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Abstract

Assessing and improving test–retest reliability is critical to efforts to address con-

cerns about replicability of task-based functional magnetic resonance imaging. The

current study uses two statistical approaches to examine how scanner and task-

related factors influence reliability of neural response to face-emotion viewing. Forty

healthy adult participants completed two face-emotion paradigms at up to three

scanning sessions across two scanners of the same build over approximately

2 months. We examined reliability across the main task contrasts using Bayesian lin-

ear mixed-effects models performed voxel-wise across the brain. We also used a

novel Bayesian hierarchical model across a predefined whole-brain parcellation

scheme and subcortical anatomical regions. Scanner differences accounted for mini-

mal variance in temporal signal-to-noise ratio and task contrast maps. Regions acti-

vated during task at the group level showed higher reliability relative to regions not

activated significantly at the group level. Greater reliability was found for contrasts

involving conditions with clearly distinct visual stimuli and associated cognitive

demands (e.g., face vs. nonface discrimination) compared to conditions with more

similar demands (e.g., angry vs. happy face discrimination). Voxel-wise reliability esti-

mates tended to be higher than those based on predefined anatomical regions. This

work informs attempts to improve reliability in the context of task activation patterns

and specific task contrasts. Our study provides a new method to estimate reliability

across a large number of regions of interest and can inform researchers' selection of

task conditions and analytic contrasts.
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1 | INTRODUCTION

Concerns about replicability (Open Science Collaboration, 2015) in

functional magnetic resonance imaging (fMRI) work are growing

(e.g., Poldrack et al., 2017). Improving test–retest reliability is a cor-

nerstone of addressing these concerns. A recent meta-analysis (Elliott

et al., 2019) suggests that test–retest reliability of fMRI task contrasts

is often relatively poor (e.g., intra-class correlation coefficients [ICCs]

< .4). The current study uses two statistical approaches to examine

how scanner effects and task-related factors influence reliability. The

study focuses specifically on task-evoked activation during two face-

emotion-viewing paradigms.

Across experimental paradigms, several factors are known to

influence fMRI reliability. These include scanner- or site-related fac-

tors, participant-related factors, and time-related change. Several

studies have shown that only small proportions of variance tend to be

affected by scanner differences (e.g., Gountouna et al., 2010; Gradin

et al., 2010; Yendiki et al., 2010). However, as such studies can often

confound scanner and practice effects, we use a pseudo-random

assignment to two scanners across three time points, thereby separat-

ing scanner- and time-related variance.

Face-emotion paradigms are often used in studies of individual dif-

ferences as affect-evoking stimuli. In prior studies, the reliability of

fMRI face-emotion paradigms varied by task condition. For example,

prior work typically finds moderate reliability for face vs. baseline con-

trasts, but poor reliability for contrasts between specific face-emotion

types, for example, angry vs. neutral (Haller et al., 2018; Plichta

et al., 2012; Sauder, Hajcak, Angstadt, & Phan, 2013; van den Bulk

et al., 2013; White et al., 2016). The current study utilizes two tasks

that differ in their cognitive demands. One task involves implicit face-

emotion processing, such that face-emotion monitoring is irrelevant to

task performance; the other involves explicit face-emotion judgments.

Many earlier reliability studies focused on a priori regions-of-

interest (ROIs), whereas newer statistical methods have become avail-

able for whole-brain reliability analyses. That said, common

approaches to multiple comparisons correction for whole-brain ana-

lyses, for example, cluster-correction, rely on profound data reduction

that may reduce reliability (Chen et al., 2019; Woo, Krishnan, &

Wager, 2014). Significance tests are conducted independently per

voxel; this massive multiplicity is accounted for by estimating the

probability of a number of contiguous voxels all exhibiting significant

effects. A complementary approach is to leverage the substantial

information present in fMRI scans by using rational, Bayesian princi-

ples that mitigate data reduction by accounting for uncertainty (Chen,

Taylor, Cox, & Pessoa, 2020). Therefore, this study includes a recent

translation of Bayesian methods for group-level fMRI analysis, mea-

suring reliability through two approaches. First, we examined a con-

ventional, voxel-wise linear mixed-effects model with cluster-based

correction. Second, we used a hierarchical Bayesian approach that

examines ROIs across the whole brain, defined independently of the

study data. For this second approach, results are reported based on

an open-source, publicly available Bayesian hierarchical model devel-

oped for fMRI (Chen et al., 2019). This method enables test–retest

analyses that incorporate all ROIs into one model to mitigate the issue

of multiple testing over many units.

The current study examines 40 healthy adult participants using two

face-emotion paradigms, one requiring explicit face-emotion labeling and

one involving implicit, task-irrelevant face-emotion processing. Partici-

pants completed up to three scanning sessions over approximately

2 months. We examine reliability using Bayesian linear mixed-effects

models performed voxel-wise across the brain and a novel Bayesian hier-

archical model in predefined ROIs. Participants were pseudo-randomized

and scanned across two comparable 3T GE MRIs, as would be common

in single-site or harmonized multi-site studies. We expect scanner to

account for minimal variance in temporal signal-to-noise ratio (tSNR) and

fMRI task contrast maps. Moreover, we expect higher reliability among

regions activated during the task at the group level (i.e., regions showing

significant task contrast activity at the first scan session) relative to

regions not activated significantly at the group level. Finally, we expect

to see greater reliability for contrasts involving conditions with clearly

distinct visual stimuli and associated cognitive demands (e.g., face

vs. nonface discrimination) compared to conditions with more similar

demands (e.g., angry vs. happy discrimination).

2 | METHODS

2.1 | Participants

Forty-five participants enrolled in an institutional review board-

approved protocol at the National Institute of Mental Health in

Bethesda, MD. Participants provided written informed consent. All

participants were >18 years old (Age: M = 31.95 years, SD = 9.39;

58% female). Participants were excluded for any current psychiatric

conditions, as determined by the Structured Clinical Interview for

DSM-IV Disorders (Spitzer, Williams, Gibbon, & First, 1992). Further

exclusionary criteria included IQ < 70 on the Wechsler Abbreviated

Scale of Intelligence (WASI; Wechsler, 1999), alcohol or substance

abuse within the last 3 months, significant medical illness, head

trauma, neurological disorder, current psychotropic medication use, or

contraindications to MRI.

Of the 45 individuals who enrolled in the study, 40 participants

(Age: M = 31.76, SD = 9.43; 58% female; IQ: M = 114.70,

SD = 11.16; 38% White, 33% Black or African American, 13% Asian,

16% other) provided useable behavioral and imaging data for at least

two sessions for at least one of the two task paradigms. Participant

data with excessive head motion or poor task performance were

excluded (Section 2.5.3). Participants with only one useable scan after

scan quality assessment were excluded. The final number of partici-

pants included in all analyses for the visual search task was N[Session

1–3] = 40, 35, 33 and for the emotion labeling task: N[Session 1–

3] = 29, 33, 30 (Figure S1).
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2.2 | Task paradigms

Participants completed up to three MRI sessions, across two scanners

in an ABA or BAB order, pseudo-randomized across participants.

Scanning sessions were 2–6 weeks apart (S1–S2: M = 22.39 days,

SD = 8.49; S2–S3: M = 28.83 days, SD = 12.80) and participants

were compensated for each session.

During each scan, participants completed two tasks, a visual sea-

rch with emotional distractors, and an explicit labeling emotional face

task. The order of task completion was counterbalanced across partic-

ipants (but consistent within-participant across session).

2.2.1 | Visual search task

This task, which was modified and adapted for fMRI from a previously

used paradigm (Haas, Amso, & Fox, 2017), required participants to

find a target stimulus in search array following an emotional face

image. Each trial consisted of a grayscale face stimulus (angry, happy,

or scrambled control) presented for 300 ms, then a 600 ms fixation

cross, followed by a visual search array with one black bar target

slanted left or right and 0, 4, or 29 distractors (slanted or vertical

white bars and vertical black bars) displayed for a 2,000 ms response

window (Figure 1). Participants were required to find the target bar

and indicate the direction that it was slanted (left or right) via a

response box button press. Emotional face stimuli were images from

16 actors displaying angry or happy expression drawn from an avail-

able stimulus set (Tottenham et al., 2009). Face stimuli were cropped

to a face-shaped oval and set to grayscale. The pixels of a face stimu-

lus were scrambled to create a control stimulus matched on visual

properties but without any face properties. A fixation cross was pres-

ented between trials for a jittered inter-trial interval (ITI;

min = 500 ms, ITI distribution followed an exponential decay curve).

Stimulus order and ITI jitter were optimized using AFNI's

make_random_timing.py program; 200 different optimizations were

selected and randomized across scan sessions. Participants completed

a total of 243 trials (27 instances of 9 trial types: 3 emotions [angry,

happy, scrambled] � 3 search array sizes [1, 5, 30 bars]) across three

runs. Each run was 365 s long, including �10 s of fixation at the

beginning and end of each run.

2.2.2 | Face-emotion labeling task

This task was adapted for fMRI from a previously used behavioral para-

digm (Stoddard et al., 2016). Participants were required to judge the

emotion of a composite male face drawn from the Karolinska Directed

Emotional Faces (Lundqvist & Litton, 1998). Stimuli were 15 face-

emotion expressions equally spaced/morphed on a continuum from

prototypically angry to prototypically happy. On each trial, a face morph

was presented for 150 ms followed by a 250 ms white noise mask, and

then a response screen with a fixation cross for 2,000 ms (Figure 1).

Participants had to indicate whether the briefly presented face dis-

played an angry or happy expression via a button box press. A fixation

cross was presented for a jittered ITI between trials (min 500 ms, ITI

distribution followed an exponential decay curve). Stimulus presenta-

tion and jitter orders were optimized and pseudo-randomized using

AFNI's make_random_timing.py program. Participants completed a total

of 540 trials across four runs, including 90 fixation trials (i.e., each

morph was presented 30 times). Each run was 412 s long with �10 s of

fixation at the beginning and end of each run.

2.3 | Behavioral data

Accuracy and reaction time data were examined for each task, see

details by task below.

2.3.1 | Visual search task

Accuracy and mean reaction time (to identify the slant of the target

bar) were calculated as a function of condition: face-emotion (angry,

happy, scrambled control) and search array size (1, 5, and 30 bars).

Sessions with accuracy <70% and/or >15% nonresponses were

excluded (2 sessions for 1 participant). The effect of emotion, search

array size, and their interaction were of interest here.

2.3.2 | Face-emotion labeling task

As in prior work (Stoddard et al., 2016), a four-parameter logistic

curve was fit to each participant's choice-response data (parameters

F IGURE 1 Schematics of in-
scanner tasks. Left panel: Visual
search task. Right panel: Face-
emotion labeling task
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included: upper limit, lower limit, slope, and inflection point of the

logistic curve, that is, the morph/emotional intensity where judgments

switch from predominantly happy to angry, adjusted for the maximum

probability of either judgment). An inflection point of 8 indicates no

bias (middle of morphs 1–15), whereas a lower inflection point indi-

cates a hostile interpretation bias, that is, a tendency to judge ambigu-

ous faces as angry, rather than happy. We examined both inflection

point and slope from the logistic regressor for the behavioral data.

Reaction time was examined as linear slope (coding emotion intensity

from angry to happy) and quadratic slope (coding ambiguity from

ambiguous to overt) across face morphs. Additional reaction time indi-

ces (i.e., reaction time difference scores) are presented in the

Supporting Information. Data from participants who failed to correctly

identify at least 70% of the emotional expression of the overtly angry

and happy facial expressions or had more than 15% of missed

responses were excluded (8 sessions across 6 participants).

2.4 | Test–retest assessment

2.4.1 | Behavioral data

Test–retest reliability of task behavior across three scanning sessions

was tested in a Bayesian framework using linear mixed-effects models

in R v3.5.0 (R Core Team, 2015) using the blme package (Chung, Rabe-

Hesketh, Dorie, Gelman, & Liu, 2013). This included a random effect for

participant modeled with Gamma priors (shape = 2, rate = 0.5) and

three fixed effects, one for scanner, one for visit and one for the order

of task acquisition in the scanner. Intraclass correlation coefficients

were estimated as the proportion of participant-specific variance out of

total variance (Bartko, 1966; Shrout & Fleiss, 1979). This approach mir-

rored that used at the voxel-level in the fMRI analyses described below.

ICCs were calculated for task contrasts of interest (see below).

2.4.2 | Visual search task

ICCs were calculated for two reaction time contrasts: faces

vs. scramble control difference scores and log-transformed slope

across search array size for each emotion and scramble control stimuli.

Supporting Information additionally contains ICCs for array size 30 vs.

1 and happy versus angry differences scores and log-transformed

slope across all emotions, as well as the ICC for the difference in accu-

racy for search array size 30 vs. 1.

2.4.3 | Face-emotion labeling task

ICCs were calculated for inflection point and slope of the choice

response data as well as for linear and quadratic slopes of reaction

time data across face emotion morphs. Refer to Supporting Informa-

tion for additional contrasts (e.g., ambiguous vs. overt and happy

vs. angry faces).

2.5 | Imaging data

2.5.1 | Acquisition

Neuroimaging data were collected on two 3T General Electric Signa

750 scanners each using a 32-channel head coil with identical acquisi-

tion sequences. After a sagittal localizer scan, an automated shim cali-

brated the magnetic field to reduce signal dropout due to

susceptibility artifact. BOLD signal was measured by T2*-weighted

echo-planar imaging at a voxel resolution of 2.5 � 2.5 � 3.0 mm (rep-

etition time = 2,300 ms, field of view = 24.0 mm, frequency � phase:

96 � 96; face-emotion labeling: 179 volumes, flip angle = 70�, echo

time = 30 ms, visual search: 151 volumes, flip angle = 75�, echo

time = 25 ms). To reach longitudinal magnetization equilibrium, the

four initial images from each run were discarded. A structural

MPRAGE scan (echo time = min full; inversion time = 425; field of

view = 25.6; frequency � phase = 256 � 256; flip angle = 7�; 1 mm

isotropic voxels) was acquired for co-registration with the

functional data.

2.5.2 | Imaging preprocessing

Neuroimaging data were analyzed using Analysis of Functional

NeuroImages (AFNI; http://afni.nimh.nih.gov/afni/; Cox, 1996)

v18.3.03 with standard preprocessing, including despiking, slice-

timing correction, distortion correction, alignment of all volumes to a

base volume (MIN_OUTLIER), nonlinear registration to the MNI tem-

plate, spatial smoothing to 6.5 mm FWHM kernel (using blur_to_fwhm

flag), masking, and intensity scaling. Spatial smoothing to a desired

blur size assures that a similar smoothness is achieved across scanners

and sessions, rather than adding a set blur kernel to acquired images

that may vary in initial smoothness. First-level models were created

with generalized least squares time series fit with restricted maximum

likelihood estimation of the temporal autocorrelation structure

(3dREMLfit). This work utilized the computational resources of the

NIH HPC Biowulf cluster (http://hpc.nih.gov).

This processing and first-level general linear models (GLM) con-

trolled for head motion. Specifically, we regressed any pair of succes-

sive TRs where the sum head displacement (Euclidean norm of the

derivative of the translation and rotation parameters) between those

TRs exceeded 0.5 mm. TRs, where more than 10% of voxels were

timeseries signal outliers, were also excluded. Sessions were excluded

if the average motion per TR after censoring was >0.25 mm or if

>15% of TRs were censored for motion/outliers. Additionally, six head

motion parameters were included as nuisance regressors in individual-

level models. Temporal signal-to-noise ratio (tSNR = average signal/

standard deviation of noise [GLM residuals]) maps were created from

the first-level model output.

Visual search task

Regressors for nine trial types of interest (3 emotion by 3 search array

size) and error trials were included in first-level GLMs. These were
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modeled with a block hemodynamic response function (BLOCK

(2.9,1)). Four first-level contrasts were created for each participant to

examine: task vs. fixation, faces vs. scrambled control, search array

30 vs. 1, and a log-linear slope across search array size. Figure S2 dis-

plays additional contrasts of angry versus happy, a log slope per emo-

tion, and 30 versus 1 search array.

Face-emotion labeling task

Fifteen regressors of interest were included to represent the 15 face

emotion morphs, modeled with a block hemodynamic response func-

tion (BLOCK (0.15,1)). Separately, two amplitude-modulated regres-

sors as a function of face morph weighed in a linear and quadratic

fashion (AM2), as well as error trials modeled without amplitude mod-

ulation, were coded. Three first-level contrasts were created for each

participant: task (15 face-emotion regressors) vs. fixation, amplitude-

modulated linear slope across morphs (coding emotion intensity from

angry to happy), amplitude modulated quadratic slope across morphs

(coding ambiguity from ambiguous to overt). Additional contrasts of

subtraction values: ambiguous vs. overt faces and angry vs. happy

faces are presented in the Supporting Information.

2.5.3 | Imaging analysis

Activation at Session 1

Linear mixed-effects models (3dLME; Chen et al., 2013) with partici-

pant as a random effect were computed for the first scan session to

examine group average activity for each task condition. Models

included scanner and task order (to indicate which behavioral task

was performed first in the scanner) as fixed-effects covariates. Monte

Carlo simulations were performed using AFNI's 3dClustSim to correct

for multiple comparisons. All analyses were restricted to a whole-brain

mask of 98,386 voxels where 90% of participants (completing either/

both tasks) had useable data at Session 1. Smoothness of the residuals

was estimated based on a Gaussian plus mono-exponential spatial

autocorrelation function (3dFWHMx with -acf flag) for all participants

and averaged yielding an effective smoothness of FWHM = 9.14 mm

(ACF parameters, a = 0.61, b = 3.37, c = 10.88). Two-sided

thresholding was examined for whole-brain tests with first-nearest

neighbor clustering (NN = 1). To obtain a whole-brain family-wise

error correction of p < .05, all results were thresholded at a voxel-wise

p < .001 and a cluster extent of k = 20 voxels.

Voxel-wise test–retest assessment

Bayesian linear mixed-effects models (3dLME; Chen et al., 2018) were

used to compute voxel-wise ICC of BOLD activation across the three

MRI sessions. The Bayesian ICC approach has been demonstrated to

address potential issues in traditional ICC estimates (e.g., negative ICC

values, missing data, confounding effects). Linear mixed-effects

models included a fixed effect for task order and visit and random

effects with Gamma priors (Chen, Saad, Britton, Pine, & Cox, 2013)

for participant and scanner, to estimate of the proportion of partici-

pant, scanner, and residual error variance per voxel for tSNR and task

versus baseline (ICCs with absolute agreement (ICC[2,1]; Shrout &

Fleiss, 1979). For task contrasts, we used ICCs with consistency for-

mulation (ICC[3,1]; examining the consistency in rank rather than

absolute value, which accounts for systematic changes over time, such

as practice effects) with participant as a random effect and fixed

effects for scanner, task order, and visit. For display purposes, ICC

maps of participant-specific variance were binned into color schemes

representing “poor” (ICC < 0.4), “fair” (ICC = .4–.6), “good”
(ICC = .6–.75), and “excellent” (ICC > .75) test–retest reliability.

Conjunction maps (Figure S2) were created for display purposes

to illustrate the overlap in brain regions that were robustly activated

by the task (at the first scanning session; cluster-corrected) and reli-

ably activated across scanner and time (ICC > 0.4). To statistically test

whether more active regions are also more reliable, we use AFNI's

3ddot function to examine whole-brain voxel-wise correlations

between first scanning session tSNR or task activation and their asso-

ciated ICC maps. Additionally, we examined associations between

mean tSNR at the first scanning session and the task versus baseline

ICC maps to assess how tSNR may influence task reliability. AFNI's

3ddot provides a single correlation coefficient describing the associa-

tion between two voxel-wise maps.

ROI-based test–retest assessment

As an alternative to voxel-wise testing with cluster-based multiple

comparisons correction, we conducted ICC analyses across 214 ROIs

covering the whole brain (defined independently of our reliability esti-

mates). These included 200 parcels from a published cortical

parcellation (Schaefer et al., 2018) and 14 subcortical ROIs from the

Harvard–Oxford probabilistic atlas (75% probability for defining the

hippocampus; 50% probability for defining other regions). Contrast

activity was extracted from all ROIs across the three scanning ses-

sions for both tasks and used in these analyses. ICCs at the ROI level

was inferred through a Bayesian multilevel model that integrated all

regions (Chen et al., 2019, 2020). Specifically, each effect was

decomposed into three components that are associated with the vari-

ability across subjects, visits, and regions while the scanner and task

effects were modeled as covariates with the following Bayesian multi-

level formulation,

yijk ¼ a0þa1þa2þξ0iþξ1iþ ξ2iþηjþζ0kþζ1kþζ2kþγijþμ0ikþμ1ik
þμ2ikþν0jkþν1jkþν2jkþεijk ,

where a0, a1, and a2 code the intercept, scanner, and task effects,

respectively; ξ0i, ξ1i , and ξ2i represent the intercept, scanner, and task

effects during the ith session (visit); ηj models the effect of jth subject;

γij characterizes the effect of jth subject during ith session; ζ0k , ζ0k ,

and ζ0k are the intercept, scanner, and task effects at the kth ROI; the

μ and μ terms are the intercept, scanner, and task effects of the ith

session at the kth ROI and the jth subject at the kth ROI, respectively;

finally, ε is the residual term. With a Gaussian assumption for cross-

session, cross-participant, cross-ROI effects, their interactions, and

residuals, the Bayesian model is numerically solved through Markov

Chain Monte Carlo simulations using the R package brms
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(Bürkner, 2017) in Stan (Carpenter, 2017). The ICC at the kth ROI was

assessed through the mean, standard error, and quantile interval

based on the variances (σ2) of the corresponding posterior density:

ICCk ¼
σ2η þσ2ζ0k þσ2ν0k

σ2η þσ2ζ0k þσ2ν0k þσ2ξ0 þσ2γ þσ2μ0k þσ2ν0k þσ2ε
k¼1,2,…,214ð Þ

The integrative Bayesian model has two main advantages for ICC

computation over the conventional approach through linear mixed-

effects modeling (Chen et al., 2018). One is to dissolve multiple test-

ing by incorporating all spatial units (regions) into one model and rely-

ing on “global calibration” across units; in contrast, conventional

voxel-wise ICC analysis typically requires cluster-based correction for

multiple comparisons. The other advantage is the availability of uncer-

tainty estimates and standard deviations based on the posterior sam-

ple draws, compared to the difficulty of assigning adequate degrees of

freedom in a linear mixed-effects model. For additional details on the

Bayesian multilevel formulation and tables comparing the Bayesian

model to the conventional linear mixed-effects ICCs for each of the

200 cortical parcels and 14 subcortical ROIs, see Supporting

Information.

3 | RESULTS

3.1 | Behavioral data

3.1.1 | Visual search task

At the first scan session, a significant effect of search array size (F

[1.78, 69.24] = 13.94, p < .001) indicated lower accuracy in the

30 search array condition compared to both the 0 (t[78] = 5.16,

p < .001) and 5 search array condition (t[78] = 3.55, p = .002). For

reaction time, both an effect of search array (F[1.72, 67.16] = 270.33,

p < .001) and emotion emerged (F[1.81, 70.70] = 3.28, p = .048), with

slower reaction times with increasing distractors (0 vs. 4: t

(78) = �8.89, p < .001, 4 vs. 29: t(78) = �14.16, p < .001, 0 vs. 29: t

(78) = �23.05, p < .001) and following angry faces compared to

scramble control stimuli (t(78) = �2.53, p < .04). No search array by

emotion interaction was noted (all ps > .05). Test–retest reliability for

reaction time was poor for the faces vs. scramble control difference

score (ICC = .12), but moderate–good for the log-transformed slope

by search array (angry: ICC = .57, happy: ICC = .64, scramble control:

ICC = .68, average log-transformed slope across emotions:

ICC = .83). Refer to Table S1 for a summary of ICCs for behavioral

metrics.

3.1.2 | Face-emotion labeling task

A significant quadratic trend emerged for reaction time (F

[1, 404] = 147.04, p < .001) with markedly slower responses to

ambiguous relative to overt happy or angry faces (t

[404] = �12.13, p < .001). No significant effect was noted for the

linear trend (angry to happy) on reaction time (p > .05). ICCs for

the contrasts of interest were ICC = .55 (inflection point of the

logistic regressor), ICC = .46 (slope of the logistic regressor),

ICC = .55 (linear slope for reaction time), and ICC = .59 (quadratic

slope for reaction time). Refer to Table S2 for a summary of ICCs

for behavioral metrics.

3.2 | Imaging data

3.2.1 | Scanner effects on tSNR

We first investigated scanner effects on tSNR using both voxel-wise

analyses and ROIs covering the whole brain.

Voxel-wise analysis

Average tSNR (at the first scan) for the visual search task was

M = 212.84 (SD = 28.58) and for the face-emotion labeling task

M = 223.33 (SD = 28.01). For both tasks, we found participant-

specific variance in tSNR to be highly reliable across the three scan-

ning sessions (Figure 2a). Higher ICCs for scanner-specific relative to

participant-specific effects were only seen in white matter. The mean

tSNR map (at the first session) was highly correlated with voxel-wise

participant-specific ICCs for both paradigms (visual search: r = .92;

face-emotion labeling: r = .89), that is, voxels with higher tSNR were

more reliable over scans.

ROI-based analysis

Figure 3a displays a surface rendering of participant-specific ICCs of

cortical parcels for tSNR in the Bayesian multi-level ROI analyses.

Refer to Tables S11 and S13 for a list of participant-specific ICCs for

each of the 200 cortical parcels and 14 subcortical ROIs for each task,

presented alongside the conventional linear mixed-effects approach

for each parcel.

3.2.2 | Reliability of task contrasts

We next investigated reliability of the task contrasts for each para-

digm utilizing both voxel-wise and ROI analyses. Table 1 contains “at-
a-glance” summaries of reliability estimates of the main behavioral

indices and fMRI contrasts for each task; detailed tables can be found

in Tables S3–S6.

Voxel-wise analysis of visual search task

First, for the task vs. baseline contrast, scanner-associated variance

was minimal, with no scanner-associated variance surpassing the

threshold of ICC > .4 (Figure 2b). Reliable participant-specific variance

was observed in visual, parietal, and prefrontal cortices, including the

inferior-frontal and middle frontal gyri. ICCs for the task vs. baseline

contrast correlated positively with both mean tSNR (r = .82) and task

vs. baseline activity (r = .60) at the voxel-wise level.
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Next, two task contrasts of interest were examined (Figure 2c).

Faces vs. scrambled contrast signal in visual cortex/fusiform gyrus

was both active at the first session and reliable at ICC > .4. Note that

the right amygdala was also active at the first session but was not reli-

able at a threshold of ICC > .4. Average faces vs. scrambled contrast

activity at the first session was weakly correlated with the associated

reliability map (r = .29) at the voxel-wise level.

The log-transformed slope analysis revealed contrast signal in

visual, parietal, and bilateral dorsal lateral prefrontal cortex (dlPFC)

regions, signal that was also reliable across time. The anterior insular

showed significant activation at the first session, but was not reliable

at ICC > .4. Average log-transformed slope activity at the first session

was correlated with the associated reliability map (r = .55). Additional

contrasts (angry vs. happy and log slopes per emotion) and tables

detailing group-level activation at the first scanning session and clus-

ters of ICC > .4 are presented in Figure S2.

Voxel-wise analysis of face-emotion labeling task

As above, scanner-associated variance was minimal for the task

vs. baseline contrast, and reliable participant-specific variance was

F IGURE 2 Voxel-wise analysis. (a) Scanner effects on temporal signal-to-noise ratio (tSNR) and (b) task versus baseline contrasts. For both
tasks, participant-specific variance in tSNR was highly reliable over time. Higher ICCs for scanner-specific relative to participant-specific effects
were only seen in white matter. (c) Conjunction maps between the first group-level activation for main task contrast at a corrected significance
level of .05 based on voxel-wise p < .001 and ICC maps at a threshold of ICC > 0.4
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observed in visual, motor, parietal, and prefrontal cortices (Figure 2b).

Task vs. baseline ICCs positively correlated with both mean tSNR

(r = .84) and the task versus baseline activity at the first session (r = .65).

Next, two task contrasts of interest were examined (Figure 2c).

The linear slope across face-morphs (coding emotion intensity from

angry to happy) reliably tracked motor response in the bilateral motor

cortex. Average linear slope activity at the first session was correlated

with the associated reliability map (r = .61).

For the quadratic slope across morphs (coding ambiguity from

ambiguous to overt), reliable signal (ICC > .4) overlapped with regions

of significant activation at the first session in the bilateral dlPFC/

anterior insula, supplementary motor area/anterior cingulate cortex

(ACC). Average quadratic slope activity at the first session was corre-

lated with the associated reliability map (r = .48).

Additional contrasts (i.e., difference value: ambiguous vs. overt

faces, happy vs. angry faces) and tables detailing group-level

F IGURE 3 Surface renderings of unthresholded maps of ROI ICCs for both tasks using a Bayesian hierarchical model. (a) tSNR and (b) task
versus baseline contrasts showed reliable participant-specific variance, while reliability of main task contrasts faces versus scrambled contrast
signal and log-transformed slope exhibited patterns of largely “poor” reliability
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activation at the first scanning session and clusters of ICC > .4 are

presented in Figure S2.

ROI-based analysis

Similar test-restest results were observed in Bayesian multi-level ana-

lyses of ROIs covering the whole-brain for both tasks. Figure 3b,c dis-

plays surface renderings of maps of ROI ICC for each contrast. Refer

to Tables S12 and S14 for the full list of ICCs for each of the 200 corti-

cal parcels and 14 subcortical ROIs.

4 | DISCUSSION

This study examined test–retest reliability of neural responses during

two face-emotion paradigms, one requiring explicit, task-directed

face-emotion labeling, and one involving implicit, task-irrelevant face-

emotion processing. Three key findings emerged. First, scanner

effects accounted for minimal variance in temporal signal-to-noise

ratio (tSNR) and fMRI activity maps. Second, regions showing signifi-

cant task-contrast activity showed higher reliability than regions that

TABLE 1 Summary of reliability estimates for main behavioral indices and fMRI task contrasts

Face-emotion labeling task

Behavioral indices ICC (3,1)

Choice response: Inflection point 0.55

Choice response: Slope 0.46

Mean RT: Linear slope 0.55

Mean RT: Quadratic slope 0.59

fMRI contrasts ICC (3,1) > .4 Activation p < .001

Linear slope R & L postcentral gyrus, R & L precentral

gyrus, R & L SMA, R & L cerebellum, R

supramarginal gyrus, L paracentral lobule,

L middle frontal gyrus, R superior parietal

lobule

R & L postcentral gyrus, R & L cerebellum, R

& L SMA, R & L Rolandic operculum, R &

L thalamus, L putamen

Quadratic scope R superior medial gyrus, R & L inferior

frontal gyrus, L & R precentral gyrus, L

SMA, R superior parietal lobule, L

postcentral gyrus, L insula lobe

L SMA, R inferior frontal gyrus, R & L

angular gyrus, R & L insula lobe, L middle

frontal gyrus, L precentral gyrus, L mid

orbital gyrus, L middle cingulate cortex, L

superior frontal gyrus, L precuneus, R

inferior occipital gyrus, R middle occipital

gyrus

Visual search task

Behavioral indices ICC (3,1)

Accuracy: 30–1 0.47

Mean RT face versus scramble 0.12

Mean RT log-transformed slope 0.83

fMRI contrasts ICC (3,1) > .4 Activation p < .001

Face versus scramble L middle occipital gyrus, R & L precentral gyrus, R

inferior frontal gyrus, R inferior temporal gyrus, L

middle temporal gyrus, L cuneus

R & L fusiform gyrus, R inferior occipital

gyrus, R middle temporal gyrus, R

hippocampus

Log-transformed slope R & L fusiform gyrus and R superior occipital gyrus L middle occipital gyrus, L precentral gyrus,

L precuneus, R & L superior frontal gyrus,

R inferior frontal gyrus, L SMA, R

thalamus, R calcarine gyrus, R

supramarginal gyrus, R & L insula lobe, R

& L parahippocampal gyrus, R cerebellum,

R putamen, L superior temporal gyrus, R

postcentral gyrus, cerebellar vermis

Note: This table provides an “at-a-glance” summary of behavioral and neural reliability findings alongside group-level voxel-wise activation patterns at the

first scan session for the visual search and emotion labeling tasks. The test–retest reliability of main behavioral indices is noted, that is, the intra-class

correlation coefficient (ICC) of participant-specific variance. Full behavioral reliability results are presented in Tables S1 and S2. A brief descriptive

summary of regions exhibiting at least “fair” reliability (ICC > .4) in voxel-wise analyses for main tasks contrasts is also presented, full results are presented

in Tables S3–S6.

HALLER ET AL. 2117



did not show strong task-related activity at the group level. Finally,

across both tasks, we found greater reliability for task contrasts

involving conditions with clearly distinct visual stimuli and associated

cognitive demands (e.g., face vs. non-face discrimination) compared to

conditions with more similar demands (e.g., angry vs. happy

discrimination).

Variability in tSNR and activation across scanners is undesirable

for multi-scanner/multi-site studies. Previous work has generally

reported relatively little systematic variability in fMRI signal across

scanners (Noble et al., 2017), specifically in subtraction contrasts

(Nielson et al., 2018). However, some studies combining data across

scanners of different field strength and/or from different vendors or

models find larger scanner effects (Friedman, Glover, Krenz,

Magnotta, & First, 2006). Although we found substantial white matter

variance to be scanner-specific, we found little variance accounted for

by scanner in gray matter. Our study employed scanners from the

same vendor as is typical for single-site or harmonized multi-site stud-

ies; nonetheless, it is likely that effects would be larger for studies

with less consistent hardware. Continuing to examine possible sys-

tematic scanner differences is important as differences may also be

vendor-specific. Different software solutions can be adopted to har-

monize systematic scanner differences without removing other vari-

ance of interest. Alternatively, including scanner as a covariate can

help partition scanner-associated variance.

Past studies have typically found reliability estimates of task-

based imaging to be relatively poor across commonly used tasks

(e.g., ICCs < .4; Elliott et al., 2019), despite robust group-level activa-

tion. Using two face-emotion studies, we partially confirmed patterns

of low reliability in some of the key regions for face-emotion studies

(e.g., amygdala, subgenual ACC). Though not always the case, regions

that are robustly activated at the group-average level tend to exhibit

less between-individual variability, and problematically, this variability

is not stable within an individual over time (i.e., activity is robust but

not reliable). In contrast, other regions may show stronger between-

individual differences (leading to lower/less robust mean signal) that

allows for variability that is consistent across time (Chen et al., 2021b;

Hedge, Powell, & Sumner, 2018). Hence, sub-optimal levels of reliabil-

ity may, for some tasks, derive from design features that aim to maxi-

mize group-level activation (thereby implicitly minimizing individual

differences; Hedge et al., 2018; Lissek, Pine, & Grillon, 2006).

Herein, we do see moderate positive voxel-wise correlations

between reliability and group-average task activation. In particular, con-

trasts with more dissimilar visual and cognitive demands (face

vs. scramble control, ambiguous vs. overt faces) elicited more extensive

and reliable activation. Note that activity–reliability correlations are in part

driven by voxels that are neither activated nor reliable in any given con-

trast. Also, we identified some regions that did not show strong group-

level activation but did show participant-level reliability; such regions may

represent new candidates for individual differences research.

Low reliability estimates may also reflect analytic decisions, like

contrast construction. Previous work has shown that constructing

first-level subtraction contrasts/difference scores can significantly

impact reliability. Typically, there are high correlations between brain

activation to different task conditions, often in key face-emotion

regions, such as the amygdala (activation to face and shape conditions

correlating at >.9; Infantolino, Luking, Sauder, Curtin, & Hajcak, 2018).

Thus, these contrasts can subtract out reliable participant variance

shared among conditions. Although we focus on fMRI outcomes, this

issue also impacts the reliability of behavioral difference score, such

as RT. In our data, RT difference scores (e.g., for face vs. scramble con-

trol) showed poor stability, while most other measures (slopes and

logistic regressors) showed moderate stability. The magnitude of the

ICC for the behavioral metric did not appear to be indicative of ICC

values of associated fMRI contrast activity.

The current study included two approaches to calculating reliabil-

ity estimates for the whole brain: voxel-wise linear mixed-effects

models and Bayesian hierarchical modeling of ROIs across the whole

brain. The latter approach has several noteworthy advantages. First,

we leverage Bayesian hierarchical modeling to examine many ROIs in

one model, allowing for whole-brain coverage while mitigating multi-

ple testing. This is an advance from previous studies that often

focused on a smaller number of a priori regions to minimize correction

for multiple comparisons. Second, the Bayesian approach generates

uncertainty estimates and standard deviations based on the posterior

sample draws in contrast to frequentist linear mixed-effects models,

with which it can be difficult to assign adequate degrees of freedom.

Although using an a priori whole-brain atlas allows us to define ROIs

independent of the current data and avoid circularity, a predefined

anatomical or parcellation atlas may not best capture the most reliable

functional units for a given task (and estimates may vary based on the

chosen atlas). Nonetheless, our two statistical approaches largely con-

verged, but ICCs were generally higher in the voxel-wise approach.

This is in part due to a “global calibration” across spatial units in the

hierarchical model. Leveraging the distribution of estimates across

ROIs helps to minimize outlier values and ideally yields a better esti-

mate of true reliability. In our data, this partial pooling/shrinkage gen-

erally decreased regional ICC estimates given overall low reliability

estimates across the brain.

Studying individual differences in a resource-intensive setting,

such as fMRI, can be challenging. Previous work has shown how first-

level model specifications (e.g., hemodynamic response function and

noise correction methods; Fournier, Chase, Almeida, & Phillips, 2014)

can affect reliability estimates. Herein, we suggest some additional

measurement and statistical approaches that may help increase reli-

ability of extracted metrics in existing paradigms. First, though many

studies rely on subtraction contrasts (often to minimize statistical

complexity and computational requirements), these can remove reli-

able participant variance. Instead, modeling conditions as a factor with

multiple levels within a repeated-measures ANOVA or a linear mixed-

effects framework can help retain reliable condition-shared variance.

Furthermore, trial-wise modeling approaches using amplitude modula-

tion or hierarchical models (Chen et al., 2021) can also be helpful in

modeling cognitive processes precisely and circumvent subtraction

contrasts. Additional modeling approaches, including structural equa-

tion (Cooper, Jackson, Barch, & Braver, 2019) and computational

modeling, are growing and hold promise to increase reliability. For
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new data collection, it will be important to make design choices to

improve reliability, for example by increasing the potency of stimuli or

making conditions more distinct (i.e., less correlated), while still isolat-

ing the cognitive process of interest. Additionally, selecting sequences

with improved tSNR will result in increased statistical power; similarly,

increasing the number of trials can optimize the statistical efficiency

of designs (Chen et al., 2021c).

This study provides strong data on reliability in healthy adults and

has several strengths. These include assessing reliability across three

points in time, which allowed us to separate scanner- and time-related

variance components. We also examine two different face-emotion

tasks requiring different attentional demands, and we compare two

statistical approaches to reliability estimates. However, the current

study also has several limitations. First, the generalizability of these

estimates will need to be tested in individuals with psychopathology

and pediatric samples. Second, there was variability in the time

between sessions across participants, though this was constrained to

2–6 weeks. This timeframe would be similar to pre-/post-scanning for

many psychiatric treatment trials, but reliability over longer time

frames would still need to be examined, for example, to match devel-

opmental studies over years. Third, our sample size was larger than

many reliability studies but is still relatively limited, especially given

only moderately reliable behavioral effects. Fourth, scanners were of

the same build and tasks were run with identical sequences across

scanners to minimize scanner-related variance. This reflects an ideal

scenario and may not be the case for many large multi-site projects.

The current report adds to the small but growing corpus of work

on test–retest reliability of task-based fMRI activation by examining

the influence of specific scanners and task-related factors on esti-

mates of reliability. Greater reliability was found in regions activated

during the task at the group level and for contrasts involving condi-

tions with clearly distinct cognitive demands. This work highlights the

importance of assessing reliability in the context of task activation

patterns and specific task contrasts.
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