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ST-segment elevation myocardial infarction (STEMI) is the most severe form of myocardial infarction (MI) and the main
contributor to morbidity and mortality caused by MI worldwide. Frequently, STEMI is caused by complete and persistent
occlusion of a coronary artery by a blood clot, which promotes heart damage. STEMI impairment triggers changes in gene
transcription, protein expression, and metabolite concentrations, which grants a biosignature to the heart dysfunction. There is
a major interest in identifying novel biomarkers that could improve the diagnosis of STEMI. In this study, the phenotypic
characterization of STEMI patients (n = 15) and healthy individuals (n = 19) was performed, using a target metabolomics
approach. Plasma samples were analyzed by UPLC-MS/MS (ultra-high-performance liquid chromatography-tandem mass
spectrometry) and FIA-MS (MS-based flow injection analysis). The goal was to identify novel plasma biomarkers and metabolic
signatures underlying STEMI. Concentrations of phosphatidylcholines, lysophosphatidylcholines, sphingomyelins, and biogenic
amines were altered in STEMI patients in relation to healthy subjects. Also, after multivariate analysis, it was possible to identify
alterations in the glycerophospholipids, alpha-linolenic acid, and sphingolipid metabolisms in STEMI patients.

1. Introduction

Myocardial infarction (MI) is a heart blood flow disruption
that leads to tissue damage and cell death in the heart muscle.
This pathology presents a high incidence worldwide, and it is
a common cause of death and disability in humans [1]. MI
has two major clinical manifestations: non-ST-segment ele-
vation myocardial infarction (NSTEMI) and ST-segment ele-
vation myocardial infarction (STEMI), which is the more
severe form andmain contributor to morbidity and mortality

by MI [2–4]. STEMI results from the abrupt occlusion of an
epicardial coronary artery; as a consequence, the myocar-
dium distal to the occlusion site becomes ischemic [5, 6].

During the ischemic process, oxygen supply is inter-
rupted, and mitochondrial oxidative phosphorylation rapidly
stops, with a massive reduction of ATP production from
energy metabolism. A compensatory increase in anaerobic
glycolysis for ATP production leads to the accumulation of
hydrogen ions and lactate, resulting in intracellular acidosis
and inhibition of glycolysis, as well as mitochondrial fatty
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acid and residual energy metabolism. Impaired contraction
with persistent electrical activity (excitation-contraction
uncoupling) is developed in association with alterations in
ion transport systems in the sarcolemma and organellar
membranes [6–8].

In addition to the osmotic and ionic imbalance, the mem-
brane depolarization also activates the voltage-dependent
Ca2+ channels, raising levels of intracellular Ca2+. The rapid
increase of intracellular calcium is due to the influx through
the membrane and by the release of Ca2+ present in the mito-
chondria and in the cytoplasmic reticulum. Excessive cyto-
solic Ca2+ leads to the activation of calcium-dependent
proteases, phospholipases, lipases, ATPases, and endonucle-
ases. Activation of these enzymes alters cell function, destabi-
lizes the structure of plasma membrane and cytoskeleton,
increases lipolysis by free fatty acid metabolism, induces
superoxide radical production, promotes DNA damage, and
ultimately leads to cell death [9–12].

STEMI injury triggers changes in gene transcription, pro-
tein expression, and metabolite concentrations, which grant a
biosignature of the heart dysfunction [13–15]. Detection of
these biochemical changes has resulted in the discovery of
emerging biomarkers, such as myoglobin, total creatine
kinase (CK), CK-myocardial band, troponin I (cTnI), and
troponin T (cTnT) [16]. However, the efficacy of these
STEMI biomarkers is questionable because of the low sensi-
tivity (35% for CK-MB and cTnI) and specificity (85 and
86% for CK-MB and cTnI, respectively) in the first 8 h after
injury [15, 17].

The low sensitivity and specificity of biomarkers added to
the fact that they can only be detected at least six hours after
symptoms onset and that the MI diagnosis is based, besides
other factors, in symptoms, that can vary individually, lay
emphasis on the importance of the improvement of a bio-
chemical diagnosis of MI [3, 5, 18].

The metabolomics approach has demonstrated great util-
ity in the biomarker discovery field, as well as in detecting
changes in biological pathways and in providing information
on the mechanisms underlying various conditions, including
cardiovascular diseases [19–21]. It is based on the global
quantitative measurement of low molecular weight endoge-
nous metabolites in tissues or biological fluids [22]. In this
study, a target metabolomics approach was used to character-
ize the phenotypes of STEMI patients and healthy individ-
uals. The overarching goal was to identify novel plasma
biomarkers and metabolic signatures underlying STEMI.

2. Methods

2.1. Study Population. The study was conducted according to
the Declaration of Helsinki, and its protocol was approved by
the Ethics Committee in Research of Santa Casa Misericórdia
of Belo Horizonte under number 064/2009. All subjects that
agreed to participate prior to their inclusion in the study have
signed an informed consent form. STEMI patients were
screened based on the following inclusion criteria: age 40-
80 years, gender-balanced, chest pain above 20 minutes,
and electrocardiographic (ECG) features consistent with
STEMI: coronary stenosis with minimal commitment of

70% of the arterial lumen in at least one coronary artery,
based on the angiography results (Table 1). The exclusion
criteria were as follows: prior history of myocardial infarction
or stroke, non-ST-segment elevation myocardial infarction,
or other acute coronary syndromes.

The control group was compound on 19 individuals who
had never had heart disease or stroke. All participants were
recruited from the Clinics Hospital of the Federal University
of Minas Gerais (Belo Horizonte, MG, Brazil) and Santa Casa
of BH (Belo Horizonte, MG, Brazil). The demographic char-
acteristics of the patients and controls are shown in Table 2.

2.2. Sample Analysis. Blood samples were collected using
tubes from the Vacuette® system, and 4 mL were stored in
anticoagulant ethylenediaminetetraacetic acid (EDTA) to
obtain plasma. The blood samples obtained were rapidly cen-
trifuged at 3.000 rotations per minute (RPM) for 10 minutes
to separate the plasma samples and then were distributed in
several aliquots into microtubes and immediately stored at
-80°C. Plasma samples (n = 15) were obtained up to seven
hours after hospitalization.

A targeted metabolomics approach was used to analyze
plasma samples from STEMI patients and controls. The
sample preparation and analysis procedures were performed
according to the AbsoluteIDQp180 kit (Biocrates Life
Sciences AG, Innsbruck, Austria). This kit allows the
measurement of metabolites by UPLC-MS/MS (ultra-high
performance liquid chromatography-tandem mass spec-
trometry) and FIA-MS (MS-based flow injection analysis).
Briefly, the samples were added to the center of a filter on
the upper 96-well plate in 10 μL aliquots per well and dried
using a nitrogen evaporator. Subsequently, 50μL of a 5% solu-
tion of phenyl isothiocyanate was added for derivatization of
the amino acids and biogenic amines. After incubation, the
filter spots were dried again using the nitrogen evaporator.

The metabolites were extracted using 300 μL of 5 mM
ammonium acetate in methanol solution and transferred by
centrifugation into the lower 96-deep well plate. From the
obtained extract, 150 μL was diluted with the same volume
of H20 and submitted to UPLC-MS/MS for amino acid and
biogenic amine measurements. The remainder of the extract
was diluted with 400 μL of mass spectrometry running

Table 1: The number of cases and affected arteries in patients with
STEMI.

Affected arteries∗ Cases (%)

One artery

Left anterior descending coronary artery (LAD) 5 (33.3)

Right coronary artery (RCA) 1 (6.6)

Left circumflex coronary artery (LCX) 1 (6.6)

Two arteries

Right coronary artery+left anterior descending
coronary artery

3 (20)

Right coronary artery+left circumflex coronary artery 3 (20)

Left anterior descending coronary artery+posterior
descending artery

2 (13.3)

∗Information obtained through coronary angiography.
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solvent for further MS analysis lipid detection. The UPLC-
MS/MS system was equipped with an Acquity UPLC BEH
C18 column (1.7 μm, 2 1 × 50mm) (Waters Chromatogra-
phy, Dublin, Ireland) connected to Xevo TQ-S mass spec-
trometers (Waters Technologies, Massachusetts, USA), and
the samples were analyzed in positive mode.

The identification and quantification of the metabolites
were achieved using internal standards and multiple reaction
monitoring (MRM) detection. FIA-MS analysis was per-
formed using the tandem quadrupole mass spectrometer
Xevo-TQ-S (Waters Technologies, Massachusetts, USA) also
in positive mode. The data analysis and calculation of the
metabolite concentrations analyzed by FIA (acylcarnitines,
glycerophospholipids, sphingolipids, and hexoses) were
automated using MetIDQ software (Biocrates Life Sciences
AG, Innsbruck, Austria), an integral part of the kit that
imports Waters’ raw data files. The peaks obtained by UPLC
(amino acids and biogenic amines) were analyzed using the
Target Lynx Application Manager (Waters Technologies,
Massachusetts, USA).

2.3. Statistical Analysis. The dataset was analyzed by univar-
iate and multivariate methods. IBM SPSS (International
Business Machines, New York, USA) software and the web
server MetaboAnalyst 3.0 (http://www.metaboanalyst.ca)
were used to develop the univariate analyses, specifically the
Wilcoxon-Mann-Whitney test. These methods were used to
identify the variables (metabolites) that presented statistically
significant differences (p < 0 05) in concentrations between
the groups studied.

For the multivariate analysis, the software SIMCA 14.0
(Umetrics, Umeå, Sweden) was used. The dataset containing
the statistically significant variables were submitted to
normalization by unit variance (UV) scaling and then to
principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), and orthogonal projection
to latent structure discriminant analysis (OPLS-DA) [23].
The unsupervised method, principal component analysis
(PCA), was performed to verify the trends of separation
between groups. Then, PLS-DA was performed. This classifi-
cation technique finds the components or latent variables
which discriminate as much as possible between two or more
different groups of samples (X block), according to their
maximum covariance with target classes (concentrations of
metabolites) defined in the Y data block [24]. By relating a
data matrix containing independent variables from samples

(concentration values) to a matrix containing dependent var-
iables (classes) for these samples, OPLS-DA can remove var-
iations from the independent variables that are not correlated
to the dependent variables and enables reducing the model
complexity with preserved prediction ability [25].

The models were evaluated using the goodness-of-fit
parameter (R2) and the predictive ability parameter (Q2).
R2 represents the proportion of variance explained by a given
component in the model, whereas Q2 is defined as the pro-
portion of variance in the data predictable model under
cross-validation [26]. The R2 ranges from 0 to 1, with higher
levels indicating more predictive accuracy, whereas Q2 = 1
indicates perfect predictability [26, 27]. OPLS-DA models
were examined to determine which variables were more
responsible for any observed separation between groups.

To identify which variables were responsible for this
separation, the variable influence on the projection (VIP)
parameter was used to select variables that have the more sig-
nificant contribution in discriminating between metabolo-
mics profiles of ischemic stroke patients, STEMI, and
controls. VIP scores indicate the importance of the variable
to the whole model [28]. The independent variable evalua-
tion contributes to predictions, and it is an important aspect
in the multivariate classification models [29]. In our work,
the independent variables were metabolite concentrations

Table 2: Demographic data of patients and controls.

Patients Age∗ SAH∗∗ (%) Smoking (%) Dyslipidemia (%) Type 2 diabetes mellitus (%)

STEMI n = 15
Male 8 66.72 (±4.92) 50.0 62.5 12.5 12.5

Female 7 69.43 (±9.95) 57.2 28.5 28.5 42.8

Controls n = 19
Male 9 55.56 (±12.07) 44.4 44.4 — —

Female 10 58.30 (±7.70) 70.0 30.0 — —
∗Mean (±SD). ∗∗SAH: systemic arterial hypertension.
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Figure 1: Score plots of principal component analysis (PCA)
results. Score plots discriminating the metabolic profiles in plasma
samples between patients with STEMI and controls. The
parameters of the models were as follows: 4 PCs, R2 = 0 679, and
Q2 = 0 47.
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and the observation of the regression coefficients allowed us to
identify which ones were more positively (high content) or
negatively (low content) related to a predicted class. The web
server MetaboAnalyst 3.0 (http://www.metaboanalyst.ca)
was used for the construction of heatmaps and for the
analysis of metabolic pathways.

3. Results

Concentrations of 184 metabolites were analyzed in plasma
samples from STEMI patients and healthy volunteers (con-
trols). The unsupervised PCA was first applied to explore
correlations between healthy subjects and STEMI patients.
According to the PCA analysis of score plots, there was a ten-
dency towards the separation of the STEMI patients and con-
trols (Figure 1).

In addition to PCA analysis, we used the same dataset for
PLS-DA analyses. Permutation testing and seven-fold cross-
validation, two established methods of internal validation,
were used to confirm model validity. Permutation tests
involve the random assignment of class labels to cases and
controls [26]. The seven-fold cross-validation step involves
omitting a portion of the data from model development,
developing parallel models from the reduced data, predicting
the omitted data from the different models, and then com-
paring predicted with actual values, providing an estimate
of overall predictive power [30]. The obtained results demon-
strated evident discrimination between the metabolic profiles
(Figure 2(a)). The PLS-DA model presented high predictive
and adjustment capacity (Q2 = 0 42, R2 = 0 93) through
cross-validation. Additionally, the permutation test plot
(n = 200) showed intercepts: R2 = 0 0 and 0.564; Q2 = 0 0
and 0.152, indicating that this PLS-DA model is not overfit-
ting and is valid for this metabolomics profiling (Figure 2(b)).

The best visualization of the discrimination between
STEMI and controls was obtained through the construction
of the model by OPLS-DA (Figure 3). This model, as well
as PLS-DA, was validated using a seven-fold cross-

validation step as internal validation. After validation, the
quality parameters obtained were R2 = 0 93 and Q2 = 0 771.

To verify which independent variables (metabolites) were
more important for the classification between the groups
using OPLS-DA, the VIP scores were calculated. By combin-
ing the VIP values > 1 with the results from the univariate
statistical analysis, we could select the differential metabolites
between STEMI patients and controls. Sixty metabolites with
VIP scores > 1 were found; among them, 44 presented a sta-
tistical difference (p < 0 05) between STEMI and controls
(Table 3). Of these metabolites, 41 had an identification
record in the HMDB (Human Metabolome Database,
http://www.hmdb.ca/). The differences in concentration of
these metabolites among the samples are demonstrated in
the heatmaps (Figure 4(a)), and the difference between
groups is demonstrated in Figure 4(b) and in the graphic of
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Figure 2: Score plots of partial least squares discriminant analysis (PLS-DA) and validation of the model. Score plots discriminating the
metabolic profiles in plasma samples between patients with STEMI versus controls (a). The model’s parameters were as follows: 3 latent
variables, R2 = 0 93, and Q2 = 0 811. The plot of the permutation test of PLS-DA of STEMI versus the control group (b). Model validation
with the number of permutations equaling 200.
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Figure 3: Score plots of orthogonal projection to latent structures
discriminant analysis (OPLS-DA) results. Score plots discriminating
the metabolic profiles in plasma samples between patients with
STEMI versus controls. The parameters of the model were as
follows: 2 PCs, R2 = 0 93, and Q2 = 0 771.
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Table 3: Differentiating metabolites between STEMI and healthy individuals (controls).

No. Metabolites Classes VIPa FCb p valuec q valued STEMI Controls

1 PC ae C36:4 Phosphatidylcholines 1,49 -3.69 0.0003 0.0049 Up Down

2 PC ae C36:3 Phosphatidylcholines 1,48 1.98 0.0021 0.0140 Down Up

3 PC ae C34:2 Phosphatidylcholines 1,47 1.05 0.8082 0.8841 Down Up

4 PC ae C38:5 Phosphatidylcholines 1,44 -3.65 0.0014 0.0119 Up Down

5 PC ae C38:6 Phosphatidylcholines 1,42 2.27 < 0.0001 0.0000 Down Up

6 PC ae C34:3 Phosphatidylcholines 1,39 1.92 0.0020 0.0140 Down Up

7 PC aa C34:4 Phosphatidylcholines 1,39 -2.4 0.0076 0.0285 Up Down

8 PC ae C40:3 Phosphatidylcholines 1,38 -2.29 0.0442 0.0913 Up Down

9 PC aa C40:2 Phosphatidylcholines 1,37 1.22 0.5324 0.6310 Down Up

10 PC ae C40:6 Phosphatidylcholines 1,35 1.64 0.0022 0.0142 Down Up

11 lysoPC a C14:0 Lysophosphatidylcholines 1,35 1.68 0.0004 0.0049 Down Up

12 PC aa C36:1 Phosphatidylcholines 1,33 1.7 < 0.0001 0.0017 Down Up

13 PC aa C36:3 Phosphatidylcholines 1,33 -3.29 0.0302 0.0729 Up Down

14 PC ae C36:5 Phosphatidylcholines 1,32 -1.21 0.7157 0.8035 Up Down

15 PC ae C32:1 Phosphatidylcholines 1,32 1.14 0.0076 0.0285 Down Up

16 PC aa C36:0 Phosphatidylcholines 1,32 -1.44 0.0136 0.0426 Up Down

17 PC aa C40:3 Phosphatidylcholines 1,30 3.0 0.0264 0.0663 Down Up

18 PC ae C38:4 Phosphatidylcholines 1,29 -3.69 0.0003 0.0049 Up Down

19 PC aa C38:3 Phosphatidylcholines 1,29 1.54 0.0003 0.0049 Down Up

20 PC aa C42:4 Phosphatidylcholines 1,28 -1.6 0.0045 0.0190 Up Down

21 SM C26:0 Sphingomyelins 1,27 2.42 0.0002 0.0036 Down Up

22 lysoPC a C18:2 Lysophosphatidylcholines 1,25 1.58 0.0045 0.0190 Down Up

23 PC aa C30:0 Phosphatidylcholines 1,23 1.82 0.0004 0.0049 Down Up

24 PC ae C42:1 Phosphatidylcholines 1,22 -1.35 0.1401 0.2330 Up Down

25 PC ae C38:3 Phosphatidylcholines 1,22 2.23 0.0860 0.1594 Down Up

26 PC ae C36:2 Phosphatidylcholines 1,21 -4.02 0.0315 0.0733 Up Down

27 PC ae C34:1 Phosphatidylcholines 1,20 1.05 0.5324 0.6310 Down Up

28 Nitro-Tyr Biogenic amines 1,20 -2.18 0.0008 0.0075 Up Down

29 PC aa C38:5 Phosphatidylcholines 1,20 1.87 <0.0001 0.0017 Down Up

30 SM (OH) C24:1 Sphingomyelins 1,19 -1.14 0.1760 0.2715 Down Down

31 lysoPC a C20:3 Lysophosphatidylcholines 1,19 1.04 0.3764 0.4824 Down Up

32 PC ae C38:1 Phosphatidylcholines 1,17 -2.11 0.0183 0.0533 Up Down

33 PC ae C44:3 Phosphatidylcholines 1,16 -1.32 0.3488 0.4603 Down Down

34 Ac-Orn Biogenic amines 1,16 1.82 0.0039 0.0190 Down Up

35 PC aa C40:5 Phosphatidylcholines 1,15 -2.44 0.0201 0.0548 Up Down

36 PC ae C32:2 Phosphatidylcholines 1,15 1.55 0.0005 0.0052 Down Up

37 PC ae C30:1 Phosphatidylcholines 1,15 1.98 0.0159 0.0474 Down Up

38 PC ae C40:4 Phosphatidylcholines 1,14 -1.68 0.0044 0.0190 Down Down

39 PC aa C40:1 Phosphatidylcholines 1,13 -1.44 0.0376 0.0829 Up Down

40 SM (OH) C14:1 Sphingomyelins 1,13 1.07 0.2746 0.3779 Down Up

41 PC ae C34:0 Phosphatidylcholines 1,13 -1.42 0.9171 0.9403 Up Down

42 SM C24:0 Sphingomyelins 1,13 1.41 0.0001 0.0035 Down Up

43 PC aa C38:4 Phosphatidylcholines 1,13 -2.04 0.1600 0.2561 Up Down

44 lysoPC a C16:1 Phosphatidylcholines 1,12 1.59 0.0080 0.0293 Down Up

45 PC aa C40:6 Phosphatidylcholines 1,11 -1.02 0.0329 0.0738 Up Down

46 SM (OH) C22:1 Sphingomyelins 1,11 1.55 0.0119 0.0391 Down Up

47 PC aa C38:0 Phosphatidylcholines 1,11 1.29 0.0113 0.0388 Down Up

48 SM (OH) C22:2 Sphingomyelins 1,11 1.62 0.0018 0.0136 Down Up

49 PC aa C42:2 Phosphatidylcholines 1,10 -1.44 0.0201 0.0548 Up Down
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concentrations (Figure 1S of the Supplementary Material). In
the heatmaps, metabolites were clustered according to their
Pearson correlation coefficients.

This panel containing 41 metabolites was used to inves-
tigate the metabolic pathways associated with STEMI. Sig-
nificantly altered pathways (p < 0 05) that also had high
impact values include glycerophospholipid metabolism,
alpha-linolenic acid metabolism, and sphingolipid metabo-
lism (Figure 5). Pathway significance was determined from
pathway enrichment analysis and based upon the values for
each compound in the dataset. The impact value, on the
other hand, was determined by pathway topology analysis.
Impact represents the importance of a metabolite within a
pathway; a metabolite that is found at a junction point
within a pathway may have a greater impact on the path-
way function if the level is altered.

The phosphatidylcholines were the main group of metab-
olites that showed a difference between STEMI and controls:
15 were in lower concentration and 16 in higher concentra-
tion in patients with STEMI. Four lysophosphatidylcholines
and four sphingomyelins showed a lower concentration in
patients with STEMI. Two biogenic amines showed a differ-
ence in STEMI: one showed high concentration and the other
lower concentration (Figure 4(b)). Differences in amino acid,
acylcarnitines, and hexoses concentrations between the two
groups were not found.

According to the statistical model, there were no signifi-
cant differences between groups related to the quantified
metabolites, coronary arteries committed, and comorbidities
(systemic arterial hypertension, type II diabetes mellitus, and
dyslipidemia) (Tables 1 and 2). Patients with STEMI pre-
sented similar metabolic profiles, despite these variables.

4. Discussion

For more than three decades, the glycerophospholipid
hydrolysis in a cardiomyocyte membrane during ischemia
has been linked to the pathogenesis of myocardial infarction
[31, 32]. The contribution of phospholipid metabolism to

plasma membrane disruption in necrotic cell death induced
by hypoxia or ischemia has been classically attributed to the
action of phospholipases, loss of asymmetry, or the accumu-
lation of bilayer-disrupting amphiphilic lipids, such as lyso-
phospholipid [12]. In general, alterations in myocardial
lipid metabolism during ischemia/reperfusion can be classi-
fied into two groups: (1) changes in fatty acid β-oxidation
and (2) changes mediated by the activation of phospholipases
and other lipid catabolic enzymes (e.g., ceramidase and
sphingomyelinase) that target the structurally important
lipid constituents of cellular membrane structures of the
heart [8].

The major lipids present in the eukaryotic cell membrane
are glycerophospholipids, sterols, and sphingolipids [15].
According to our results, the main metabolic pathway associ-
ated with STEMI is the metabolism of glycophospholipids,
followed by alpha-linoleic acid metabolism and sphingolipid
metabolism.Themajor classes of glycerophospholipid include
phosphatidylcholine, phosphatidylethanolamine, phosphati-
dylserine, phosphatidylinositol, and phosphatidic acid [14].
Plasmalogens are unique phospholipid species particularly
derived from phosphatidylcholine (PC) or phosphatidyletha-
nolamine (PE); they are characterized by the presence of a
vinyl-ether bond and an ester bond at the sn-1 and sn-2 posi-
tions, respectively, of the glycerol backbone [33]. On the basis
of their polar head groups at the sn-3 position, plasmalogens
are mainly classified into either choline plasmalogens or eth-
anolamine plasmalogens [34].

Glycerophospholipids have received special attention in
research on myocardial infarction and its causes [19, 22].
Phosphatidylcholine is the principle phospholipid in the
mammalian heart [21]. The human cardiomyocytes are
composed of approximately 40% of phosphatidylcholines
[20, 21]. Compared to the control group, we found 15 phos-
phatidylcholines in a lower concentration in the plasma of
STEMI patients. In a cardiac tissue, previous studies reported
the inhibition of phosphatidylcholine synthesis during hyp-
oxia or ischemia. Hatch and Choy described the inhibition
of phosphatidylcholine synthesis in perfused hearts

Table 3: Continued.

No. Metabolites Classes VIPa FCb p valuec q valued STEMI Controls

50 PC ae C44:5 Phosphatidylcholines 1,10 -1.58 0.2382 0.3397 Up Down

51 PC ae C44:6 Phosphatidylcholines 1,07 -1.72 0.3580 0.4675 Up Down

52 lysoPC a C18:1 Lysophosphatidylcholines 1,07 1.27 0.0329 0.0738 Down Up

53 PC aa C24:0 Phosphatidylcholines 1,07 -1.77 0.0090 0.0321 Up Down

54 PC aa C38:6 Phosphatidylcholines 1,06 1.69 0.0009 0.0084 Down Up

55 PC aa C28:1 Phosphatidylcholines 1,03 1.48 0.0263 0.0663 Down Up

56 PC ae C30:0 Phosphatidylcholines 1,03 1.58 0.1761 0.2715 Down Up

57 PC ae C38:2 Phosphatidylcholines 1,02 -1.81 0.0033 0.0184 Up Down

58 lysoPC a C18:0 Lysophosphatidylcholines 1,01 1.21 0.0315 0.0733 Down Up

59 PC aa C40:4 Phosphatidylcholines 1,01 1.41 0.0040 0.0190 Down Up

60 PC aa C32:0 Phosphatidylcholines 1,01 -1.5 0.9862 0.9862 Up Down
aVariable importance in the projection (VIP) was obtained fromOPLS-DAwith a threshold of 1.0. bThe fold change (FC) was calculated by the average value of
the STEMI group to that of the control group. cp value was calculated by theWilcoxon-Mann-Whitney test. p values < 0.05 are in bold. dq value was the adjusted
p value with the false discovery rate (FDR).
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undergoing hypoxia [35], phosphatidylcholine synthesis was
also impaired by hypoxia in isolated rat ventricular myocytes
[36], and a net loss of choline after global ischemia has been
recently demonstrated in reperfused rat hearts [37]. In this
context, several authors suggested that the depletion of
ATP and CTP was the cause of the reduced phosphatidylcho-
line synthesis [35, 38, 39].

Recently, it has been shown in two apparently healthy
middle-aged adult cohorts that serum concentrations of four
sphingomyelins and six phosphatidylcholines were associ-
ated with a higher risk of STEMI, regardless of several risk
factors for cardiovascular disease. These are PC aa C38:3,
PC aa C40:4, PC ae C36:3, PC ae C38:3, PC ae C38:4, and
PC ae C40:3, as well as sphingomyelins C16:0, C24:0, and
C16:1 and hydroxy-sphingomyelin C22:1 [21]. According
to our results, seven of these markers prevailed after STEMI,
two in higher concentrations in relation to the control
group (PC ae C38:4 and PC ae C40:3) and five in lower
concentrations (PC aa C38:3, PC aa C40, and PC ae C36:3;
sphingomyelins C24:0 and hydroxy-sphingomyelin C22:1).

Some biologically active substances during ischemia, for
example, tumor necrosis factor-α (TNF-α), may induce the
synthesis of ceramide from sphingomyelin via sphingo-
myelinase. Ceramide, in turn, may act as a second messen-
ger, promoting cardiomyocyte apoptosis [40, 41]. This
may be an explanation for the decrease of sphingomyelins
in STEMI patients.

Substantial evidence accumulated in the last decade indi-
cates that glycerophospholipids, specifically plasmalogens,
could represent a major lipid-soluble antioxidant component
[42–44]. This proposal is based on the ability of the plasma-
logens to scavenge several reactive oxygen species, their rela-
tively high concentrations in cardiac tissue, and their
subcellular and extracellular locations in close vicinity to
the oxidizable substrates [34, 39]. In this way, oxidative stress
can be a justification for the decrease of phosphatidylcholines
(choline plasmalogens) in myocardial infarction.

On the other hand, we found 16 phosphatidylcholines
in higher concentration in STEMI patients. Furthermore,
orthogonal partial least squares discriminant analysis
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Figure 4: Heatmap of the metabolomics dataset. The colors represent the mean concentration of metabolites. In (a), individual samples
(horizontal axis) and metabolites (vertical axis) are represented; they are separated using hierarchical clustering (Ward’s algorithm), with
the dendrogram being scaled to represent the distance between branches (distance measure: Euclidean). In (b), the contrast in metabolite
concentrations between the patient’s group with STEMI and healthy individuals is presented.
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(OPLS-DA) indicated that STEMI patients can be differen-
tiated from healthy volunteers by the phosphatidylcholine
PC ae C36:4. Some hypotheses may be suggested to justify
these results: the wide variety of phospholipase A and their
selectivity to certain substrates [45, 46] and the activation
enzyme kinetics [47]. Using Langdorf rabbits as an exper-
imental model of global myocardial ischemia, Hazen and
colleagues analyzed the action of the calcium-independent
plasmalogen-selective phospholipases A2 enzyme. It was
reported that membrane-associated calcium-independent
plasmalogen-selective phospholipase A2 activity increased
over 400% during 2 min of global ischemia, was nearly
maximally activated (greater than 10-fold) after only 5
min of ischemia, and remained activated throughout the
entire ischemic interval examined (2-60 min). The activation
of membrane-associated plasmalogen-selective phospholi-
pase A2 after 5 min of myocardial ischemia was rapidly
reversible during reperfusion of ischemic tissue [8]. This
example suggests that after reperfusion, past the process of
injury and inflammation, phospholipid biosynthesis may
increase during the repair process in the same way as it
occurs with cholesterol and other biomolecules [48].

A reduction in four lysophospholipids was also observed
in STEMI patients (lysoPC a C18:1, lysoPC an 18:0, lysoPC a
C14:0, and lysoPC a C16:1) when compared to healthy vol-
unteers. The results of Zhu and colleagues corroborate our
findings [49]. Using the UHPLC method, they observed a
reduction of three lysophospholipids (lysoPC a C18:2,
lysoPC a C16:0, and lysoPC a C18:1) in serum concentration
from MI patients. The difference between our works lies in
the fact that their samples were collected in the period
of 1-6 months after the infarction [49]. Interestingly, it
can be observed that one of the potential markers found
in STEMI patients in the acute phase (lysoPC an 18:1)
are also present in the chronic phase of the disease.

Nitrotyrosine is produced by the modification of protein
tyrosine residues by peroxynitrite generated from the reac-
tion of nitric oxide (NO) and superoxide [50]. In our study,
it was found to be increased in STEMI patients. This
increase has already been reported in patients with cardio-
vascular pathologies, being considered a transient change
during myocardial ischemia [51, 52]. Regarding acetylor-
nithine, its decrease was reported in the early stages of car-
diotoxicity induced by a potent chemotherapeutic agent,
doxorubicin in male B6C3F1 mice, but its implication on
human myocardial infarction is described here for the first
time [53].

In this study, we did not find a significant difference
between STEMI patients and controls in the metabolic
classes: amino acids, acylcarnitines, and hexoses. It has
been reported that the amino acid concentration increasing
is related to the major risk of adverse events and death in
STEMI patients after primary percutaneous coronary inter-
vention [9, 10]. Elevated levels of acylcarnitines were asso-
ciated with a higher risk of myocardial infarction and
diabetes mellitus. Despite this, in this work, we did not find
metabolic differences between STEMI patients with diabe-
tes mellitus and STEMI patients without this disease, and
neither did we observe alterations in hexoses concentra-
tions. Other works with bigger samples have demonstrated
that glycemic alterations can be related to worse prognosis
and with a smaller capacity of myocardial regeneration/-
healing [54, 55].

5. Conclusion

In conclusion, the present study suggests that there are signif-
icant alterations in the metabolism of glycerophospholipids,
alpha-linolenic acid metabolism, and sphingolipid metabo-
lism in STEMI patients. These changes were observed in
the concentrations of 31 phosphatidylcholines, four lysopho-
sphatidylcholines, four sphingomyelins, and two biogenic
amines. Although this work had a limitation in the number
of samples, the results confirm trends exhibited in previous
studies. In addition, this work points to metabolites with a
great potential to be biomarkers for STEMI and for the study
of new pharmacological targets.
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