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Abstract

Tryptophan-rich proteins from several malarial parasites have been identified where they play an important role in host-
parasite interaction. Structural characterization of these proteins is needed to develop them as therapeutic targets. Here, we
describe a novel Plasmodium vivax tryptophan-rich protein named PvTRAg33.5. It is expressed by blood stage(s) of the
parasite and its gene contains two exons. The exon 1 encodes for a 23 amino acids long putative signal peptide which is
likely to be cleaved off whereas the exon 2 encodes for the mature protein of 252 amino acids. The mature protein contains
B-cell epitopes which were recognized by the human immune system during P.vivax infection. The PvTRAg33.5 contains 24
(9.5%) tryptophan residues and six motifs whose patterns were similar among tryptophan-rich proteins. The modeled
structure of the PvTRAg33.5 consists of a multidomain architecture which is stabilized by the presence of large number of
tryptophan residues. The recombinant PvTRAg33.5 showed predominantly a helical structure and alpha helix to beta sheet
transition at pH below 4.5. Protein acquires an irreversible non-native state at temperature more than 50uC at neutral pH. Its
secondary and tertiary structures remain stable in the presence of 35% alcohol but these structures are destabilized at
higher alcohol concentrations due to the disturbance of hydrophobic interactions between tryptophanyl residues. These
structural changes in the protein might occur during its translocation to interact with other proteins at its final destination
for biological function such as erythrocyte invasion.
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Introduction

Malaria remains uncontrolled to date and requires effective

antimalarial drugs and vaccines [1]. Both, vaccine and drug

development strategies require identification and characteriza-

tion of the target molecules. The parasite molecules which

interact with the host molecules are good drug or vaccine

targets. This is because any molecule or antibody which can

disrupt this host - parasite molecular interaction can be used as

therapeutic reagent to interrupt the disease progression.

Enormous efforts are therefore being made to identify such

parasite molecules. However, in comparison to the Plasmodium

falciparum, only fewer vaccine/drug target molecules of P.vivax

have been identified because of its non-cultivable nature

although this parasite affects large number of people in tropical

countries and sometime can cause severe complications in

humans [1,2,3].

Tryptophan-rich proteins from several Plasmodium species

have been identified. They play an important role in the

host-parasite interaction [4,5,6,7,8]. Some of them may be

involved in reinvasion of the host erythrocytes by the parasite

[5]. The synthetic peptides derived from the P.falciparum

tryptophan-threonine rich antigen (PfTryThrA) were able to

inhibit the invasion of the erythrocyte by the merozoite [9].

These proteins across the malarial species contain positional

conservation of the tryptophan residues which could be

functionally important for the parasite. The P. vivax genome

encodes for more number of such tryptophan-rich proteins than

any other malarial species (http://www.plasmodb.org). These

proteins need to be characterized so as to develop them as the

drug or vaccine targets. Recently, we have described immuno-

logical characterization of some of these P.vivax proteins and

reported that they were highly immunogenic in humans

[10,11,12,13,14]. The tryptophan-rich domains of all these

proteins were also conserved in the parasite population.

Unfortunately, so far none of the tryptophan - rich antigen of

any of the Plasmodium species has been structurally character-

ized. Here, we describe cloning, expression, human humoral

immune response, physico-chemical characterization and mo-

lecular modeling of a novel 33.5 kDa P. vivax tryptophan-rich

protein called PvTRAg33.5 which showed a significant

homology to the PfTryThrA of P.falciparum.
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Materials and Methods

Reverse transcription PCR
Previously isolated RNA from the P.vivax - infected blood was

used for a two step reverse transcription PCR with oligodT

primers and random decamers using RETROScriptH (Ambion,

Inc. Austin, TX USA) as per the manufacturer’s instructions. The

exon 1 and part of the exon 2 was amplified from the cDNA as

well as the genomic DNA (to detect intron) using the gene specific

primers F1 (forward) (59-ATGGTTGCCTTATTACCAATTT-

CA-39) and R1 (reverse) (59-AGTTTTCCCAGTCAGCATCA-

TTCC-39). A 2 mL of 1:5 dilution of the primary PCR product

was used as a template for the semi-nested PCR using primers F2

(59-TCTGCGGCTTACCTTTTAAGCAAC-39) and R1 (men-

tioned above). A 50 mL PCR reaction mixture included the Taq

DNA polymerase (1U) with 1X PCR buffer, 0.5 mM dNTPs,

1.5 mM MgCl2, 0.5 mM of each primer and 10 ng of the template

DNA. A control reaction was also included in which no reverse

transcriptase was added to rule out the possibility of the DNA

contamination after DNase treatment in the cDNA synthesis. The

PCR cycling conditions included initial denaturation at 94uC for

5 min followed by 35 cycles of denaturation at 94uC for 30 sec,

annealing at 56uC (for F1 and R1) or 58uC (for F2 and R1) for

30 sec and extension at 72uC for 30 sec. Final extension was

carried out at 72uC for 5 minutes. The amplified products were

purified from the gel using AccuPrepH gel purification kit (Bioneer

Corporation, korea) and sequenced from both the strands using F2

and R1 primers on the ABI Prism A310 Genetic Analyzer (PE

Applied Biosystems, CA, USA) as described before [15].

Cloning, expression and purification of the recombinant
PvTRAg33.5

The exon 2 of pvtrag33.5 gene was PCR amplified from the

P.vivax DNA using primers, 59-TGTAGTCGACTCAAAGCG-

CAGTAG-39 (forward) and 59TTGTTCCTAATTGAGTCTA-

GAATTCC39 (reverse) having SalI and XbaI sites (underlined)

respectively. The cycling parameters for PCR included initial

denaturation at 94uC for 5 minutes followed by 35 cycles of

denaturation at 94uC for 15 sec, annealing at 55uC for 30 sec,

extension at 68uC for 1 minute and final extension at 68uC for 15

minutes. The PCR product was cloned into the pGEMT vector

and sequenced with the universal primers. The fragment was

transferred to the expression vector pPROExHT b (Invitrogen

Life Technologies, Carlsbad, CA, USA). The recombinant

PvTRAg 33.5 was expressed in E.coli BL21 (DE3) codon plus-

RP and induced with 1 mM isopropyl-b-D-thiogalactopyranoside

(IPTG) at 22uC for 4 hours.

The recombinant protein from the culture pellet was purified

using the Immobilized Metal Affinity Chromatography on the

Ni2+ NTA agarose column according to the manufacturer’s

instructions (Qiagen, GmbH, Hilden, Germany). It was further

purified by the Anion Exchange High Performance Liquid

Chromatography (Biologic Duo flow, Biorad laboratories, Hercu-

les, CA, USA). The dialyzed Ni2+ NTA purified protein was

injected in 50 ml sample loop from where it was loaded on to the

top of 1.3 ml UNO Q1 Anion exchange column (Biorad

laboratories, Hercules, CA, USA) which had been pre-equilibrated

at a flow rate of 2 ml/minute with ten column volumes of buffer A

(20 mM Tris, pH 8.0). The bound proteins were then eluted by

the NaCl gradient (0–500 mM) by employing buffer B (20 mM

Tris pH 8.0 and 0.5 M NaCl) at a flow rate of 2 ml/minute over a

period of ten minutes. One ml fractions each were collected and

detected at a wavelength of 280 nm by the deuterium lamp in the

Quad Tec UV-Vis detector integrated with the HPLC unit. The

homogeneity of the purified recombinant PvTRAg33.5 protein

was confirmed by the SDS-PAGE as described earlier [15].

Direct binding Enzyme-Linked Immunosorbent Assay
(ELISA)

The ELISA was performed as described earlier [15,16] using 50

P. vivax-infected and 39 uninfected sera samples at a 1:100 dilution

and 100 ng of the purified recombinant PvTRAg33.5 protein. The

goat anti-human IgG horseraddish peroxidase conjugate at a

1:400 dilution (Pierce Chemical Company, Rockford, IL, USA)

was used as secondary antibody. The mean OD plus 3 standard

deviations of the normal healthy controls was used as the cutoff

value for a positive response.

Physico-chemical characterization of recombinant
PvTRAg33.5

All the measurements were carried out at the room tempera-

ture, unless stated. The concentration of protein samples were

determined spectrophotometrically from the extinction coefficient

reported at 280 nm.

Circular dichroism measurements. The circular dich-

roism (CD) was measured with a JASCO J-815 spectropolarimeter

calibrated with ammonium d-10 camphorsulfonate. A cell of path

length 0.1 cm was used for scanning between 250–195 nm and a

cell of path length 1.0 cm was used for scanning between

300–250 nm. The results were expressed as the mean residue

ellipticity (MRE) in deg.cm2.dmol21, which is defined as:

MRE~hobs mdegð Þ= 10|n|Cp|lð Þ ðiÞ

Where hobs, is the observed ellipticity in degrees, n is the number

of peptide bonds per molecule, Cp is the molar concentration, and

‘l’ is the length of light path in cm. The a-helical content of

proteins was calculated from the MRE value at 222 nm (MRE222)

using the following equation [17]:

Percent a-helix~ MRE222{2340ð Þ=30300½ �|100 ðiiÞ

CD data have also been analyzed by online available software,

K2d [18].

Fluorescence measurements. The fluorescence spectra

were recorded with a Hitachi F-3500 spectrofluorophotometer in

a 1.0 cm path length quartz cell. Samples containing different

concentrations of the organic solvent were equilibrated at room

temperature for 30 minutes before recording of the fluorescence

measurements. The excitation wavelength was 295 nm and the

emission was recorded from 300 to 400 nm. The ANS (8-anilino-

1-naphthalene-sulfonate) binding was measured by fluorescence

emission with excitation at 380 nm and emission was recorded

from 400 to 600 nm. Typically, the ANS concentration was 50

times excess of protein concentration (7 mM).

Sequence analysis
The PvTRAg33.5 full length sequence was analyzed using

signal prediction servers, Ipsort [19], and SOSUI [20] utilizing

different prediction methods to determine the presence of the

signal peptide region. The transmembrane helical region analysis

of the PvTRAg33.5 (exon2) was carried out using TMHMM [21]

and TM Pred [22] servers. InterPro scan and ProScan [23]

analysis was carried out for the motif and/or the pattern

prediction. The 91 similar sequences obtained from the PlasmoDB

Structural Characterization of PvTRAg33.5
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database (http://www.plasmodb.org) were input into MEME [24]

to the identify conserved domain, aligned in MAST [25] and fed

into meta-MEME [26]. These motifs were then combined into a

single, motif-based Hidden Markov Model (HMM) and used for

searching homologs. The complete sequence of the PvTRAg33.5

was used for the identification of motifs.

Secondary structure prediction
The prediction servers incorporating different algorithms were

used for the secondary structure prediction to minimize the error

in prediction (supplementary material S1). The consensus

secondary structure was derived employing the probability of the

predicted sequence and the type of secondary structure prediction

from these methods. This was compared with the data derived

from the experimental CD studies.

Model development and verification
The initial step for the model development is the identification

of a structural homology. Threading technique or fold recognition

that assign folds to target sequences with very low sequence

identity to known structures can also be employed for the template

generation. The threading servers utilized to build initial models

included PHYRE [27], Fugue [28], PredictProtein [29], SAM-

T08 [30] and iTASSER [31,32,33]. These servers exploit various

machine learning fold recognition techniques like recognizing

distant homologues by sequence-structure comparison, profile-

profile alignments and protein folding potentials. The final

templates so obtained were used to build a homology model with

Discovery Studio v1.7 (www.accelrys.com). Energy minimization

of generated model was by CHARMm [34] force field, a implicit

distance-dependent dielectric constant and a non-bonded atom

cut-off 12 angstrom, by the Adopted Basis Newton-Raphson

energy minimization. Two thousand steps of energy minimization

of r.m.s. gradient of 0.05 Kcal/(mol6Angstrom) was performed.

The model was checked for its accuracy and correctness by the

Ramachandran plot to determine the amount of misplaced phi

and psi angles. The stereochemical environment, the conforma-

tion of the backbone and side chains was analysed using

PROCHECK [35].

Molecular Dynamics
The overall stability of the PvTRAg33.5 model was checked by

a molecular dynamics simulation using the CHARMm [34]

module on a fully hydrated model. In the first step of energy

minimization, the backbone of model was kept flexible. The

minimized, hydrated complex was then subjected to a molecular

dynamics simulation in three stages. In the first stage, the

temperature of the system was raised from 0 to 300 K for 2 pico

sec. The system was then equilibrated for 20 sec, and the final

production run was carried out over another 100 picoseconds.

Accession numbers
The nucleotide sequences described in the paper have been

deposited in the Genbank under the accession numbers FJ481116

for the genomic DNA and FJ481117 for the cDNA derived from

the pvtrag33.5 gene of the Indian P.vivax isolate.

Results

Sequence analysis of the pvtrag33.5 gene
Homology searches for the tryptophan-rich antigen of P. vivax

identified a number of related protein molecules in the

Plasmodium database (http://www.plasmodb.org). We selected a

protein named here as PvTRAg33.5 which is of 33.5 kDa mol.

wt and rich in tryptophan residues. This protein showed

maximum homology of 56% (33% identity) with the

PvTRAg35.2 of P.vivax (Fig. S1). Its sequence homology with

the P.falciparum and P.yoelii tryptophan rich proteins PfTryThrA

and PypAg3 was 55% (30% identity over a 43-275 aa overlap)

and 51% (29% identity over a 20-270 aa overlap), respectively.

Twenty out of 24 tryptophan residues of PvTRAg33.5 were

positionally conserved among these proteins. Several tryptophan

residues were posionally conserved across the tryptophan-rich

proteins of Plasmodium species (Fig. S1). The pvtrag33.5 gene

contains two exons of 69 bp (exon-1) and 756 bp (exon-2). The

exon 1 encodes for a putative signal peptide which is likely to be

cleaved away and thus may not be part of the mature folded

protein. Hence, only the exon2 encoded protein was used for

further characterization and model determination. The ProScan

analysis found one putative glycosylation site (Asn 81) and eight

putative phosphorylation sites (Ser 4, Ser 98, Thr 129, Ser 177,

Thr 179, Ser 217, Ser 243 and Thr 232). The sequences input

to MEME yielded the presence of seven different motifs in the

full length sequence (Table 1). The tryptophan-rich proteins

having more than 30% identity contained all 7 motifs in the

order ‘M7 M3 M6 M1 M4 M5 M2’. A database search using

these clusters with MAST package also did not yield any

significant match indicating the absence of orthologues for

PvTRAg33.5.

Expression and purification of the recombinant
PvTRAg33.5

We were unable to express the complete cDNA of the pvtrag 33.5

gene in E.coli and thus decided to express the exon 2 coding region

and discarded exon 1 as it encodes only for the putative signal

peptide which may not be part of the mature protein. The exon 2

encoded protein was found in the inclusion bodies (90%) as well as

in the soluble fraction (10%). In order to avoid the in-vitro

refolding process, we purified the recombinant protein from the

soluble fraction. The recombinant protein was purified on the Ni2+

NTA agarose column since the expressed protein contained the

His tag. Although the protein was purified to a great extent by this

column, the minor contaminants were still present in the

preparation (lane3 in Fig. 1). These contaminants were removed

by the HPLC using an anion exchange column where this protein

eluted as a single peak between 440 and 500 mM NaCl

concentration (data not shown). This peak was found to contain

only a single band of 33.5 kDa on 12% SDS-PAGE (lane 4 in

Fig. 1).

In vivo expression of the PvTRAg33.5 by P. vivax
Since the pvtrag33.5 gene was not annotated in the PlasmoDB

sequence database at the time of initiating this work, we wanted

to know if this gene was actively expressed by the parasite. The

RT-PCR results revealed the presence of the pvtrag33.5 gene

transcript in the parasite (Fig. 2a). The size difference between

the cDNA and genomic DNA PCR products not only confirmed

the specificity of the RT-PCR but also established the presence of

an intron in the gene (Fig. 2a). The sequence analysis of the RT-

PCR product and its comparison with the genomic DNA

sequence revealed that the size of the intron was 184 bp and

the consensus splice site sequence GU/AG at the intron-exon

junction (Fig. 2b). That this pvtrag33.5 gene transcript was

translated in to the protein product in the parasite was evident

from the fact that majority of the P.vivax patients produced

antibodies against PvTRAg33.5 during the acute phase of

infection (described below).

Structural Characterization of PvTRAg33.5
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Humoral immune response against the exon-2 encoded
polypeptide of PvTRAg33.5 among a P.vivax infected
individuals

The natural humoral immune response to the PvTRAg33.5 was

confirmed by assessing the reactivity of the exon-2 derived

recombinant protein with the antibodies present in each sera sample

by the ELISA. The positive responders were defined as those who

exhibited an OD495 higher than 0.55 (mean +3 SD of control sera).

Forty seven of the 50 serum samples (seropositivity 94%) from the

P.vivax infected individuals gave an OD above this cutoff (Fig. 3). The

mean 6 SD values of OD for the P.vivax infected and naive individuals

were 1.0460.39 and 0.2560.10, respectively. All individuals had

different levels of serum antibodies to the PvTRAg33.5.

Physico-chemical characterization of the PvTRAg33.5
Effect of pH. Studies of the far UV CD can be used to

quantitatively assess the overall secondary structure content of the

protein, as the absorbing group is principally the peptide bond.

Figure 4a shows the far UV CD of the PvTRAg33.5 at neutral to low

pH. The UV CD spectrum at pH 7.2 shows minima between 208

and 222 nm, a characteristic feature of the a-helical proteins [36].

Interestingly, the protein did not show any loss of the secondary

structure till pH 4.5, but further decrease in pH resulted in the alpha

helix to beta sheet transition with a single negative minima near

215 nm and a positive ellipticity at 197 nm [37]. Further, the

formation of an isobestic point at 197 nm also indicates the same

[38]. Similar results were also observed with increased ammonium

sulfate (see section 3.5.3) and ethanol (section 3.5.4) concentrations.

The tryptophan residues excite exclusively above 295 nm and

emit in the range of 300 to 400 nm [39]. Figure 4b shows the shift

in wavelength of maximum intensity (lmax) as a probe for the

tertiary structure of the protein against pH. It shows an increase in

lmax as pH decreases, indicating an increase in the polarity of the

tryptophan microenvironment, and thus increases in solvent

accessibility to the core of the protein.

The hydrophobic dye, 1-anilino-8-nephthalene sulphonate

(ANS), is used as a probe to determine the concentration of solvent

accessible hydrophobic patches [40]. The fluorescence of protein-

ANS complex showed no significant change as pH decreased from

7.3 to 3.6, but it was followed by an increase in the ANS binding

with decrease in lmax (Fig. 4c; inset) as pH decreases from 3.6 to 1.6

(Fig. 4c). The results show that the PvTRAg33.5 has lost its

secondary and tertiary contacts to a significant level below pH 3.6.

Effect of temperature. To understand the stability of the

tertiary structure of PvTRAg33.5, we have observed change in

tryptophanyl fluorescence maxima (at 340 nm) as a probe for

tertiary structure, against increase in temperature (Fig. 4d). The

fluorescence intensity has decreased with increase in temperature

from 20–45uC, followed by a sudden increase up to 55uC, and

then a decrease till 80uC. But on cooling, the increase in

fluorescence intensity did not crawled back in the same track

below 50uC, indicating the protein might have been trapped in

some non-native conformation. The change in lmax seems to

support the fact that on heating the lmax increased from 339 to

344 nm as temperature increased from 20 to 80uC, showing

increased accessibility of the hydrophobic tryptophan residues in

solvent due to unfolding. But on reversing the temperature below

80uC, no significant change was observed, indicating entrapment

of the protein molecules in local minima of folding.

Effect of ammonium sulfate. Effect of ammonium sulfate

(0–90 mM) on PvTRAg33.5 has been observed by the far UV CD

and the tryptophanyl fluorescence at different concentration of

ammonium sulfate at pH 7.0 (Fig. 4e). The far UV CD spectra of

the PvTRAg33.5 have shown minima at 208 and 222 nm, a

characteristic feature of the a-helical structure. Increase in the a-

helical structure was observed as salt concentration increased from

Table 1. Motifs identified from MEME present in the various Plasmodium species.

Motif No Motif regular expression Motif in PvTRAg33.5

M1 YKS[ND]ILKKSSTW[DN][DE]S[QE]W[EK]EW[IM]KTEGKE[LF][MLI] YKNYLLKKSEKWNDADWENWANTEMVAHL

M2 [FY]NEWM[ED]SF[IV]NKWI[KN]EK[QK]WNVW YSTWRNDFINRWVSEKKWNSI

M3 WKNNEW[KN][NK]W[MK]KKLEx[DE]WKxFN WKDNEWHNWKLKLEEDWDSFS

M4 WI[QK]WKNxKIx[ES]WL[MS]S[DE]WKxEEDEYWSKW WNQWQHDKMSSWLSSDWKKVGAMYWDLQ

M5 xKW[KN]ERIN[RK]ExE[EQ]WxNWVKxKENx[YF] IKWNDRNARENIEWSKWVQNKEYFI

M6 KEK[ED][WL][EN]EW[LI]Kx[ML][EQ]NKWMH[YF]NE KTDELNGWLNLEENKWNNFSG

M7 VSxLxIxLFLLSSAF VALLPISFFSLSAAY

doi:10.1371/journal.pone.0016294.t001

Figure 1. Purification of recombinant PvTRAg33.5. SDS-PAGE
profile of the purification steps. Uninduced and induced culture pellets
of the recombinant clone were solubilized in the loading buffer and
loaded in lane 1 and 2, respectively. The Ni2+ NTA column purified
preparation was loaded in lane 3. Lane 4 contains the HPLC purified
protein. Size of protein bands in the marker lane (M) is indicated on left
hand side. The recombinant PvTRAg33.5 band is indicated by an arrow.
doi:10.1371/journal.pone.0016294.g001

Structural Characterization of PvTRAg33.5
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Figure 2. In vivo expression of the pvtrag33.5 gene. a) Detection of the pvtrag33.5 gene transcript by Reverse Transcription PCR. PCR
amplification of the P.vivax cDNA (Lanes 1–4) and genomic DNA (Lane 5) using pvtrag33.5 gene specific primers. RT- PCR product of pvtrag33.5
specific cDNA synthesized using oligodT (Lane 2) or random decamers (Lane 4) with gene specific primers. Reverse transcription negative control
using oligodT (Lane 1) or random decamers (Lane 3) as primers for cDNA synthesis. Lane 5: PCR product of genomic DNA amplification, and Lane
6: 100 bp ladder. PCR product sizes are indicated by arrows. b) Sequence alignment of PvTRAg33.5 genomic DNA and cDNA. Splice site sequence is
shown in bold letters. Dashes indicate the absence of nucleotides. Numbers on the right-hand side indicate the number of nucleotides.
doi:10.1371/journal.pone.0016294.g002

Structural Characterization of PvTRAg33.5
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0 to 90 mM. Figure 4e (inset) shows the emission spectra of the

tryptophanyl residues of the PvTRAg33.5 at different salt

concentrations. The increase in fluorescence on addition of the

salt indicates opening of the hydrophobic tryptophanyl residues

towards the polar solvent. From the far UV CD and fluorescence

experiments, we may conclude that increase in salt concentration

has disrupted the tertiary structure of the protein without

destabilizing its secondary structure.

Effect of ethanol. Alcohols can be used as a model for

plasma membrane [41]. Some of the tryptophan-rich proteins are

found to get anchored to the RBC membrane [4,5]. We have

checked the effect of ethanol on the PvTRAg33.5 by the far UV

CD and tryptophanyl fluorescence spectroscopy to study the effect

of hydrophobic environment on the protein conformation. Fig. 4f

shows stabilization of the secondary and tertiary structure (inset) in

the presence of 0 to 40% and 0 to 35% ethanol respectively. But

further increase in the alcohol concentration disrupts the tertiary

as well as secondary structure.

Secondary structure and molecular model of the
PvTRAg33.5

The secondary structure prediction studies show that the exon 2

encoded polypeptide predominantly comprises of helix and coil

regions. A consensus secondary structure prediction sequence was

drawn from the results of the different secondary structure

prediction servers (Fig. S2). In this, the sequences of each and

every amino acid position was assigned either helix or coil or

extended sheets only when at least 50% of the above web servers

predicted the similar secondary structure. The consensus second-

ary structure prediction showed that the PvTRAg33.5 has 76.2%

helix and 23.8% coil with no extended sheets. This helical content

derived from the analysis was more than that of the above

mentioned experimental CD data.

In the absence of a clear structural homologue from PDB or

pattern prediction, knowledge-based approach to structure

prediction employing the fold recognition and protein threading

methods was undertaken to determine computationally a suitable

template model for the exon 2 encoded polypeptide. The results

from the diverse threading servers were compiled and analyzed to

derive possible templates based on a three-fold criterion. Models

predicted with less than 60% accuracy, comprising short segments

of fewer than 90 amino acid residues and structures consisting

mainly of b-sheets were not included as these contradicted both

experimental and secondary structure consensus data. Several

models were built using the templates so obtained (PDB Ids: 2c5k,

1is1, 2a2f, 2lis, 1zro, 2bs5, 2hsb, 2pe4, 2c6j, 1u4q, 2j68 and

Figure 3. Seroreactivity of recombinant PvTRAg33.5 among P.vivax exposed individuals. ELISA was performed with 50 sera form P. vivax
patients (a) and 39 from unexposed healthy controls (b) by coating 96-well microtitre ELISA plates with the purified recombinant PvTRAg33.5. Each
bar represents the OD value for the individual serum. Pp: pooled patient sera; Np: pooled sera from healthy controls.
doi:10.1371/journal.pone.0016294.g003

Structural Characterization of PvTRAg33.5
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models from SAM-T08 and iTASSER servers) in the Discovery

Studio v1.7. The loops were built using the LOOPREFINE-

MENT module. A high quality model was selected based on the

probability density function (PDF) calculated by the program. The

PDF is derived from spatial restraints while building the model

and identifies regions of high energy. The final model showed

Figure 4. Physico-chemical characterization of PvTRAg33.5. Far UV CD spectra at different pH (a), emission wavelength at maximum intensity
after exciting it at 295 nm as a function of pH (b), fluorescence intensity (filled circle) and emission wavelength at maximum intensity (empty circle)
(inset) of ANS-protein complex as a function of pH, after exciting it at 380 nm (c), fluorescence intensities and emission wavelength maxima (inset)
after exciting at 295 nm as a function of increase in temperature (empty circle) and consecutive decrease in temperature (filled circle) at pH 7.0 (d),
far UV CD spectra and fluorescence intensities (inset) in the absence and presence of different ammonium sulfate concentrations at pH 7.0 after
excited at 295 nm (e), and far UV CD spectra and fluorescence intensities (inset) in the absence (N) and presence of different ethanol concentrations
after exciting at 295 nm (f) of PvTRAg33.5.
doi:10.1371/journal.pone.0016294.g004
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similarity to template models predicted via SAM-T08 and

PHYRE. The stereochemistry of the final model was checked

with the program PROCHECK [35].

The refinement of the model with special emphasis on the loops

was carried out using molecular dynamics simulation. The total

energy and simulation temperature were found to remain steady

with little fluctuation (Table 2). In addition to this the maximum

r.m.s. deviation was observed to be 0.6 Å. Hence, the results from

the molecular dynamics simulation indicated that the modeled

structure is stable.

Discussion

For the first time, we describe here the structural characteristic

features of a tryptophan- rich antigen (PvTRAg33.5). This protein

is not a membrane integrated protein, it lacks cysteine residues,

and it is soluble in nature. The tryptophan residues are distributed

over the entire length of the mature protein (encoded by exon 2)

which may influence the folding of the protein in the absence of

the cysteine residues. Thus, the three dimensional conformation of

the protein is most probably constrained by the number and

hydrophobic nature of these tryptophan residues. The tryptophan

residue is conserved in the motifs, however, a great deal of

variability is observed for adjacent polar and hydrophobic

residues. Despite the absence of orthologues, the profile HMM

analysis clearly indicates the presence of similar motifs in the

Plasmodium species. In non malarial proteins, the tryptophan rich

domains have been reported in a variety of the transmembrane

surface proteins which play an important role in the folding and

assembly [42].

The modeled tertiary structure of the protein consists of three

domains (Fig. 5). The subdomain 1 comprising residues 1–28

adopts a random coil structure except for a two turn helix (H1), the

subdomain 2 spanning residues 30–113 has 2 long (H2 and H3)

and 2 short helices and the subdomain 3 stretching from residues

126–252 consists of three long helices (H6, H7: and H8). A long

loop of 16 residues connects helices 6 and 7 whereas helices 7 and

8 are anti-parallel and are joined by a short loop of 5 residues. The

subdomains 2 and 3 are associated by a 12 amino acid long

flexible linker region. The linker region adopts a random coil

structure and permits different orientations of the subdomains 1

and 2 as regards to the third subdomain. The motifs, M2-M7,

identified from MEME have helical structures. The subdomain 3

participates in numerous hydrogen bonds and van der Waals

interactions with subdomain 2 while these are limited to the tail

residues to subdomain 1.

Thus the PvTRAg33.5 protein belongs to the proteins from the

all-alpha class with no identical fold in Structural Classification of

Proteins (SCOP) database [43]. The closest structural similar fold

in SCOP was observed to be the Duffy binding like domain (DBL)

fold which has earlier been observed in P. knowlesi (PDB Id: 2C6J)

[44] and P. falciparum (PDB Ids: 3CML [44] 1ZRO and 1ZRL

[45]). The DBL domain possesses two subdomains, each with a

three- helical bundle. The subdomain 3 of PvTRAg33.5 has a 3

helix bundle comparable to the DBL domain but a structural

superimposition of the long helices of this sub domain revealed

that the position of the helices with respect to each other are

dissimilar. The main difference is observed in the subdomain 2. A

structural superimposition along the long helix H6 of the

subdomain 3 indicated that the orientation and positioning of

the subdomains 2 and 3 was different with respect to each other in

these proteins. These differences indicate that the linker region

connecting the subdomain 2 and 3 is flexible and a conformational

change can alter their relative orientations.

The CD data indicates that the PvTRAg33.5 has nearly 50% a-

helix structure which was also predicted by the secondary structure

prediction analysis. However, the protein has shown a total loss of

the alpha helical structure if pH was decreased below 4.5. Such

structural change from the alpha helical to the beta sheet and vice-

versa has been reported in various systems, for example, the beta

sheet structure of the HIV’s gp120 gets converted into the alpha

helix when virus binds to the host membrane protein CD4 [45–

49]. The PvTRAg33.5 protein, however, remains stable upto

pH 4.5 or till 50uC at pH 7.0. Even 40% ethanol could not disrupt

its secondary structure. These evidences suggest that the protein is

stable enough to withstand some environmental stresses up to

certain extent.

The PvTRAg33.5, probably being a small polypeptide, has two

state transitions in its secondary structure under the denaturing

conditions. The PvTARAg55, probably being a longer polypep-

tide [12], seems to be more resistant to the effect of low pH than

the PvTRAg33.5 (Data not shown). In short, the PvTRAg33.5 is a

predominantly a-helical but a loss of the structure occurs under

severe environmental stressed conditions. Under stress, either

more number of the tryptophan residues gets exposed or the

similar number of tryptophan residues exposed with larger extents,

as indicated by the tryptophan fluorescence under low pH, high

temperature and high concentration of the salt or the non polar

solvent. The tryptophan rich regions appear to be critical for the

cell-cell fusion activity of the trans-membrane glycoproteins [46].

In nature, certain external stimuli may also cause the structural

changes in the proteins leading to the diseased conditions [47]. For

example, binding of the ligands could trigger the conformational

changes in some of the Trypanosomal enzymes to modulate their

activity leading to the disease pathogenesis [48,49]. The structural

perturbation of the PvTRAg33.5 may, therefore, connect with its

biological function such as its probable role in the erythrocyte

invasion. The Tryptophan residues have also been shown to play

an important role in protein-protein interactions and signal

transduction [50,51,52,53,54,55]. There are rapidly mounting

evidence that the proteins must at least partly unfold in order to be

translocated across a biological membrane. The precursor proteins

are found to unfold before or at the time of their transport across

the membranes [56].

In conclusion, for the first time the structural characteristic

features of a Plasmodium tryptophan-rich protein are described

here. The PvTRAg33.5, a novel tryptophan-rich antigen from

P.vivax, is expressed during the blood stage of the parasite, has a

predominantly a-helical structure, and its secondary structure

is lost upto 50% under the stressed conditions which may also be

faced by the parasite in its host. The modeled structure has

three domain architecture and this conformation is stabilized

by the presence of a large number of tryptophan residues which

in the absence of disulphide bonds influence the folding due

Table 2. Molecular Dynamics simulation.

Time (ps)
rmsd w.r.t to first
conformer (Å)

Potential Energy
(kcal/mol) Temp (K)

0 0 2570.36 303

25 0.56 2566.30 306

50 0.59 2568.31 302

75 0.59 2569.15 301

100 0.60 2570.04 302

doi:10.1371/journal.pone.0016294.t002
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Figure 5. Model of PvTRAg33.5 structure. a) Model of PvTRAg33.5 structure which has three subdmains: subdomain 1 (blue), subdomain 2 (red),
subdomain 3 (green) and a linker (yellow) region. The helices are represented as cylinders and the coiled structure as loops. Subdomain 1 adopts a
random coil structure except for a two turn helix from residues 16–25 (H1). The second subdomain has 2 long (H2: 29–54 and H3: 60–80) and 2 short
helices (H4: 89–98 and H5: 104–113) connected by three loops. The subdomain 3 consists of three long helices (H6: 126–162, H7: 177–213 and H8:
217–244). The tryptophan (Trp) residues in the helices are drawn in ball-and-stick and assigned the helix color. b) The three dimensional model of

Structural Characterization of PvTRAg33.5

PLoS ONE | www.plosone.org 9 January 2011 | Volume 6 | Issue 1 | e16294



to their predominantly hydrophobic nature. Furthermore, the

PvTRAg33.5 contains B-cell epitopes which are highly conserved

in the parasite population and high antibody response is being

generated in humans during P.vivax infection. Further studies are

required to define the biological function of this protein in the

parasite.

Supporting Information

Figure S1 Multiple sequence alignment of PvTRAg33.5
(Plasmodb ID: PVX_121897) with close tryptophan rich
homologs present in Plasmodium species. The sequences

of these proteins were retrieved from the Plasmodium database

(www.plasmodb.org) and aligned using ClustalW software at

http:/www.ebi.ac.uk/clustalW. The plasmodb ID of P.vivax

homologs are PVX_090250 for PvTRAg39.8, PVX_109280 for

PvTRAg35.2, PVX_090265 for PvTRAg, PVX_101515 for

PvTRAg40, PVX_096995 for PvTARAg55, PVX_112655 for

PvTRAg80.6 and PVX_101510 for PvATRAg74. The plasmodb

ID of P.falciparum homologs are PFA0135w for PfMaTrA,

PF08_0003 for PfTryThrA, PF10_0026 for TrpA-3, and

MAL13P1.269 for LysTrpA. The plasmodb ID of P.yoelii

homologs are PY06023 for PypAg1, and PY03625 for PypAg3.

Stars (‘‘*’’) indicate identical amino acids while double (‘‘:’’) and

single (‘‘.’’) dots indicate the conserved and semi-conserved

substitutions, respectively. All tryptophan residues are in boldface.

The positionally conserved tryptophan residues are shaded grey.

Dashes indicate the absence of amino acids. Numbers on the right-

hand side indicate the number of amino acid residue. The

secondary structure elements for PvTRAg33.5 are indicated on

the top of the sequences. The coils are indicated as bold lines and

helices as tubes. The helices are numbered H1 to H8. Alignment is

according to the PvTRAg33.5 amino acids sequence (complete

sequences of all proteins are not shown).

(TIF)

Figure S2 Secondary structure prediction of exon 2
encoded PvTRAg33.5 by webservers and the consensus
secondary structure prediction.

(TIF)

Supplementary Material S1 Secondary Structure Prediction

Servers.

(DOC)
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