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Legumes have developed a unique way to interact with bacteria: in addition to preventing infection from pathogenic bacteria
like any other plant, legumes also developed a mutualistic symbiotic relationship with one gender of soil bacteria: rhizobium.
This interaction leads to the development of a new root organ, the nodule, where the differentiated bacteria fix for the plant the
atmospheric dinitrogen (atmN,). In exchange, the symbiont will benefit from a permanent source of carbon compounds, products
of the photosynthesis. The substantial amounts of fixed carbon dioxide dedicated to the symbiont imposed to the plant a tight
regulation of the nodulation process to balance carbon and nitrogen incomes and outcomes. Climate change including the increase
of the concentration of the atmospheric carbon dioxide is going to modify the rates of plant photosynthesis, the balance between
nitrogen and carbon, and, as a consequence, the regulatory mechanisms of the nodulation process. This review focuses on the
regulatory mechanisms controlling carbon/nitrogen balances in the context of legume nodulation and discusses how the change in

atmospheric carbon dioxide concentration could affect nodulation efficiency.

1. Introduction

Plant-bacteria interactions are diverse in nature. While
bacterial infections of plant cells are mostly perceived as
pathogenic and lead to the activation of the plant defense
system, some could lead to commensalism or, as described
mostly in legumes, to mutualistic symbiotic interactions.
Nodulation, with mycorrhization, is one of the best stud-
ied mutualistic symbiotic interactions between plant and
microorganisms. Nodulation is the product of a controlled
infection process of the legume root system by soil bacteria of
genus Rhizobia and results in the development of a new plant
root organ, the nodule, where differentiated bacteria named
bacteroides fix and assimilate for the plant the atmospheric
dinitrogen.

Because bacteria invest a lot of energy in fixing atmN,
(atmN, + 8¢~ + 8H" + 16ATP = 2NH, + H, + 16ADP + 16P;)
and because legumes provide to the bacteroides a significant
amount of photosynthates (5 to 10 grams of carbons per one
gram of fixed nitrogen [1]), the nodulation process is a high
cost biological process for both partners. Hence, one critical
aspect of the nodulation process is the establishment of

well-balanced interactions between the two partners to lead
to beneficial outcomes for both organisms. This interaction
is highly dependent on communication between the two
partners before, during, and after the initial infection process.

The molecular mechanisms controlling the recognition
of the two partners, the initial infection of legume root
hair cells by mutualistic symbiotic bacteria (i.e., root hair
curling, invasion of the root hair cell by symbiotic nitrogen-
fixing bacteria through the development, and elongation of
the infection thread), legume nodule organogenesis, and the
role of plant hormones in controlling nodulation have all
been investigated during the past 15 years using forward
and reverse genetic tools. These studies have been exten-
sively documented and reviewed [2-7]. Similar strategies
combined with elegant grafting and split-root experiments
have be utilized to characterize the legumes genes control-
ling the autoregulation of legume nodulation (e.g., signal
exchanges between the shoot and the root systems) [8-11].
For example, in the context of mutant shoot, where the shoot-
root communication is jeopardized, nodulation is strongly
enhanced leading to a hypernodulation phenotype [12-16].
Interestingly, plants showing a hypernodulation phenotype
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do not have an enhanced uptake of atmN, compared to
wild type plants [17, 18]. This latter result strongly supports
that additional molecular mechanisms are controlling atmN,
fixation independently of the infection level of the legume
plant by symbiotic bacteria and nodule development. This
review summarizes the cellular and molecular mechanisms
regulating the interactions between infected plant cells and
rhizobia and discusses the potential effects of the increase
of the concentration of atmospheric carbon dioxide on these
interactions.

2. The Secret to This Long-Term
Relationship: The Selection of
the Right Symbiotic Partners

Nodules and more specifically the bacteroides are consid-
ered as an important sink of plant photosynthates. Con-
sequently, a successful nodulation relies on controlling the
exchange of nutrients between the plant and the bacteria.
This clearly delimits plant-microbe symbiotic to pathogenic
relationships. Therefore, the coevolution between legumes
and symbiotic bacteria is highly dependent on photosynthetic
and symbiotic performances of the two partners (i.e., atmN,
fixation efficiency; photosynthesis activity). Based on this
concept, and to face the disparity of the photosynthesis activ-
ity among various legume cultivars, many studies identify
symbiotic strains characterized by various atmN, fixation
efficiencies [19-22].

The diversity of the microbial community in soil is
leading to the presence of multiple bacterial lineages which
can simultaneously infect the same legume plant. This
competition for nodulation leads to the development of
a heterogeneous pool of low- and high-efficiency atmN,-
fixation nodules [23-25]. Not surprisingly, the infection of the
plant by less effective rhizobia strains which are characterized
by low efficiency in fixing atmN, and high uptake of plant
photosynthates is major limitation to plant development.
To select their energy preferred symbionts and maximize
nitrogen uptake without drastically affecting plant carbon
resources, the plant developed various cellular and molecular
mechanisms such as the promotion of the infection of the
root hair cells and nodule by one single bacteria strain.
In addition, ecological and physiological approaches have
clearly demonstrated that legumes can monitor and respond
to the nitrogen-fixing performance of symbiotic bacteria [26],
punishing their low-efficiency hosts by reducing rhizobial
viability and, ultimately, promoting nodule degeneration
[26-29].

These are contributing factors to better discriminate
and “punish” the low versus highly efficient atmN,-fixing
bacteria. Ultimately, the repetitive selection of the favorite
symbionts by the host will affect the microbial ecosystem:
after plant death and nodule degeneration, a significant
population of the most successful symbiotic rhizobia will be
released in the rhizosphere increasing their representation
compared to low efficient rhizobia, bacteria strains slowly
growing in the soil due to limited nutrient availability. Hence,
by preventing infection by nonfixing rhizobia and increasing
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the overall population of highly efficient strains in the
rhizosphere, one long-term outcome of the legume-rhizobia
symbiosis is the preferential selection of the most beneficial
bacteria strains by the plant to maximize nitrogen fixation.
This concept of sanctions by the plant hosts against low
efficient bacteria to maximize atmN,, fixation is supported by
mathematical model [30].

The preferential selection of specific rhizobia strains is
likely a major reason supporting the conservation of the plant
and bacteria genes required for mutualism [31]. One visible
result of the coevolution of host plant and bacterial strains
is the preferential concentration of R. etli carrying the nodC
allele type-« and type-6 in the Mesoamerican and Andean
soils, respectively [32]. Recently, the characterization of the
molecular mechanisms controlling the preferential coloniza-
tion of legume roots by highly efficient rhizobia strains has
been initiated. Zanetti et al. [33] identified P. vulgaris NF-YCI,
a gene encoding a C subunit of the heterotrimeric nuclear
factor NF-Y transcription factor [34] as a key regulator
of the infection of the plant by the most efficient strains
of rhizobia. In their analysis, Zanetti et al. [33] character-
ized the putative orthologs of PvNF-YCI in various plant
species including Arabidopsis thaliana (Atlg08970, AtNF-
YC9) and Glycine max (Glymal9g42460). In M. truncatula,
two genes (Medtrlg082660; Medtr7gl13680) are syntenic to
Glymal9g42460. Upon mining of the soybean and medicago
transcriptome atlases [35-39] and similarly to PvNF-YCI
[33], Glymal9g42460, Medtrlg082660 and Medtr7gl13680
are ubiquitously expressed and not transcriptionally regu-
lated in response to rhizobia (see Supplementary Figure 1
available online at http://dx.doi.org/10.1155/2014/507946).
The ubiquitous expression pattern of these NF-YC legume
genes suggests they control biological functions other than
legume nodulation (e.g., AtNF-YC9, PvNF-YCI orthologous
gene, controls A. thaliana floral transition [40]). It is likely
possible that the regulation of legume nodulation by NF-YC
proteins is dependent on their interaction with nodulation-
specific A and B NF-Y subunits of the heterotrimeric CAATT
transcription factor.

3. Cellular Communication between
the Infected Plant Cells and the Bacteroides

While legume nodulation is initiated by the infection of
the plant host by selected rhizobia, the long-term outcome
the legume nodulation is the establishment of the symbiosis
between the two partners. To reach this goal, a permanent
communication between the plant cells (i.e., root hair cells
and infected cells of the nodule) and the symbiosome is
required. This organelle-like results of the endocytosis of
bacteroides in the infected plant cell. It is delimited by
the symbiosome membrane (SymM) and contains a limited
number of bacteroides separated one another by the symbio-
some space (SymS) [41] (usually two to four in determinate
infected cells, only one in indeterminate infected cells [42-
44]).

Transporters located in the SymM are playing essen-
tial roles in balancing the fluxes of metabolites between
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the plant cell and the bacteroides (see below). Very interest-
ingly, the proteome of the symbiosome very nicely reflects the
complexity of the interaction existing between the plant host
and the symbiotic bacteria [45]. In fact, several molecular
studies clearly highlight the complex molecular organization
of the symbiosome based on the translocation of plant
proteins into the symbiosome membrane or cytoplasm or
both. Plant protein translocation to the SymS depends on
the presence of peptidic symbiosome-localization sequences
[46, 47]. Lending even more support to the impact of
plant proteins in regulating symbiont biology, nodule-specific
cysteine-rich (NCR) peptides synthetized by the galegoid
legume cells were demonstrated to be essential to bacterial
endoreplication, a cellular process characteristic of fully
differentiated bacteroides [48-51]. In M. truncatula, NCR
peptides are directed to the symbiosomes by the defective in
nitrogen fixation 1 (DNF1) protein, a component of the signal
peptidase complex [52]. Ultimately, the NCR peptides will
traffic to the bacterial periplasm and/or cytoplasm.

The role of these various plant proteins in regulating
bacterial endoreplication clearly highlights the influence of
the plant host on the symbiont. This likely allows the plant
to exhibit better control of bacteroid differentiation and,
as a result, exhibit better control of nitrogen fixation. To
better support the relationship existing between the plant,
the bacterium, and nitrogen fixation, transcriptomic and
physiological experiments on M. truncatula mature nodules
clearly show a decrease of the expression of more than 120
NCR genes and the decrease of nitrogenase activity upon
nitrate treatment [53]. In addition to their role in bacteroid
endoreplication, plant NCR proteins also act as antimicrobial
chemical [54]. Adapting to the presence of these peptides,
bacteroides synthetize the BacA protein, an ATP-binding
cassette superfamily (ABC) [54-56]. Together, these studies
support a complex interaction between plant and bacteria
during the latter stage of nodulation where both partners
developed specific sets of genes allowing controlling the
nodulation process.

4. Transport, Conversion, and Storage of
the Products of Plant Photosynthesis during
Legume Nodulation

Plant cell-rhizobia symbiosis is primarily based on the
exchange of metabolites especially sucrose, asparagine, and
glutamine, allowing the balanced exchange of nitrogen and
carbon. Numerous studies focused on the role of transporters
and receptors located in symbiotic biological membranes
[57-59]. Balanced carbon and nitrogen exchanges are also
dependent on the transport of plant photosynthates to the
nodule. There, the products of the photosynthesis are con-
verted into malate in the plant cell through the glycolysis
pathway, the Krebs cycle, the phosphoenolpyruvate carboxy-
lase glycolysis, and the intensive nodule CO, dark fixation
[60, 61]. Malate is assimilated and used by the symbiont.
Ultimately, after its transportation through the SymM [57,
58], carbons will be stored in the bacteroid in the form of
poly-3-hydroxybutyrate (PHB) particles. This carbon source

can be remobilized by the bacteria in response to a stress
(e.g., release of bacteria into the rhizosphere consecutively to
nodule degeneration) and is also used as a redox potential
to allow bacteroides survival in the anaerobic conditions
existing in the nodule, which is the environment necessary
for the optimal fixation of atmN, [62].

To better control the uptake of plant photosynthates
by the bacteroides, legumes develop molecular strategies to
control carbon sequestration in the bacteroides. For example,
in addition to regulating nodulation efficiency the soybean
gene Nucleolar/Mitochondrial protein involved in Nodulation
a (GmNMNa), initially characterized based on its strong and
specific expression in root hair cell and nodules in response to
B. japonicum inoculation [63, 64], controls bacteroid number
in the nodule infected cell as well as the density of PHB
granules in bacteroides. The mitochondrial localization of
GmNMNa protein and the limited accumulation of PHB
in bacteroides upon silencing of GmNMNa support that
GmNMNa influences carbon metabolism in infected soy-
bean nodule cells. Previous reports clearly demonstrated the
essential role of mitochondria in legume infected cells to
presumably maintain plant cell function under microaerobic
conditions [65-67].

Interestingly, it seems that the NMN gene family is
specialized in regulating mutualistic symbiotic plant microbe
interactions since the M. truncatula gene ortholog to
GmNMNa is not only overexpressed during nodulation but
also during mycorrhization (Supplementary Figure 2). This
latter result suggests the functional redundancy between
nodulation and mycorrhization in addition to the conserva-
tion of the initial signaling cascade activated in response to
the Nod and Myc factors [6].

The essential role of PHB during the nodulation process
is also demonstrated by two independent studies. First,
the Sinorhizobium meliloti phbC mutant, mutant defective
in PHB biosynthesis, does not fix atmN, [68]. Second,
Mimosa pudica nodules infected by a modified strain of
the pathogenic Ralstonia solanacearum accumulate PHB.
This bacterial strain carries a mutation in the HRPG gene,
gene previously described as a key regulator of bacterial
virulence via the type III secretion system (T3SS; [69]), and is
expressing the symbiosis genes of Cupriavidus taiwanensis, a
M. pudica symbiotic bacterium [70]. This latter result suggests
at least some similarities between rhizobia and pathogenic
bacteria in uptaking and storing plant photosynthates. These
studies lend even more support that nodulation is the result
of a highly controlled interaction between legumes and soil
bacteria.

5. Evolutionary Perspective of
Legume Nodulation in the Context of
the Environmental Changes

Legume nodulation is a complex biological process involving
multiple levels of coevolution existing between the plant and
symbiotic bacteria (i.e., recognition of plant flavonoids by the
free-living bacteria, recognition of the bacterial Nod factor
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FIGURE 1: The increase of the concentration of atmospheric carbon dioxide will impact nitrogen uptake by the plants to balance ion balances.
On the short term, this massive uptake of nitrogen will lead to the depletion of usable nitrogen resources in soil and the enrichment of the
rhizosphere in carbon (upper cycles in both (a) and (b)). As a consequence, the limited access to nitrogen will lead to the unbalance between
carbon and nitrogen and, as a consequence, to the limited growth of plants. In the case of legumes (b), limited nitrogen availability will
enhance nodulation. The biological fixation of the atmospheric dinitrogen associated with the uptake of carbon dioxide will positively impact
the net primary production of the plant (NPP). This figure was adapted from [78].

by plant receptors lysine kinases, control of bacteria differ-
entiation and endoreplication by plant cells, and balanced
exchanges of nutrients between the two organisms). The
nodulation process is restricted not only to our knowledge
of the infection of the root hair cell by the symbiont but
also, mostly, to the establishment of a controlled interaction
between the plant and the bacteria. This interaction might be
jeopardized due to rapid environmental changes.

The most pessimistic predictions of climate change sug-
gestan increase by 4°C of the current temperature as reported
by the Intergovernmental Panel on Climate Change [71] and
an atmospheric carbon dioxide (atm[CO,]) concentration
rising above 800 parts per million by the year 2100 in
contrast to 390 ppm today (http://www.ipcc-data.org/observ/
ddc_co2.html). Associated with unpredictable rainfall pat-
terns and poor soil management, these environmental
changes will affect not only plant growth but also the com-
position of soil microbial communities including rhizobial
communities. Together, the modification of various climatic
factors will require an adaptation of the legume nodulation
process.

Among these factors, and based on the tight interactions
between the nitrogen and carbon cycles, an increase of the
concentration of atm[CO,] is going to directly affect the
crop’s nitrogen/carbon balance and nodulation. To respect
the balances between ions, it is predicted that plants may
become nutrient limited, including nitrogen-limited, in the
context of a greater carbon input [72, 73]. Models sup-
port that legumes will overcome the problem of nitrogen
limitation by promoting physiological adaptations. These
adaptations include the increase in nodule size, the increase
in nodule number per plant (potentially correlated with an
increase of the number of successful root hair cell infection),
and the increase of nitrogenase activity [74-76] (Figure 1).

The latter also support the idea of an increase in the
allocation of plant photosynthates to the bacteroides and,
more globally, of various ions to respect balances. Hence,
it is assumed that legumes represent a potential solution to
increase carbon sequestration and help to mitigate the impact
of atm[CO,]. While scientists have clearly demonstrated the
impact of atm[CO,] on nodulation [60, 77], the molecular
mechanisms regulating nodulation under high atm[CO,]
remain unknown. In addition, it is unclear how the rhizobia
community will adapt to higher atm[CO,] in particular and
climate change in general. The study of the adaptation of the
microbe and plant as well as their interaction in response to
environmental changes represents new avenues of research
which could impact food production and sustainability on
the long term.
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