the vihΔN-4 and
vihΔN-9 germline cysts examined, 16 cells were detectable,
as in control (figure 2b), confirming our result that vihΔN

mutations do not blockmitotic division (electronic supplemen-
tary material, figure S1). We next examined the centrosomes
within the cyst in vihΔN mutants. After the cyst formation, cen-
trosomes within the 16 cells of the cyst migrate intercellularly
through ring canals and accumulate in one cell, the presump-
tive oocyte (figure 2a) [7]. We visualized centrosomes by
immunostaining against the centriole component Asterless
(Asl) [43], and found that, in control S1–3 egg chambers, the
majority of centrosomes were located in the presumptive
oocyte, in which they subsequently clustered at the posterior
region (figure 2d,e; electronic supplementary material,
movie S3). However, in a large proportion of vihΔN-9 S1–3
egg chambers, the majority of centrosomes were retained by
nurse cells, often adjacent to ring canals (figure 2d,e). Even
the centrosomes that had reached the oocyte were frequently
mispositioned, lingering around in the anterior region
(figure 2d; electronic supplementary material, movie S4).
Thus, germline centrosomes fail to migrate properly from
nurse cells to the oocyte in vihΔN mutant egg chambers. Impor-
tantly, the incidence of this centrosome migration defect in
early-stage egg chambers tightly correlates with the appear-
ance of the membrane phenotype in later stages in the same
ovarioles: in the vihΔN-9 ovarioles that exhibited the membrane
phenotype after S3, average 9.2 centrosome clusters were pre-
sent in the S1–3 egg chambers while the ovarioles with
no membrane phenotype showed average 3.5 centrosome
puncta, comparable to the control (figure 2e). This coexistence
of the two phenotypes within the same ovarioles suggests a
potential causal link between the centrosome transport defect
in early egg chambers and the membrane phenotype in
later-stage egg chambers in vihΔN mutants.

2.3. Destabilization of centrosomes interferes with their
migration in vihΔN egg chambers

Themechanismunderlying the centrosome transport is largely
unknown. Thus, to gain insight into the molecular mechanism,
we wished to determine how vihΔN mutations impede the cen-
trosome transport.We previously showed that the centrosomes
cannot migrate into the oocyte in germline clones with a
mutation in Dynein heavy chain 64C (Dhc64c), suggesting that
the function of the minus end-directed microtubule motor
dynein is required for the centrosomemigration [24]. However,
in the Dhc64c mutant germarium, the fusome becomes pre-
maturely fragmented during the time when centrosomes
migrate [24]. It was observed that centrosomes migrate along
the fusome [17,21]. Thus, to test if the centrosome migration
defect in the vihΔN mutant may be caused by the disruption
of the fusome, we examined the fusome structure. Unlike the
Dhc64C mutations, the morphology of the fusome appears
normal in vihΔN-9 germaria: its branching network that
extended throughout the cyst was clearly observed in Region
2 (electronic supplementary material, figure S3A,B), and
centrosomeswere found attached to the fusome, similar to con-
trol (n = 17; electronic supplementary material, figure S3A).
Thus, it is unlikely that the centrosome migration defect
observed in the vihΔN mutant germlines is caused by the
disruption of the fusome.

We next turned our attention to the germline centrosomes
themselves. We noted that the intensity of Asl signals is gener-
ally lower in vihΔN egg chambers than in control. In addition,
we found that Asl signals, hence centrosomes, disappear
earlier in vihΔN egg chambers than in control: in control egg
chambers, a cluster of centrosomes were detectable in the
oocyte until S12 before being gradually degenerated, as
reported previously [23], whereas, in vihΔN-9 egg chambers
with the membrane phenotype, centrosome signals were
reduced after S6 and virtually undetectable after S9 (figure 3a).
However, the expression levels of Asl proteins in the lysates
from vihΔN and control ovaries were comparable (figure 3b).
These data suggest that centrosomes may be structurally
unstable in vihΔN egg chambers.

We speculate that this destabilization of germline centro-
somes observed may underlie the centrosome migration
defect in vihΔN egg chambers. We reasoned that, if the instabil-
ity of centrosomes is indeed a cause of the centrosome
migration defect, further destabilizing the centrosomes may
enhance the occurrence of the centrosome migration failure
in the vihΔN-9 mutants. To test this, we decided to reduce the
dosage of Sas4 protein, a core centriole component that is
also required for the PCM recruitment during mitosis [44,45],
to destabilize germline centrioles. We found that removing
one functional copy of sas4 gene by using a loss-of-function
allele (sas4s2214) significantly increased the proportion of ovar-
ioles exhibiting the membrane phenotype (45–73%, p = 0.0002;
figure 3c,d), concurrently with centrosome migration defects
(figure 3e). Meanwhile, in the wild-type background, the
heterozygous sas4s2214mutation caused neither of these pheno-
types (figure 3c–e). This result supports our hypothesis that
centrosome instability may underlie the failure in the centro-
some transport in the vihΔN mutant germline. Furthermore,
the persisting coexistence of the centrosome migration defect
and the membrane phenotype observed in sas4s2214/+; vihΔN-9

ovaries further supports the possible causality between these
two phenotypes.
2.4. A reduction of Polo kinase impedes the germline
centrosome transport

An evolutionarily conserved kinase Polo (Plk1 in human) is a
key regulator of centrosomes which recruits the PCM to the
centrioles by directly phosphorylating Sas4 [46]. A recent
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study identified Polo as a key regulator of the stability of cen-
trosomes in the Drosophila female germline: it was shown that
downregulation of Polo by RNA interference causes prema-
ture shedding of the PCM, leading to an early elimination
of centriole from the oocyte, while tethering Polo to centrioles
stabilizes the centrosomes, allowing their persistence beyond
oogenesis, even in the mature egg [23]. Therefore, we
suspected that Polo function may be altered in vihΔN egg
chambers, which causes destabilization of centrosomes.
We examined the expression levels of endogenous Polo pro-
teins in vihΔN mutant ovaries to find a significant reduction
of Polo levels in vihΔN-9 ovary extracts, compared to control
(figure 4a; electronic supplementary material, figure S4).

Next, to determine if the reduced Polo levels can account for
the vihΔN-9 phenotypes, we tested whether increasing the
expression levels of Polo, by introducing a functional polo trans-
gene (GFP-polo) [46], could rescue the centrosome migration
defect and the membrane phenotype. We found that two
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copies of GFP-polo in the vihΔN-9 background were able to com-
pletely rescue the membrane phenotype (0%, n = 60; figure 4b,
c) and bring the centrosome transport efficiency back to the con-
trol level (average 3.1 puncta, n = 21; figure 4b,d). These data
suggest that the reduction of Polo may be the main cause of
the centrosome transport defect in the vihΔN egg chambers,
probably through destabilization of germline centrosomes. It is
noteworthy that thewild-type flies carryingGFP-polo transgene
showed less centrosome puncta (1.1 puncta, n = 21; figure 4d)
than those without the transgene (3.2 puncta, n = 61; figure 4d)
in early egg chambers, suggesting that higher expression of
Polo may accelerate the centrosome migration into the oocyte.



Figure 4. (Overleaf.) Polo kinase regulates centrosome transport and stability in developing Drosophila ovaries. (a) Western blot of control and vihΔN-9 ovary extracts
14 days after eclosion, stained with Vih, Polo and α-tubulin antibodies. The quantifications of the band intensity of Polo protein, indicating the mean normalized
values of Polo signals from three independent experiments. The error bar indicates the s.d. A statistical significance of Polo reduction determined using a Student t-
test ( p < 0.01) and indicated as asterisks. (b) GFP-Polo in control and vihΔN-9 egg chambers stained for DNA (DAPI) in blue, GFP-Polo in green, F-actin (Phalloidin)
in red and centrioles (Asl) in white (arrowheads indicate centrioles and asterisks oocytes). (c) The quantification of ovarioles that exhibited the membrane phenotype
in indicated genotypes (n indicates total sample number in two biological replicates). Significance determined using a Student t-test ( p < 0.001). (d ) The quanti-
fication of ectopic centrosome puncta stained with Asl in S1–3 control, vihΔN-9, GFP-polo and GFP-polo;; vihΔN-9, polo1 / TM6B, and hypomorph polo mutant ( polo1/
polo11) egg chambers. Significance determined using a Wilcoxon signed-rank test ( p < 0.005). (e) polo1/TM6B and polo1/polo11 egg chambers stained for DNA
(DAPI) in blue, F-actin (Phalloidin) in red and centrioles (Asl) in white (arrowheads indicate centrioles and asterisks oocytes). Scale bars equal to 10 µm. ( f )
The quantification of the membrane disruption phenotype. The percentages of control (w1118, n = 38) and polo1/polo11 (n = 39) ovarioles containing mid–late
stage (after S4) egg chambers exhibiting disruption of nurse cell membranes were quantified. #p-value≤ 0.0001. (g) Examples of nurse cell membrane disruption
observed in mid–late stage (after S4) polo1/polo11 egg chambers stained for DNA (DAPI) in blue, F-actin (Phalloidin) in red. White arrowheads indicate nurse cells
with disrupted membranes.

royalsocietypublishing.org/journal/rsob
Open

Biol.11:200371

8

This result also suggests that Polo may regulate the cen-
trosome transport during normal oocyte development. To
directly test this notion, we investigated the centrosome
transport in egg chambers in polo hypomorph mutants. The
transheterozygous mutants carrying hypomorphic ( polo1)
and amorphic ( polo11) alleles are viable but are sterile [47].
polo1/polo11 mutant egg chambers exhibited highly pleotropic
phenotypes, including mitotic defects of cystoblasts
(figure 4e). Thus, to specifically address the Polo function in
the centrosome migration and later oocyte development, we
focused our subsequent analysis on egg chambers containing
16 cells, which indicate the successful completion of four
rounds of mitotic division (43%, n = 104). In this population,
we observed an average of 9.5 centrosome puncta within S1–
3 egg chambers (n = 21; figure 4d,e), indicating a defect in
centrosome migration similar to vihΔN mutants. Furthermore,
we also found that membranes between nurse cell were
disrupted in a large fraction of mid-to-late stage egg
chambers (66.7%, n = 26), although less severe compared to
vihΔN mutants (figure 4f,g). All together, these results strongly
suggest that Polo is the key regulator of centrosome migration
within the germline cyst, whose protein levels are reduced in
the vihΔN mutant female germline. Proper transport of centro-
somes to the oocyte or normal levels of Polo may be critical to
maintain the integrity of nurse cell membranes during the
later stage of oocyte development.

2.5. VihΔn mutations cause the upregulation of APC/C,
leading to premature Polo degradation

We next asked how vihΔN mutations cause the Polo reduction.
As Polo orthologues are known to be targets of the APC/
C-dependent degradation in other species including human
cells [48,49], we speculated that Polo might be prematurely
degraded by APC/C in vihΔN mutants. It was previously
shown that the N-terminal extension conserved among the
Ube2C family of E2 enzymes is not essential for the E2 cata-
lytic activity of human Ube2C (also known as UbcH10) but
rather important for negatively regulation of the APC/C by
human Ube2C [37,41]. We therefore hypothesized that the
vihΔN mutations may specifically abolish the APC/C-inhibi-
tory function of Vih, thereby causing APC/C upregulation
in vivo. We confirmed that VihΔN is indeed as catalytically
active as VihWT in a reconstituted APC/C-dependent ubiqui-
tination assay using Drosophila APC/C that was purified
from Drosophila embryos (see Methods for the detailed proto-
col; figure 5a,b): the ubiquitination activity of APC/C-VihΔN-9
(lanes 13–16, figure 5a) on a model APC/C substrate, Mes1,
was comparable to APC/C-VihWT (lanes 9–12) while
catalytically inactive VihΔCS (lanes 17–20) did not support
ubiquitination of Mes1.

Next, we monitored APC/C activity in vivo by analysing
the endogenous levels of CycB, a known APC/C substrate,
in ovaries. We observed an apparent reduction in CycB levels
in vihΔN ovary extracts compared to control, in support of the
upregulation of APC/C activity in vihΔN ovaries (figure 5c).
Finally, to test if the vihΔN phenotypes are caused by deregu-
lated APC/C activity, we reduced APC/C activity by halving
the dose of the gene encoding the APC/C catalytic subunit,
morula (mr), in the vihΔN-9 homozygous background. We
found that the heterozygous mrmutation strongly suppressed
both the membrane phenotype and the centrosome migration
defect (figure 5d–f). Similar suppression of the vihΔN-9 pheno-
types was also observed by over-expression of the canonical
APC/C substrate Cyclin B, which inhibits the degradation of
other APC/C substrates through competition for the binding
sites on the APC/C (data not shown). Collectively, these data
strongly suggest that vihΔN mutations cause the upregulation
of APC/C in the germline cyst, probably through the loss of
negative regulation of the APC/C by Vih. This deregulation
of APC/C leads to the destabilization of its substrate Polo,
which in turn impedes the centrosome transport.

2.6. The centrosome migration may be important
for the maintenance of oocyte fate

As shown above, vihΔN mutations prevent the centrosome
transport without affecting the fusome structure, unlike pre-
viously reported Dhc64c mutations [50] (figure 2d,e;
electronic supplementary material, figure S3). Thus, further
characterization of vihΔN mutant phenotypes may provide a
novel insight into the specific role of the centrosome migration
in the Drosophila oocyte development. We examined mid-
to-late stages (S3 onwards) of vihΔN egg chambers and noted
that many vihΔN egg chambers have no distinguishable
‘oocytes’ (based on the size and the morphology of the
nucleus). We therefore tested if an oocyte is properly selected
among the 16 cells of the cyst in vihΔN egg chambers by staining
Orb, an oocyte fate marker that is localized in the oocyte cyto-
plasm [12]. In all the vihΔN-9 S1 egg chambers examined,
including those in the ovarioles displaying the membrane phe-
notype, Orb accumulated strongly in the cytoplasm of a single
cell in each cyst, indicating that the oocyte is properly specified
within a cyst in vihΔN egg chambers (figure 6a). However, in
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95% of vihΔN-9 ovarioles exhibiting the membrane phenotype
(n = 38), Orb failed to remain localized in the oocyte after S3
and spread weakly through the entire cytoplasm, frequently
forming ectopic foci around centrosome/F-actin aggregates
in themiddle of the egg chamber (figure 6a,b).We also checked
whether oocytes keep arrested in meiotic prophase I in vihΔN-9

egg chambers, by analysing the expression of the cell cycle
markers, Dacapo (Dap) and Cyclin E (CycE) [51]. In all control
egg chambers examined, both cell cycle markers localized
to the germinal vesicle in the oocyte from early to late oogen-
esis (n = 100; figure 6c,d). By contrast, in 86% of vihΔN-9 egg
chambers (n = 56), there was no obvious Dap and CycE
accumulation within the germinal vesicle after S3 and the
oocyte appeared to become polyploid through endocycle as
nurse cells ( judged by its nuclear size) (figure 6c,d). Thus, the
oocyte is initially specified but subsequently lose its identity
in the vihΔN-9 germline.

Since we also observed the centrosome migration defect
in polomutant ovaries ( polo1/polo11, figure 4d,e), we also exam-
ined the maintenance of oocyte identity in polo mutant egg
chambers by analysing Orb localization. We found that a
small but statistically significant fraction of egg chambers
(after S4) had no oocytes (cells with Orb accumulation) or
more than one oocytes in the polo ovaries (18%, n = 39, p =
0.0146; figure 6f,g). Together, these results suggest that the
migration of centrosomes into the oocyte may be critical for
the maintenance of oocyte identify after it is specified
within the cyst in the germarium.

As shown above, nurse cell membranes are often dis-
rupted in vihΔN and polo mutant egg chambers (figures 2b,c
and 4f,g), it may be possible that the loss of oocyte fate in
these mutant egg chambers is caused merely by the disrup-
tion of the oocyte–nurse cell membranes (i.e. the membrane
phenotype), allowing the dispersal of oocyte determinant fac-
tors from the oocyte cytoplasm. To test whether membrane
breaking is indeed accountable for the oocyte loss, we exam-
ined egg chambers carrying a mutation in a small GTPase
Rab6 (rab6D23D), which causes the membrane disruption in
the germline cyst, due to defective membrane trafficking
[42]. We generated homozygous rab6D23D mutant germline
clones using the FLP/FRT system [52]. As reported previou-
sly, oocyte–nurse cell membranes as well as membranes
between nurse cells started collapsing in the mutant egg
chambers after S3, similar to vihΔN egg chambers (figure 6e).
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Nevertheless, in the majority of the rab6D23D mutant egg
chambers including those in which the oocyte–nurse cell
membranes were partially raptured, oocytes were still clearly
identifiable by their compact nuclear size and Orb accumu-
lation around the nuclei until late stages (93%, n = 56,
figure 6b,e). This is in stark contrast to vihΔN-9 and polo1/
polo11 mutants where Orb localization is almost entirely lost
in egg chambers (figure 6a,b,f,g). Thus, although we cannot
completely rule out the possibility, membrane breaking is
unlikely to be accountable, at least solely, for the oocyte fate
loss in vihΔN and polo mutant egg chambers.

2.7. The centrosome transport may promote the
formation of the polarized microtubule network
in the germline cyst

The tight correlation between centrosome migration defects,
membrane disruption and oocyte fate loss observed in vihΔN

and polomutant germlines suggests a possible causal relation-
ship between these phenotypes. It is known that, shortly after
the oocyte is specified within a cyst, microtubules start to
accumulate in the oocyte and form a polarized network that
emanates from the oocyte and extend through the whole
cyst. This oocyte-centric polarized network is believed to be
required for oocytematuration bymediating the directed trans-
port of various proteins and RNAs, including oocyte fate
markers, in developing egg chambers [9,19,20]. It has been
postulated that, while the microtubule nucleation activity of
germline centrosomes appears to be inactivated during
migration, it may be reactivated in the oocyte and promote
the formation of the polarized microtubule network [6,17,21].
We therefore hypothesized that the failure in centrosome
migration into the oocyte may interfere with the establishment
of the oocyte-centric polarizedmicrotubule networkwithin the
egg chamber. This can explain the correlation between the
centrosome migration defect and the loss of oocyte identity
in vihΔN and polo mutant ovaries.

To test thishypothesis,we firstmonitoredmicrotubule struc-
tures in fixed preparations of vihΔN egg chambers. In control S4–
6 egg chambers, microtubules were highly accumulated in the
oocyte and some pools of the microtubules appeared to be
nucleated in the vicinity of centrosome clusters, which were
located in the posterior region of the oocyte (figure 7a, control).
Bycontrast, inall S4–6vihΔN-9 eggchambers exhibiting themem-
brane phenotype, no specific accumulation ofmicrotubuleswas
observedwithin egg chambers and only shortmicrotubule bun-
dles grew from some of ectopic centrosomes (figure 7a, vihΔN-9,
Stage 4–). However, in all early S1 egg chambers before mem-
branes start collapsing, the accumulation of microtubules in
the oocyte was visible in both control and vihΔN mutants
(figure 7a, Stages 1–3), suggesting thatmicrotubules start nucle-
ating in the oocyte and start forming a network in vihΔN egg
chambers. Thus,we next assessedwhether themicrotubule net-
work is properly polarized within the cyst by examining the
localization of the minus end-directed microtubule motor
dynein (Dhc64C) [53]. As reported previously [53], in control
egg chambers, Dhc64C signals were accumulated at the periph-
ery of the germinal vesicle during S1–3 and continued being
enriched in the oocyte cytoplasm until late stages (figure 7b,c),
indicative of the polarization of microtubules with their minus
end oriented to the oocyte. However, in vihΔN-9 S1–3 egg
chambers (with still detectable oocyte–nurse cell membranes),
we found a significant reduction in the Dhc64C localization in
the oocyte (figure 7b,c), indicating reducedmicrotubule polariz-
ation. Thus, in the vihΔN egg chambers, although the
microtubule network begins to form, it is not properly (at least
not fully) polarized. Since the polarized microtubule network
is crucial for the directed intercellular trafficking of various
materials, including oocyte determinants, between the oocyte
and nurse cells [9,19,20], this reduced microtubule polarization
is likely to account for the subsequent loss of oocyte fate in vihΔN

egg chambers.
2.8. Centrosome migration may be required for
concentrating and confining microtubule
nucleation activity to the oocyte in the
egg chamber

The above result also points to the potential role for the cen-
trosome transport in facilitating the establishment of the
oocyte-centric polarized microtubule network within the
egg chamber. Thus, we next wished to investigate the poss-
ible underlying mechanism through which the transport of
germline centrosomes promotes the polarization of the
microtubule network.

It is known that the microtubule-organizing activity of the
centrosome is mediated by the PCM [3,4]. Thus, the PCMmay
play a role in the formation of the oocyte-centric polarized
microtubule network. Therefore, we examined the state of the
PCMon germline centrosomes in vihΔN egg chambers, by stain-
ing the Pericentrin-like protein (Plp), a PCMcomponent of both
the interphase and mitotic centrosome that is located adjacent
to the centriole wall and helps recruit other PCM proteins
[3,54]. Consistent with a previous report [23], we observed
that Plp labelled centrosomes until late stages of oogenesis in
both control and vihΔN-9 egg chambers. However, in addition
to these centrosomal signals, we unexpectedly observed a
strong accumulation of Plp on the oocyte nucleus in the control
egg chambers, which appeared before S1 and tapered off
between S4 and S6 (figure 7d ). Although our observation
was the first for endogenous Plp proteins, a similar localization
pattern on the oocyte nucleus was previously reported for
over-expressed GFP-tagged C-terminal domain of Plp (PACT
domain) and endogenous γ-tubulin [55–57]. We found that,
compared to the control, these Plp signals on the oocyte
nucleus were significantly reduced in S1–3 vihΔN-9 egg
chambers, which still retained clearly visible membranes
between the oocyte and adjacent nurse cells (figure 7d,e). It
was previously reported that microtubules also nucleate on
the surface of oocyte nuclear membranes and contributes to
the posteroanterior movement of the oocyte nucleus in S6–7
egg chambers [55,58]. Thus, the migration of the centrosomes
into the oocyte may facilitate a transfer of some pool of PCM
to the oocyte nucleus, enabling the oocyte nucleus to act as
anMTOC. SuchMTOC activity of the oocyte nucleus may con-
tribute to the formation of the robust oocyte-centric polarized
microtubule network.

The above observations suggest a potential role of the centro-
some transport that promotes the formation of the microtubule
network by transferring PCM to the oocyte nucleus. However,
this model is somewhat contradictory to the earlier observation
made by Stevens et al. [22] using homozygous sas4 mutant flies
(note that this study used homozygous sas4 mutants, whereas
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chambers stained for DNA (DAPI) in blue, centrioles (Asterless) in green and microtubules (α-Tubulin) in red (arrowheads indicate centrioles and asterisks oocytes).
(b) Control and vihΔN-9 Germarium-S3 and S4–6 egg chambers stained for DNA (DAPI) in blue, Dynein in green, F-actin (Phalloidin) in red and Asl in white
(arrowheads indicate dynein signals and asterisks indicate oocytes). (c) The quantification of Dynein staining on the oocyte nucleus S1–3 and S4–6 for control
and vihΔN-9 egg chambers with an oocyte nucleus, significance determined using a Welch’s unbiased t-test (S1–3: p = 1.4 × 10−3) and a Wilcoxon signed-
rank test (S4–6 oocyte: 1 × 10−2 < p < 5 × 10−1). (d ) Germaria-S3 and S5 control and vihΔN-9 egg chambers stained for DNA (DAPI) in blue, PCM (Plp) in
green, F-actin (Phalloidin) in red and centrioles (Asl) in white (asterisks indicate oocytes). Scale bars equal to 10 µm. (e) The quantification of Plp staining on
the oocyte nucleus S1–3 and S5 control and vihΔN-9 egg chambers, significance determined using a Wilcoxon signed-rank test (S1–3: 1 × 10−3 < p < 5 ×
10−3; S5: 1 × 10−2 < p < 5 × 10−1). ( f ) Model for APC/C regulation. APC/C activity needs to be turned off after the last round of germline mitosis in order
to stabilize Polo levels thereby enabling the centrosomes to remain stable and be transported to the oocyte. When there is greater APC/C activity then Polo
is degraded precociously and the egg chamber becomes destabilized.

royalsocietypublishing.org/journal/rsob
Open

Biol.11:200371

12



royalsocietypublishing.org/journal/rsob
Open

Biol.11:200371

13
the heterozygous sas4mutationwasused in figure 3, keeping one
copyof thewild-type sas4gene) that, in theovarieswhere thevast
majority of germ cells (approx. 80%) do not have detectable cen-
trosomes, the oocyte develops normally. To reconcile this
apparent controversy, we hypothesize that the centrosome trans-
port may facilitate the establishment of the oocyte-centric
microtubule network through two functionally redundant pro-
cesses: first, bringing centrosomes into the oocyte, together
with the PCM (figure 7d,e) and, second, removing centrosomes
from nurse cells. Centriole loss would affect the first process
but not the other.

Based on this hypothesis, we next examined ectopic cen-
trosomes that fail to move to the oocyte and remain in nurse
cells. We found that Plp signals were also observed on the
mislocalized centrosomes in nurse cells both in control and
vihΔN-9 mutant egg chambers (electronic supplementary
material, figure S5A). Short microtubule bundles nucleate at
ectopic centrosomes in vihΔN-9 egg chambers (figure 7a). To
assess whether mislocalized centrosomes indeed nucleate
microtubules, we performed live imaging of egg chambers
expressing GFP-fused microtubule plus-end tracking protein
EB1 [59] and examined the formation of EB1 comets at indi-
vidual centrosomes. To avoid pleiotropic effects, we selected
S4–5 vihΔN-9 egg chambers that did not display the membrane
phenotype. We observed microtubule nucleation at misloca-
lized centrosomes in nurse cells in vihΔN-9 egg chambers, as
well as a rare population of mislocalized centrosomes in con-
trol egg chambers (electronic supplementary material, figure
S5B and movies S5 and S6). Thus, after being kept inactive
during the migration of the centrosomes [21], the activity of
the centrosomes appears to be reactivated to start nucleating
microtubules ectopically in nurse cells. These ectopic MTOCs,
in large numbers, may interfere with the formation of the
oocyte-centred microtubule network.

To test a potential adverse effect of microtubule nucleation
at ectopic centrosomes, we inhibited microtubule polymeriz-
ation in vihΔN-9 mutant egg chambers by feeding flies the
microtubule destabilizing drug colcemid. Egg chambers from
colcemid-fed flies showed clear patterning defects at later
stages both in control and vihΔN-9 mutant ovaries, however,
did not affect centrosome migration, in accordance with pre-
vious reports [17,24]. Thus, we could not directly assess the
effect of colcemid treatment on the maintenance of oocyte
fate (Orb accumulation) in vihΔN mutant ovaries. Therefore,
we examined its effect on the membrane phenotype. We
found that, in colcemid-fed vihΔN-9 mutants, the percentage
of egg chambers with the membrane phenotype was partially
reduced compared to untreated flies (from 45 to 30%, p =
0.021; electronic supplementary material, figure S5C,D),
suggesting the involvement of microtubule nucleation at
ectopic centrosome in this phenotype.

Together, these results suggest the critical importance of
centrosome migration for oocyte development in two ways:
first, to facilitate the formation of oocyte-centric microtubule
network and, second, to prevent microtubule nucleation at
ectopic nurse cells centrosomes.
3. Discussion
The intracellular transport of germline centrosomes following
cyst formation is observed in diverse animals from insects to
mammals, suggesting its functional significance in oogenesis.
However, its exact role, as well as the underlying mechanism
directing this event, remains unclear. This is in part due to
difficulty specifically manipulating this process without
affecting other concurrent events that influence oocyte speci-
fication [24,25]. In this present study, by using CRISPR-
mediated genome editing in Drosophila, we created novel
mutants in vih gene, in which the centrosome migration is
impeded with the intact fusome formation and proper initial
oocyte specification. By using these mutants, we identified a
molecular pathway controlling the centrosome transport,
shedding a new light into the role of the centrosome
migration in oocyte development.

Our study identified an evolutionarily conserved kinase
Polo/Plk1 as a key regulator of the centrosome migration in
theDrosophila female germline. Polo/Plk1 has been established
as a critical regulator of the centrosome in both mitotic and
postmitotic cells. Polo/Plk1 recruits PCM components to the
centrosome through phosphorylation of centrosome com-
ponents, which is essential not only for the microtubule
nucleation activity of centrosomes but also critical for the stab-
ility of centrioles [23,46]. We showed that the expression levels
of Polo were significantly decreased in vihΔN mutant ovaries
and that increasing the polo gene dosage fully rescued the cen-
trosome migration defects and the membrane phenotype in
vihΔN mutant germlines (figure 4b–d). Moreover, polo mutant
females also exhibited a defect in the centrosome migration
as well as the disruption of nurse cell membranes, similar to
vihΔN mutants (figure 4c–g). Together, these results strongly
suggest the critical importance of Polo in the regulation of
the intercellular migration of centrosomes in the Drosophila
female germline (figure 7f ). However, our study could not clar-
ify the downstream molecular events through which Polo
directs the centrosome migration, including its direct target
required for the migration. Our data suggest that centrioles
become destabilized in vihΔN mutant germlines (figure 3a,b)
and it was recently shown that the local level or activity of
Polo at centrioles is a rate-limiting factor for centriole degener-
ation in the germline cyst/egg [23]. Thus, one plausible model
for the role of Polo is that Polo activitymay be required to retain
PCM on migrating germline centrioles that ensures the struc-
tural integrity and physical strength of the centrioles during
migration. To support this model, further destabilization of
centrioles, by the reduction of a core centriole component
Sas4, increased the incidence of centrosome migration failure
of vihΔN-9 mutants (figure 3c–e). Alternatively, as centrosomes
migrate along the fusome [17,21], some PCM component
recruited by Polo may be directly involved in the interaction
between germline centrioles with the fusome. The fusome is
decorated with stable acetylated microtubules through the
function of the spectraplakin Shot, which is also essential for
centrosome migration [25]. The PCM component may directly
bind the stable microtubules on the fusome. It is also possible
that Polo may regulate centrosome migration independently
of the PCM. Itwas previously shown that, inDrosophila ovaries,
Polo binds BicD, a cargo adaptor protein that interacts with the
microtubule motor dynein [60]. Further investigation is clearly
needed to define the role of Polo in the centrosome transport.

Our study also highlights APC/C, the major ubiquitin
ligase in cell cycle control, as an upstream regulator of Polo
in its function in centrosome migration (figure 7f ). Polo/
Plk1 has been shown to be an APC/C target in diverse organ-
isms from yeast to humans [48,61]. Our in vivo data and the
data from previous in vitro studies on human Vih orthlogue,
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Ube2C [37,41], suggest that vihΔN mutations may disrupt
negative regulation of APC/C by Vih through the function
of its conserved N-terminal extension, which causes preco-
cious or excess Polo degradation in the germline cyst
(figure 7f ). The rapid and local control of Polo activity is
possibly only achievable by proteolytic degradation; tran-
scriptional regulation of polo mRNA levels would not allow
for a rapid alteration of local protein levels. The APC/
C-dependent proteolysis may be critical to fine-tune Polo
levels in order to couple the centrosome behaviour to cell
cycle regulation in the Drosophila female germline. After the
completion of mitotic division of cystoblasts, APC/C activity
must be turned off to allow Polo accumulation for the centro-
some migration and to maintain a pre-meiotic arrest of the
oocyte [62]; it then turns back on to degrade Polo to eliminate
centrioles from the oocyte and also to maintain endocycling
of nurse cells [23,63] (figure 7f ). Given the conserved roles
of the APC/C and Polo kinase, our findings are likely to
translate to many other organisms.

Our detailed characterization of the phenotypes in vihΔN

mutant egg chambers suggests a critical role of the centrosome
transport inDrosophila oogenesis. Previous studies showed that
the activities of dynein and Shot are required for centrosome
migration. However, in addition to centrosome migration,
dynein mutations also affect the fusome structure and Shot
mutations prevent the accumulation of microtubules and Orb
in a presumptive oocyte, obscuring the specific role of centro-
some migration in oocyte specification [24,25]. In vihΔN

mutant egg chambers, whichwe created byCRISPR technique,
the fusome structure appears normal and Orb, microtubules
and specific cell cycle proteins (Dap and CycE) all initially
accumulate in the oocyte (figures 6 and 7; electronic sup-
plementary material, figure S3). Thus, in agreement with
Stevens et al. [22], these results suggest that the transport of cen-
trosomes is dispensable for oocyte specification. However, to
our surprise, we found that the majority of vihΔN mutant egg
chambers eventually lose the oocyte: the oocyte does not
retain Orb and becomes polyploid, like nurse cells (figure 6).
We also observed the loss or multiplication of the oocyte in
polo1/11 mutant egg chambers, pointing to a critical role of the
centrosome migration in the maintenance of oocyte identity.
Although this result may appear contradictory with the results
in the aforementioned study [22], it is not. In vihΔN mutant egg
chambers, centrioles are absent (more precisely, reduced) in the
oocyte, but, unlike homozygous sas4mutants, used by the pre-
vious study [22], centrioles are abnormally present in nurse
cells. Thus, the phenotypes in vihΔN mutants are the conse-
quences of germline centrosomes being misplaced, not
eliminated entirely. Like our observations in vihΔN mutants,
there are indeedmany examples inwhich ectopic centrosomes,
not the loss of centrosomes, cause serious consequences,
including tumorigenesis, as reported in mice over-expressing
Ube2C [38]. Therefore, our results extend beyond the specific
role of centrosomes in Drosophila oocyte development to give
insight into the roles andunderlyingmechanismof centrosome
regulation across tissues and organisms.

How does centrosome migration control oocyte mainten-
ance? Although our present study cannot provide a definitive
answer to this question, our data suggest that the migration
of centrosomes into the oocyte may be crucial for the for-
mation of the oocyte-centric polarized microtubule network
within the egg chamber, which is considered vital for the
maintenance and maturation of the oocyte, mediating
directed intercellular trafficking of proteins, RNA and orga-
nelles between/within the oocyte and nurse cells. In vihΔN

mutant egg chambers, even those that still retain visible
nurse cell–oocyte membranes, we observed reduced accumu-
lation of the minus end-directed microtubule motor dynein in
the oocyte, which indicates the weakening of microtubule
polarization within the cyst. Interestingly, we observed that
an interphase PCM component Plp temporally accumulates
on the oocyte nucleus in early-stage egg chambers, which is
significantly reduced by vihΔN mutations (figure 7d,e). It
was previously shown that the oocyte contains an MTOC,
which nucleates a polarized microtubule network during
early stages of oocyte development [17,21]. It was also
shown that the oocyte nucleus itself acts as an MTOC after
S6 [55,58]. Thus, once centrosomes have reached the oocyte,
a fraction of PCM, including Plp, may be transferred from
the centrosomes over to the oocyte to confer the oocyte
nucleus the microtubule nucleation activity. In addition, we
also showed that the centrosomes that fail to reach the
oocyte start nucleate microtubules ectopically in nurse cells
(figure 7; electronic supplementary material, figure S4B and
movies S5 and S6), which if present in a large number, is
likely to interfere with proper microtubule organization
within the cyst. To support this, we showed that the inhi-
bition of microtubule polymerization by colcemid partially
suppresses the membrane phenotype in vihΔN mutants (elec-
tronic supplementary material, figure S5C,D). Thus,
centrosome migration may also be important to prevent ecto-
pic microtubule nucleation in nurse cells. Based on these
observations, we hypothesize that the intracellular transport
of the centrosomes may facilitate the formation of the
oocyte-centred microtubule network through the two redun-
dant mechanisms: by efficiently transferring microtubule
nucleation activity to the oocyte, and by preventing microtu-
bule nucleation in nurse cells. However, further studies are
clearly needed to establish this model and to elucidate the
molecular mechanisms underlying the connection between
centrosome migration and the formation of the polarized
microtubule network in the Drosophila female germline.
4. Material and methods
4.1. Drosophila stocks
All stocks were maintained at 25°C. All CRISPR/Cas9 engin-
eered stocks were created as detailed below. The nos-cas9 and
act-cas9 stocks were a kind gift from Fillip Port. The trans-
genic gRNA flies were created using either y1 sc1 v1 P{nos-
phiC31\int.NLS}X; P{CaryP}attP2 (BDSC 25710) or y1 v1

P{nos-phiC31\int.NLS}X; P{CaryP}attP40 (BDSC 25709). The
controls used were either w1118 or w+O, except for the internal
control which was w*; P{w+mC = Ubi-GFP.D}61EF P{w+mW.hs =
FRT(whs)}2A (BDSC 1626). The FRT chromosome that the
vihΔN-4 allele was created on was w*; P{w+mW.hs = FRT(whs)}2A
(BDSC 1997). The FRT chromosome that was used for the
Rab6D23D germline clones was w*; P{w+mC =Ubi-GFP(S65
T)whs)nls} 2LP{ry+t7.2 = neoFRT}40A/CyO (BDSC 5629). The
vih deficiencies used for the complementation test were w1118;
Df(3 L)BSC380/TM6C, Sb1 cu1 (BDSC-24404) and w1118;
Df(3 L)ED4483, P{3’.RS5 + 3.3’}ED4483/TM6C, cu1 Sb1 (BDSC-
8070). The ubiquitously expressed transgenic fly lines we
generated for this study: P{Ubi-vih-WT}, P{Ubi-vihΔN-9} and
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P{Ubi-vihΔCS}. Themr alleles were obtained from the Blooming-
ton Drosophila Stock Center (BDSC), e(mr)1;mr2/SM6a (BDSC-
4535) and px1 bw1 mr1 sp1/In(2LR)bwV1, ds33 k bwV1 (BDSC-380).
The GFP-polo stock expressing GFP-fused Polo under the
endogenous promotor was obtained from Claudio Sunkel
[64]. The w; rab6D23D, FRT40A/Cyo was a kind gift from Anna
Ephrussi. The Ubi-cycB-GFP was a kind gift from Jordan Raff.
The polo1 and polo11 alleles were a kind gift from Adelaide Car-
penter. The Sas4s2214 allele was a kind gift from Paul Conduit.
The asl:YFP allele was a kind gift from C. González. The Eb1:
GFP allele originated from the Uemura laboratory.

4.2. Generation of the transgenic vih mutants
The gRNA sequenced used was CGAGCAAAGTGGTG
GAGCAG. The target site was selected in order to direct
Cas9 cleavage to just after the 50 start methionine codon of
the transcript. The CRISPR Optimal Target Finder (http://
tools.flycrispr.molbio.wisc.edu/targetFinder/) was used to
design the 20mer target sequence. Off-target assessment
was done with this program and the target site was chosen
because it did not have any homologous sites anywhere
else in the genome. The gRNA plasmid pCFD3 (a gift from
Fillip Port) was used to create the gRNA transgenic flies
[40]. The oligos were cloned directly into the pCFD3 vector
for the production of the transgenic gRNA line. All fly
embryos were injected by the Cambridge Genetic Fly Facility,
using standard procedures. The gRNA expression plasmid
was inserted into the genome using the Phi31C system at
the attP40 site.

For each experiment, transgenic cas9 virgin females were
crossed to U6-gRNA-expressing males carrying the gRNA
plasmid insertion, similar to previous studies [40]. Individual
females resulting from this cross were subsequently crossed
to a balancer stock to remove the Cas9 expression and the
resulting single females were again crossed to the balancer
stock to generate a stable fly line. Therefore, the other
chromosomes that were present during the mutagenesis
were eliminated during stock creation. When the alleles
were created in an FRT background, the gRNA line was
first balanced and crossed to flies containing the FRT chromo-
some; males of this line were then crossed to transgenic cas9
virgin females and carried through the normal procedure.

4.3. CRISPR allele characterization and additional
phenotypic data

In order to identify CRISPR/Cas9-induced mutations, geno-
mic DNA was isolated from flies by crushing them in 200 µl
of BufferA (100 mM Tris pH 9.0, 100 mM EDTA, 1% SDS),
and incubating the lysate at 65–70°C for 30 min. The lysate
was chilled on ice for 5 min, before adding 30 µl of 7.5 M
NH4-acetate. The lysate was then mixed gently, chilled on ice
for 20 min and centrifuged for 10 min at 13 000 rpm. The
supernatant was transferred to a new tube and spun again
for 10 min. The supernatant was again transferred to a new
tube, mixed gently with 150 µl of isopropanol and spun
again. The supernatant was removed and the DNA pellet
was washed with 70% ethanol. The DNA was then dissol-
ved in 100 µl of dH2O. One microlitre was used per PCR
reaction. PCR was performed with the primers: AAGCCAAA
CAGCGGATAGCA and TGGTTGGCAGTAGGTCTTCG. PCR
products were gel verified and sent for sequencing.
The sequencing of genomic DNA from heterozygous flies
yielded an overlay of the DNA sequence from both chromo-
somes. The mutant sequence was then manually called from
the chromatogram.

The vihNull alleles have either 1- or 4-nucleotide deletion,
resulting in a frame-shift at the 8th amino acid of the gene,
which disrupts all domains of the protein. The vihNull alleles
were created using different Cas9-expressing lines in different
genetic backgrounds. None of these alleles are homozygous
viable after larval stage 3, and they do not complement two
vih deficiencies nor the vihKG02013 allele [34]. We were able
to rescue the viability of the two null alleles with ubiqui-
tously expressed VihWT and VihΔN-9 but we were not able
to rescue viability with VihΔCS, a catalytically dead version
of Vih, and only the transgenically expressed VihWT allele
was able to rescue the fertility (data not shown).

The vihΔN-9 mutation is a deletion of 9 amino acids in the
27-amino acid N-terminal region. The vihΔN-9 allele is homozy-
gous viable and complements two vih deficiencies. The other
N-terminal allele, vihΔN allele (vihΔN-4) is a deletion of only 4
amino acids. This allele was created using a different Cas9-
expressing line directly on an FRT chromosome, and was,
therefore, created in a completely different genetic background.
Transheterozygous vihΔN-9/vihΔN-4 has the same phenotype
as the vihΔN-4 allele alone and neither alleles have a phenotype
when crossed to a vih deficiency (data not shown). The pheno-
type that was present in both alleles increased with age and
an age of 14 days was chosen for analysis, unless otherwise
stated. The third chromosome with the vihΔN-9 allele on it
was isogenized after the stock was originally created and
rebalanced.

4.4. Western blots
For the western blots of Drosophila ovaries, 30 ovaries were
dissected in 60 µl of PBS containing Protease and Phospha-
tase inhibitor (Roche). The samples were lysed using a
homogenizing pestle (Sigma-Aldrich), and the lysates were
clarified by centrifugation. Two times Laemmli buffer was
added to the cleared lysates, and the samples were boiled
2 min. The proteins were then resolved by SDS–PAGE. The
electrophoretic run was performed using a Mini-PROTEAN
Tetra Cell System (BioRad), in a Running Buffer solution
(25 mM Tris, 192 mM glycine and 0.1% SDS, pH approx.
8.6, Sigma), at 200 V. The gel was assembled in a ‘transfer
sandwich’ (cushion pad–filter paper–gel–membrane–filter
paper–cushion pad) and blotted on a nitrocellulose mem-
brane (GE Healthcare) for 2 h at 60 V in Transfer Buffer
solution (25 mM Tris, 190 mM Glycine, 20% Methanol).
Protein transfer was verified by Ponceau S staining, and the
membrane was incubated for 45 min at room temperature
in a blocking solution containing 5% milk (Marvel) and
0.1% Tween (Sigma) in PBS. The membrane was then incu-
bated in a primary antibody solution prepared in blocking
solution for 1 h at room temperature. The membrane was
washed three times for 10 min at room temperature with a
solution of 0.1% Tween in PBS (PBST) and then incubated
in a secondary antibody solution prepared in blocking sol-
ution for 1 h at room temperature. The membrane was
washed three times with PBST for 10 min at room tempera-
ture, incubated with a peroxidase ECL substrate (Pierce),
and the proteins were detected by exposing an X-ray film

http://tools.flycrispr.molbio.wisc.edu/targetFinder/
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(Fuji). Primary antibodies: Mouse anti-α-tubulin (1 : 1000)
Clone DM1A from Sigma, Mouse α-Polo (1 : 500) and
Rabbit α-Vih (1 : 500), Glover Lab.

4.5. Western blots, destruction assays and
ubiquitination assay intensity measurements

The band intensity was calculated using FIJI, a box was
drawn over the band and decreased to only include to area
of interest, the background was subtracted for each band
and normalized to the loading control (α-tubulin). The
relative intensity was calculated by dividing by the control.

4.6. Egg laying and hatching rate
In large cages, 50 virgin females were mated with equal num-
bersmales andmaintained on apple juice agar plateswith fresh
yeast; the cages were kept at 25°C. The number of eggs laid
during 2 × 2 h collections were counted every 1–3 days for a
21- or 28-day period (n = 2). The number of flies in the cadges
were kept equal throughout the course of the experiment, the
number of female flies did not drop below 40. After the eggs
were counted, the plates were kept at 25°C for 5 extra days
and examined for the number of larvae hatched. The hatch
rates were calculated by dividing the number of larvae that
eclosed by the total number of eggs laid.

4.7. Stock maintenance, clone induction, ageing,
dissection and immunofluorescence

Fly sample preparation: all females were maintained at 25°C,
mated and fattened for 16–24 h with yeast prior to dissection.
vihΔN-9 flies, including all allele combinations, were aged,
alongside controls, for 14 days unless otherwise specified.
polo flies were dissected within a week after eclosion.
Rab6D23D, FRT40A flies were crossed to FRT40A GFP and
vials with wondering larvae were heat shocked for 2 h at
37°C for three consecutive days and the adults were dissected
after 6 days. Ovary dissection: ovaries were dissected in 0.2%
PBT (PBS + 0.2% Tween), fixed for 20 min in 4% paraformal-
dehyde/PBT, washed with PBT, blocked with PBT + 10% BSA
for 1 h, and incubated with the primary antibody in PBS + 2%
Tween + 1% BSA for 16–24 h at 4°C. After washing the ovar-
ies with PBT three times for a total of 25 min, they were
incubated with the secondary antibody for 2 h at RT, or
16 h at 4°C. Phalloidin staining for visualizing F-actin was
done for 20 min, either after fixing or after secondary anti-
body staining. Finally, the ovaries were washed twice with
PBT for a total of 40 min and mounted in Vectashield
(Vector) with DAPI for visualizing DNA. The microtubule
sample preparation and staining was performed as pre-
viously published [65]. Unless specified, all steps were
performed at room temperature. Internal controls: GFP con-
taining flies were used and taken through the whole
procedure (from fattening to imaging) mixed with the
mutant samples to ensure that the membrane phenotype
was not due to physical damage. Primary antibodies: mouse
α-Orb 4H8 and 6H4 (1 : 100 each) from Developmental
Studies Hybridoma Bank (DSHB), was a kind gift from
Daniel St Johnston. Guinea Pig α-Asterless (1 : 40 000) was a
kind gift from Nasser Rusan. Mouse anti-α-tubulin (1 : 100)
Clone B-5-1-2 from Sigma. Mouse α-Dap NP1-s (1 : 10) from
DSHB. Rabbit α-Cyclin E (1 : 100) from Santa Cruz
Biotechnology. Mouse α-Hts 1B1-s (1 : 30) from DSHB.
Mouse α-Polo (1 : 50), Rabbit α-Vihar (1 : 500), Mouse α-
Dynein IC74 (1 : 1000) and Chicken D-Plp (1 : 1000), Glover
Lab. Secondary antibodies: (all 1 : 500) Goat α-Chicken 488
from Life Technologies, Goat α-Mouse 488 and 647 from
Life Technologies, Goat α-Guinea Pig 488 from Invitrogen
and 647 from Life Technologies, Goat α-Rabbit 488 from Invi-
trogen and 647 from Life Technologies. Small molecule stains:
Alexa Fluor™ 568 Phalloidin (1 : 200) from Thermo Fisher
Scientific, CellMask Deep Red Plasma Membrane Stain (1 :
1000) from Thermo Fisher Scientific.

4.8. Intensity measurements of fixed samples
For the Plp and Dynein experiments, the egg chamber samples
were prepared in parallel and treated the same. The controlwas
analysed first to establish the confocal settings to be used,
which remained unaltered for all images acquired, for the
channel being directly compared (which was the 488 channel
for all experiments). The intensity measurement was taken
using FIJI measurement tool. The measurement section
chosen for the Plp and Dynein was a circle drawn to the
edges of a nucleus at early time points and used for all
images as well as for S5/6, and the pixel histogram was
checked to only include the signal of interest. Special care
was taken to not include the centrosome-associated Plp or
Dynein fluorescence in the intensity measurement analysis,
since they are closely associated with the oocyte nucleus and
germinal vesicles in the control but not vihΔN-9 egg chambers.
Stacks of egg chambers were taken every 1 µm and the bright-
est single image was chosen for the intensity measurement
analysis. The intensity was subtracted for the background in
each individual image and the relative intensity was calculated
by dividing by the average of the control.

4.9. Live sample preparation
After fattening, 14-day aged mated females that were main-
tained at 25°C for 16–24 h were dissected and their ovaries
were short-term live imaged (1 h at room temperature) by
dissecting directly in voltelef oil or in PBS with CellMask
(incubated for 15 min prior to being transferred to voltelef
oil for imaging).

4.10. Microtubule nucleation live-imaging sample
preparation

Ovaries from flies aged for 14 days were dissected for in vivo
preparation as previously described [66,67]. Images were
acquired with a ZEISS LSM 880 Airyscan confocal micro-
scope and analysed using ImageJ. In vivo images were
obtained at approximately 25°C with a 40×/1.2 numerical
aperture (NA) water immersion objective. Single-focal
planes were taken every 2 s and processed with proprietary
ZEISS’ ZEN 2.1 software for Airyscan resolution optimiz-
ation. We took an unbiased sampling of the centrosomes
that satisfied the binary decision of in the oocyte or not.
Additionally, the measurements were normalized for filming
time with the centrosomes in focus: for the controls, the
number of ectopic centrosomes analysed was 17 and the
total duration of movies was 56.7 min. The total time of
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focused centrosomes was 42.6 min. At this time, the number
of comets was 4. Therefore, the nucleation efficiency (how
long it takes a two-week-old control centrosome to nucleate
1 microtubule) was 10.65 min. For the vihΔN-9 egg chambers,
the number of ectopic centrosomes analysed was 19 and
the total duration of movies was 63.3 min. The total time of
focused centrosomes was 47 min. In this time, the number
of comets was 2. Therefore, the nucleation efficiency was
23.5 min.

4.11. Ubiquitination assay
For the ubiquitination assay, Drosophila APC/C was immune-
precipitated from 2 g of pMTB-Apc4-TAP embryos. The
samples were resuspended in 10 ml of ice-cold Buffer A
(75 mM HEPES pH7.5, 150 mM KCl, 1.5 mM EGTA,
1.5 mM MgCl2 a, 7.5% glycerol, 0.1% NP40) containing
fresh DTT (5 mM) and complete protease inhibitor cocktail
(Roche). Embryos were broken using a glass homogenizer
and the lysates were cleared by centrifugation at 20 000 rpm
for 30 min. The cleared lysates were mixed with pre-
equilibrated Dynabeads (Invitrogen) conjugated with rabbit
IgG (MP Biochemicals) and incubated for 2–4 h with gentle
rotation. Non-specific bound proteins were removed by six
successive washes in Buffer A which contained low salt fol-
lowed by a final wash with Buffer B (50 mM Tris–HCl
pH 8.0, 0.5 mM EDTA). The E2 enzymes His-VihWT,
His-VihΔN-9, His-VihΔCS and His-Ube2 s were expressed in
Escherichia coli (strain Bl21 cod+) by incubating the cultures
overnight at 18°C with 0.1 mM of IPTG. The fusion proteins
were then purified using Ni-NTA Agarose beads
(QIAGEN). Substrates were labelled with [35S] methionine
(PerkinElmer) in a coupled in vitro transcription–translation
(IVT) system (Promega). His-Fzy was purified from insect
cells using the baculovirus-based expression system. Briefly,
a plasmid containing His-Fzy was transformed into MAX
Efficiency DH10Bac competent cells (Thermo Fisher Scienti-
fic) and the bacmids carrying His-Fzy genes were purified
according to the manufacturer’s instructions. The bacmids
were handed to the Baculovirus Facility at the Department
of Biochemistry of the University of Cambridge for insect
cells transfection, virus production and titration. His-Fzy
viruses were transduced into Sf9 cells at an MOI of 10. His-
Fzy was purified from cell pellets from 800 ml of liquid cul-
ture of Sf9 cells using Ni-NTA agarose (QIAGEN),
according to the manufacturer’s instructions. Ubiquitination
reactions were performed at 27°C in 10 µl of the buffer
(20 mM Tris–HCl [pH 7.5], 100 mM KCl, 2.5 mM MgCl2)
containing 4 µl of purified APC/C, 3.5 µM of E2 enzymes,
0.75 mg ml−1 ubiquitin, 1 µM ubiquitin-aldehyde, 200 µM
MG132, 200 µM DTT, 2 mM ATP and 1 µl in vitro-translated
(IVT) Mes1 substrate [68]. Reactions were stopped at the indi-
cated time points with SDS sample buffer and mixtures were
resolved by SDS–PAGE.

4.12. Destruction assay
The in vitro destruction assay in Xenopus egg extracts was
performed as described before [69]. Briefly, 35S-methionine-
labelled substrate proteins were prepared in a coupled in
vitro transcription–translation system (Promega) according
to the manufacturer’s instructions. Cytoplasmic extracts of
cytostatic factor (CSF)-arrested Xenopus eggs were prepared
following standard procedures. The CSF extracts were first
released into interphase by addition of 0.4 mM CaCl2 and
10 µg ml−1 cycloheximide, and then incubated for 2-4 h at
23°C. Substrates were added to the extracts and the reactions
were started by adding 150 ng of purified Xenopus Fzr (gift
from Hiro Yamano) to the mixture. Aliquots were collected
into 2× Laemmli buffer at 0, 1, 2 and 3 h, boiled for 2 min
and resolved by SDS–PAGE.

4.13. Colcemid drug treatment
The colcemid treatment was performed exactly as previously
published [24].

4.14. Statistical test
z-test for proportions: the n-values are given on the figures and
the p-values are given in the figure legends. Shapiro–Wilk for
normalcy: all non-proportional datasets were tested for nor-
malcy and all came back with skewed bell curve distributions
(not normal). Wilcoxon signed-rank test for under 20 samples
(given as a range because it is an estimate with small sample
sizes): the n-values are given on the figures and the p-value
ranges are given in the figure legends. Welch’s unbiased two-
tailed t-test used for non-normal sample sizes of 20 or greater:
the n-values are given on the figures and the p-values are given
in the figure legends. When this test was used the non-
parametric Wilcoxon signed-rank test was also performed
and the p-values obtained fell within the range given by
Welch’s unbiased two-tailed t-test. This was used to give a
specific p-value when possible. For results with binary categ-
orical variables (e.g. presence or absence of a phenotype),
p-values were calculated by performing two-tailed Fisher’s
exact tests.
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