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Abstract

Protein-nucleotide interactions are ubiquitous in a wide variety of biological processes. Accurately identifying interaction
residues solely from protein sequences is useful for both protein function annotation and drug design, especially in the
post-genomic era, as large volumes of protein data have not been functionally annotated. Protein-nucleotide binding
residue prediction is a typical imbalanced learning problem, where binding residues are extremely fewer in number than
non-binding residues. Alleviating the severity of class imbalance has been demonstrated to be a promising means of
improving the prediction performance of a machine-learning-based predictor for class imbalance problems. However, little
attention has been paid to the negative impact of class imbalance on protein-nucleotide binding residue prediction. In this
study, we propose a new supervised over-sampling algorithm that synthesizes additional minority class samples to address
class imbalance. The experimental results from protein-nucleotide interaction datasets demonstrate that the proposed
supervised over-sampling algorithm can relieve the severity of class imbalance and help to improve prediction performance.
Based on the proposed over-sampling algorithm, a predictor, called TargetSOS, is implemented for protein-nucleotide
binding residue prediction. Cross-validation tests and independent validation tests demonstrate the effectiveness of
TargetSOS. The web-server and datasets used in this study are freely available at http://www.csbio.sjtu.edu.cn/bioinf/
TargetSOS/.
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Introduction

Protein-ligand interactions are ubiquitous in virtually all

biological processes [1–3], and the prediction of protein-ligand

interactions using automated computational methods has been an

area of intense research in bioinformatics fields [4–15]. As

important ligand types, nucleotides (e.g., ATP, ADP, AMP,

GDP, and GTP) play critical roles in various metabolic processes,

such as providing chemical energy, signaling, and replication and

transcription of DNA [10–15]. The residues in a protein to which

nucleotides bind are called protein-nucleotide binding residues. By

interacting with the binding residues in a protein, nucleotides can

carry out their specific biological functions. Furthermore, protein-

nucleotide (e.g., protein-ATP) binding residues are considered

valuable targets of therapeutic drugs [12]. Hence, accurate

identification of nucleotide-binding residues in protein sequences

is of significant importance for protein function analysis and drug

design [16], especially in the post-genomic era, as large volumes of

protein data have not been functionally annotated.

Much effort has been made to identify and characterize

nucleotide-binding residues from protein sequences. In the early

stages, motif-based methods [17–21] dominated this field. For

most motif-based methods, conserved motifs in known nucleotide-

binding protein sequences or structures are first identified; then,

the identified motifs are further utilized to uncover potential

binding residues in those un-annotated proteins. Although

considerable progress has been achieved in motif-based methods,

challenges remain. As Chen et al. [14] reported, motif-based

methods often characterize the protein-nucleotide interaction

motifs within a relatively narrow range, usually only for a selected

interaction mode for a single nucleotide type; in addition, some

motif-based methods require tertiary protein structure as the
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input, which substantially limits their utility, as it is very common

in many realistic application scenarios for a given protein target to

only have sequence information and no corresponding tertiary

structure information [22,23].

The above-mentioned challenges have motivated researchers in

this field to develop machine-learning-based methods for predict-

ing protein-ligand binding residues solely from protein sequences

[4–6,13,14,22,24–26]. In pioneering work, Chauhan et al. [13]

designed a predictor, called ATPint, specifically for predicting

protein-ATP binding residues. This group also designed a GTP-

specific predictor for protein-GTP binding residue prediction [27],

and their earlier studies demonstrated the feasibility of predicting

protein-nucleotide binding residues solely from protein sequence

information [13,27]. Later, researchers tended to design predictors

that covered a wide range of nucleotide types. For example, Firoz

et al. [15] implemented a method of performing binding residue

predictions for six nucleotide types, i.e., AMP, GMP, ADP, GDP,

ATP and GTP. Recently, Chen et al. [14] presented a predictor,

called NsitePred, that could also be used to perform binding

residue predictions for multiple nucleotides based on much larger

training datasets. All in all, great success has been achieved in this

field.

Machine-learning-based protein-nucleotide binding residue

prediction is, in fact, a typical imbalanced learning problem

because the number of negative samples (i.e., non-binding

residues) is significantly larger than that of positive samples (i.e.,

binding residues). Previous studies in the machine-learning field

have shown that direct application of traditional machine-learning

algorithms tends to result in a bias toward the majority class [28].

Unfortunately, most of the existing machine-learning-based

predictors, including ATPint [13], ATPsite [24], and NsitePred

[14], have not carefully considered this serious class imbalance

phenomenon.

Considerable effort has been made to develop effective solutions

for imbalanced learning [28]. Roughly speaking, the existing

solutions for imbalanced learning can be grouped into three

categories: sample rescaling-based methods [29,30], learning-

based methods (e.g., cost-sensitive learning [31,32], active learning

[33,34], kernel learning [35,36]), and hybrid methods, which

combine both the sampling rescaling and learning methods

[37,38].

Among the above-mentioned solutions, the sample rescaling

strategy (e.g., over-sampling [39] and under-sampling [40]) is the

basic technique, and it attempts to balance the sizes of different

classes by changing the numbers and distributions within them;

this strategy has been demonstrated to be effective for imbalanced

learning problems [29,30]. For example, we recently investigated

class imbalance in the protein-nucleotide binding prediction

problem and found that prediction performance could be

improved by balancing the number of samples in different classes

via an under-sampling technique [22,25,26].

In this study, we seek to overcome the problem of class

imbalance via an over-sampling technique. In contrast to the

under-sampling technique, which reduces the size of the majority

class, an over-sampling technique attempts to balance the sizes of

different classes by generating additional samples for the minority

class. To date, many over-sampling techniques have emerged,

including random over-sampling (ROS), the synthetic minority

over-sampling technique (SMOTE) [39], and adaptive synthetic

sampling (ADASYN) [41]. Motivated by these existing over-

sampling techniques, in this study, we propose a new supervised

over-sampling (SOS) algorithm that synthesizes new additional
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samples for minority classes using a supervised process to

guarantee the validity of the synthesized samples. Additionally, a

new predictor, called TargetSOS, is developed based on the

proposed SOS for performing protein-nucleotide binding residue

prediction. The experimental results from two benchmark datasets

demonstrate the effectiveness of TargetSOS. TargetSOS and the

datasets used in this study are freely available at http://www.csbio.

sjtu.edu.cn/bioinf/TargetSOS/.

Materials and Methods

Benchmark Datasets
Two benchmark datasets were chosen to evaluate the efficacy of

the proposed SOS algorithm and of the implemented predictor,

TargetSOS. The first dataset [13], ATP168, consists of 168 non-

redundant, ATP-interacting protein sequences, of which the

maximal pairwise sequence identity is less than 40%. In total,

ATP168 includes 3104 and 59226 residues for ATP binding and

ATP non-binding, respectively. The second dataset [14], NUC5, is

a multiple nucleotide-interacting dataset that consists of five

training sub-datasets, each for a specific type of nucleotide; more

specifically, NUC5 consists of 227, 321, 140, 56, and 105 protein

sequences that interact with five types of nucleotides, i.e., ATP,

ADP, AMP, GTP, and GDP, respectively, and the maximal

pairwise identity of the sequences of each of the five sub-datasets is

less than 40%. In addition, for each nucleotide type, Chen et al.

[14] constructed a corresponding, independent validation dataset

to evaluate the generalization capability of a prediction model. For

each independent validation dataset, the maximal pairwise

sequence identity is culled to 40%. Furthermore, any sequence

in the independent validation dataset shares less than 40% identity

to sequences in the corresponding training sub-dataset. Table 1

summarizes the detailed compositions of the two benchmark

datasets. All data listed in Table 1 can be found in Supporting

Information S1. Further details regarding the construction of the

datasets can be found in [13] and [14].

Feature Representation and Classifier
The main purpose of this study is to demonstrate the feasibility

of the proposed SOS algorithm and its effectiveness in protein-

nucleotide binding residue prediction. To fulfill the aforemen-

tioned purpose, only the most commonly used feature represen-

tation methods and classifiers in the field of protein-nucleotide

binding residue prediction are used. More specifically, the

position-specific scoring matrix (PSSM) and predicted protein

secondary structure (PSS), both of which have been demonstrated

to be especially useful for protein-nucleotide binding residue

prediction [13,14,25,26], are taken to extract discriminative

feature vectors. Support vector machine (SVM) [42] is used as a

classifier for constructing a prediction model.

A. Extract Feature Vector from the Position-Specific

Scoring Matrix. Position-specific scoring matrix (PSSM) de-

rived features have been widely used in bioinformatics including

intrinsic disorder prediction [43–45], protein secondary structure

prediction [46], transmembrane helix prediction [47–49], protein

3D structure prediction [50], and protein-ligand binding predic-

tion [14,51]. In this study, we obtain the PSSM of a query protein

sequence by performing PSI-BLAST [52] to search the Swiss-Prot

database through three iterations and with 0.001 as the E-value

cutoff against the query sequence. To facilitate the subsequent

computation, we further normalize each score, denoted as x, that

is contained in the PSSM using the logistic function

f (x)~1= 1ze{xð Þ. Based on the normalized PSSM, the feature

vector, denoted LogisticPSSM, for each residue in the protein

sequence can be extracted by applying a sliding-window

technique, as follows [25,26]: for a residue at position i along

the query sequence, its LogisticPSSM feature vector consists of the

normalized PSSM scores of the query sequence that correspond to

a sequence segment of length W that is centered on i. It has been

demonstrated that W = 17 is a better choice for several protein-

ligand binding residue prediction studies [25,26]. Consequently,

the dimensionality of the LogisticPSSM feature vector of a residue

is 17620 = 340-D.

Table 2. Performance comparisons of with-SOS and without-SOS predictions for ATP168 and ATP227 over five-fold cross-
validation under Balanced Evaluation.

Dataset Upper-Sampling Sen (%) Spe (%) Acc (%) MCC AUC

ATP168 with-SOS 80.0 80.1 80.1 0.311 0.878

without-SOS 75.2 77.2 77.1 0.262 0.843

ATP227 with-SOS 81.3 81.7 81.7 0.306 0.893

without-SOS 79.0 79.1 79.1 0.266 0.871

doi:10.1371/journal.pone.0107676.t002

Table 3. Performance comparisons of with-SOS and without-SOS predictions for ATP168 and ATP227 over five-fold cross-
validation under MaxMCC Evaluation.

Dataset Upper-Sampling Sen (%) Spe (%) Acc (%) MCC AUC

ATP168 with-SOS 42.3 99.2 96.3 0.536 0.878

without-SOS 35.2 98.5 95.3 0.415 0.843

ATP227 with-SOS 46.3 99.2 97.0 0.553 0.893

without-SOS 40.1 98.9 96.5 0.473 0.871

doi:10.1371/journal.pone.0107676.t003

Over-Sampling Algorithm and Protein-Nucleotide Binding Prediction
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B. Extract Feature Vector from the Predicted Protein

Secondary Structure. PSIPRED [53], which has been widely

used in bioinformatics [54,55], can predict the probabilities of

each residue in a query protein sequence belonging to three

secondary structure classes, i.e., coil, helix, and strand. We

obtained the predicted protein secondary structure by performing

PSIPRED against the query sequence. The obtained predicted

secondary structure is an L63 probability matrix, where L is the

length of the protein sequence. Similar to the LogisticPSSM
feature extraction, we can extract a 1763 = 51-D feature vector,

denoted as PSS, for each residue in the protein by applying a

sliding window of size 17.

The final discriminative feature vector of a residue is formed by

serially combining its LogisticPSSM feature with the correspond-

ing PSS feature, and the dimensionality of the obtained feature

vector for the residue is 340+51 = 391-D.

C. Support Vector Machine. Support vector machine

(SVM), which was proposed by Vapnik [42], has been widely

used in a variety of bioinformatics fields, including the protein-

nucleotide binding residue prediction [13,14] considered in this

study. In view of this, we will also use SVM as the base-learning

model to evaluate the efficacy of the proposed SOS algorithm.

Here, we will briefly introduce the basic idea of SVM.

Let f(xi,yi)gN
i~1 be the set of samples, where xi[Rd and

yi[fz1,{1g are the feature vector and the corresponding label of

the i-th sample, respectively, and +1 and 21 are the labels of

positive class and negative class, respectively.

In linearly separable cases, SVM constructs a hyperplane that

separates the samples of two classes with a maximum margin. The

optimal separating hyperplane (OSH) is constructed by finding

another vector, w, and a parameter, b, that minimizes
1

2
wk k2

and

satisfies the following conditions:

yi
: w:xizbð Þ§1, for i~1,2,3, � � � ,N ð1Þ

where w is a vector normal to the hyperplane, and wk k2
is the

Euclidean norm of w.

The solution is a unique, globally optimized result with the

following expansion:

Table 4. Performance comparisons between SOS and ROS, SMOTE, and ADASYN for ATP168 and ATP227 over five-fold cross-
validation under MaxMCC Evaluation.

Dataset Over-Sampling Method Sen (%) Spe (%) Acc (%) MCC AUC

SOS 42.3 99.2 96.3 0.536 0.878

ATP168 ADASYN [41] 41.7 99.0 96.1 0.512 0.877

SMOTE [39] 41.4 99.0 96.1 0.511 0.860

ROS 39.2 98.8 95.8 0.474 0.846

SOS 46.3 99.2 97.0 0.553 0.893

ATP227 ADASYN [41] 46.5 98.9 96.8 0.537 0.896

SMOTE [39] 44.7 99.0 96.8 0.526 0.880

ROS 42.9 99.1 96.9 0.522 0.876

doi:10.1371/journal.pone.0107676.t004

Figure 1. ROC curves of with-SOS and without-SOS predictions for ATP168 and ATP227 over five-fold cross-validation. (a) ROC
curves for ATP168; (b) ROC curves for ATP227.
doi:10.1371/journal.pone.0107676.g001
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w ~
XN

i~1
yiaixi ð2Þ

Support vectors are those xi, whose corresponding aiw0.

Once the w and b are found, a query input x can be classified as

follows:

f (x) ~ sign
XN

i~1
yiaixi

� �
:xzb

� �
ð3Þ

To allow for mislabeled examples, Corinna Cortes and

Vladimir N. Vapnik suggested a modified maximum margin idea,

i.e., ‘‘soft margin’’ technique [56].

For each training sample, a corresponding slack variable is

introduced: jiw0, i~1,2,3, � � � ,N . Accordingly, the relaxed

separation constraint is given as:

yi
: w:xizbð Þ§1{ji, for i~1,2,3, � � � ,N ð4Þ

Then, the OSH can be solved by minimizing.

1
2

wk k2
zc

PN
i~1 ji ð5Þ

where c is the regularization parameter.

Furthermore, to address non-linearly separable cases, the

‘‘kernel substitution’’ technique is introduced as follows: first, the

input vector xi [Rd is mapped into a higher dimensional Hilbert

space, H, by a non-linear kernel function, K(xi,xj); then, the OSH

in the mapped space, H, is solved using a procedure similar to that

for a linear case, and the decision function is given by:

f (x)~sign
XN

i~1
yiaiK x,xið Þzb

� �
ð6Þ

Table 5. Performance comparisons between the proposed TargetSOS, TargetATP, and TargetATPsite for ATP168 over five-fold
cross-validation under Balanced Evaluation.

Predictor Sen (%) Spe (%) Acc (%) MCC AUC

TargetSOS 80.0 80.1 80.1 0.311 0.878

TargetATP [26] 79.1 79.8 79.8 0.308 0.873

TargetATPsite [25] 78.2 78.4 78.4 0.290 0.860

ATPint [13] 74.4 75.8 75.1 0.249 0.823

doi:10.1371/journal.pone.0107676.t005

Table 6. Performance comparisons between the proposed TargetSOS and other popular predictors for the NUC5 dataset over
five-fold cross-validation under MaxMCC Evaluation.

Ligand Type Predictor Sen (%) Spe (%) Acc (%) MCC AUC

TargetSOS 46.3 99.2 97.0 0.553 0.893

TargetATP [26] 41.2 99.0 96.6 0.501 0.895

ATP TargetATPsite [25] 44.5 98.9 96.6 0.520 0.881

NsitePred* 44.4 98.2 96.0 0.460 0.861

SVMPred* 36.1 98.8 96.2 0.433 0.854

TargetSOS 60.5 99.1 97.7 0.653 0.914

ADP NsitePred* 54.4 98.8 97.1 0.572 0.893

SVMPred* 45.8 99.3 97.3 0.555 0.885

TargetSOS 38.1 98.8 96.4 0.440 0.850

AMP NsitePred* 30.4 98.8 96.2 0.377 0.829

SVMPred* 20.8 99.6 96.6 0.360 0.820

TargetSOS 66.1 99.5 98.2 0.744 0.923

GDP NsitePred* 64.6 99.1 97.6 0.675 0.910

SVMPred* 62.3 98.9 97.7 0.655 0.905

TargetSOS 47.3 99.5 97.4 0.598 0.850

GTP NsitePred* 47.3 99.1 96.8 0.562 0.844

SVMPred* 37.3 99.7 97.0 0.551 0.836

* Data excerpted from [14].
doi:10.1371/journal.pone.0107676.t006
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To train a SVM on a given data set, the kernel function and the

regularity parameter c need to be specified in advance. In this

study, LIBSVM [57] (http://www.csie.ntu.edu.tw/,cjlin/libsvm/)

is taken. The Gaussian kernel K xi,xj

� �
~e{ xj{xik k2

=2s2

, which is

one of the most commonly used kernel functions, is chosen as the

kernel function. The regularization parameter c and the kernel

width parameter s are optimized based on 10-fold cross-validation

using a grid search strategy in the LIBSVM [57] software.

Dealing with Class Imbalance: A New Supervised
Over-Sampling Method

As described in the introduction section, protein-nucleotide

binding residue prediction is a typical imbalanced learning

problem. By revisiting Table 1, we can easily find that a severe

class imbalance phenomenon does exist among both training

datasets and independent validation datasets: the ratio of the

number of non-binding residues to that of binding residues is often

larger than 20.

In this study, we propose a new SOS algorithm for relieving the

severity of class imbalance to facilitate the subsequent statistical

machine learning methods. To demonstrate the effectiveness of the

proposed SOS, several popular over-sampling methods, including

ROS, SMOTE [39], and ADASYN [41], are used to perform

comparisons with the proposed SOS.

A. Random Over-sampling. In the ROS technique, the

minority set Smin is augmented by replicating randomly selected

samples within the set.

Although ROS is simple and easy to perform, a potential

problem is that the resulting dataset tends to be over-fitted because

ROS simply appends replicated samples to the original dataset;

thus, multiple instances of certain samples become ‘‘tied’’ [58]. In

view of this issue, several improved over-sampling techniques, e.g.,

SMOTE [39] and ADASYN [41], have been proposed and have

shown promising results in various imbalanced applications. In this

study, two improved over-sampling techniques, i.e., SMOTE [39]

and ADASYN [41], were considered.

B. Synthetic Minority Over-sampling Technique. The

SMOTE method [39] augments the minority class set Smin by

creating artificial samples based on the feature space similarities

between existing minority samples. The SMOTE procedure is

briefly described below.

For each sample xi in Smin, let SK
i be the set of the K-nearest

neighbors of xi in Smin under the Euclidian distance metric. To

synthesize a new sample, an element in SK
i , denoted as x̂xi, is

selected and then multiplied by the feature vector difference

between x̂xi and xi and by a random number between [0, 1].

Finally, this vector is added to xi:

xnew~xiz x̂xi{xið Þ:d ð7Þ

where d[[0, 1] is a random number.

These synthesized samples help break the ties introduced by

ROS and augment the original dataset in a manner that, in

general, significantly improves subsequent learning [28].

C. Adaptive Synthetic Sampling. SMOTE creates the same

number of synthetic samples for each original minority sample

without considering the neighboring majority samples, which

increases the occurrence of overlapping between classes [28]. In

view of this limitation, various adaptive over-sampling methods,

e.g., ADASYN [41], have been proposed.

ADASYN uses a systematic method to adaptively create

different numbers of synthetic samples for different original

minority samples according to their distributions. The ADASYN

procedure is briefly described below.

The number of samples that must be synthesized for the entire

minority class is computed first:

Table 7. Performance comparisons between the proposed TargetSOS and other popular predictors for the independent validation
dataset of NUC5.

Ligand Type Predictor Sen (%) Spe (%) Acc (%) MCC AUC

TargetSOS 53.6 99.2 97.6 0.603 0.912

TargetATP [26] 48.9 98.9 96.9 0.542 0.912

ATP TargetATPsite [25] 45.8 99.1 97.2 0.530 0.882

NsitePred* 46.0 98.5 96.7 0.476 0.875

SVMPred* 36.7 99.1 96.9 0.451 0.868

TargetSOS 60.0 98.5 97.0 0.585 0.912

ADP NsitePred* 47.4 98.7 96.8 0.512 0.893

SVMPred* 38.8 99.3 97.1 0.500 0.886

TargetSOS 45.6 98.9 96.7 0.522 0.880

AMP NsitePred* 42.3 98.7 96.9 0.501 0.876

SVMPred* 33.5 99.4 96.7 0.478 0.870

TargetSOS 49.1 99.1 97.2 0.562 0.866

GDP NsitePred* 58.5 98.5 97.0 0.576 0.867

SVMPred* 51.1 98.8 97.1 0.553 0.855

TargetSOS 61.9 98.8 97.1 0.655 0.900

GTP NsitePred* 60.4 98.8 96.9 0.640 0.909

SVMPred* 48.5 99.3 96.9 0.602 0.887

*Data excerpted fdrom [14].
doi:10.1371/journal.pone.0107676.t007
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N~ Smaj

�� ��{ Sminj j
� �

|b ð8Þ

where b[½0,1� is a parameter that determines the balance level

after the ADASYN process.

Then, for each original sample, xi [Smin, its K-nearest

neighbors are found according to the Euclidean distance metric,

and the distribution function, Ci, which is defined as:

Ci~
Di=K

Z
, i~1,2, � � � , Sminj j ð9Þ

is calculated, where Di is the number of samples in the K-nearest

neighbors of xi that belong to Smaj , and Z is a normalization

constant so that Ci is a distribution function, i.e.,
P

Ci~1.

Next, the number of synthetic samples that must be generated

for each xi [Smin is computed:

gi~Ci|N ð10Þ

Finally, for each xi [Smin, gi synthetic samples are generated

according to Eq. (7), as in SMOTE.

The key difference between ADASYN and SMOTE is that the

former uses a density distribution, C, as a criterion to automat-

ically decide the number of synthetic samples that must be

generated for each minority sample by adaptively changing the

weights of the different minority samples to compensate for the

skewed distributions [28,41]. The latter generates the same

number of synthetic samples for each original minority sample.

D. Proposed Supervised Over-sampling. Let S~Smin

|Smaj be the training dataset, where Smin~fx(i)
ming

Nmin

i~1 is the

minority class sample set, and Smaj~fx(i)
majg

Nmaj

i~1 is the majority

class sample set. The purpose of the proposed SOS algorithm is to

obtain a relatively balanced dataset, denoted as ŜS, by synthesizing

additional minority class samples under a supervised process.

Let bw1 be the parameter of the over-sampling coefficient,

which is a scalar quantity that measures the ratio of the size of the

minority class sample set after over-sampling to that of the original

minority class sample set. In other words, b controls how many

additional minority samples will be generated. More additional

minority samples will be synthesized with larger values of b.

The process of the proposed SOS is described as follows:

Step I: Training an initial classifier model, denoted as Cmodel , on

the original training dataset Smin|Smaj :

Cmodel/Train(Smin|Smaj) ð11Þ

The trained classifier model will be used to judge whether a

synthesized minority class sample is valid.

Step II: Synthesizing an additional minority sample:

First, two samples, denoted as x
(i)
min and x

(j)
min, will be randomly

selected from the minority class sample set Smin:

x
(i)
min,x

(j)
min

n o
/RandomSelection(Smin) ð12Þ

According to the two randomly selected minority class samples,

an additional sample can be synthesized:

x
(new)
min /x

(i)
minzl:(x(i)

min{x
(j)
min) ð13Þ

where l is a random value ranging from 0 to 1.

Then, the confidence of the synthesized sample, x
(new)
min , being a

minority class sample is predicted using the trained initial classifier

model Cmodel :

P(x
(new)
min )/Predict(Cmodel ,x

(new)
min ) ð14Þ

The validity of the synthesized sample depends on its

confidence. More specifically, the synthesized sample is a valid

minority class sample if and only if P(x
(new)
min )[½Tlow,Thigh�, i.e., its

confidence lies within the prescribed confidence interval

½Tlow,Thigh�.
Step II is repeated until the b{1ð Þ:Nmin valid minority class

samples have been synthesized.

Algorithm 1 summarizes the proposed SOS. Note that the three

parameters, i.e., b, Tlow, and Thigh, are problem-dependent. In this

study, we set b~2, Tlow~0:6, and Thigh~0:9.

Note that in Step II, it is straightforward and reasonable that a

synthesized sample will not be considered valid when its

confidence is less than the prescribed lower confidence, Tlow.

However, a synthesized sample will also be considered invalid if its

confidence is larger than the prescribed upper confidence, Thigh.

The underlying reason for this choice is that we believe that a

synthesized sample with confidence that is too high tends to

become ‘‘tied’’ with those true minority class samples, thus

potentially leading to an over-fitting problem.

Algorithm 1. Supervised Over-Sampling (SOS)

INPUT: S~Smin|Smaj- The training dataset, where

Smin~fx(i)
ming

Nmin

i~1 is the minority class sample set and

Smaj~fx(i)
majg

Nmaj

i~1 is the majority class sample set; b- The over-

sampling coefficient, which is the size of the minority class after

over-sampling, divided by that of the original minority class;

½Tlow,Thigh�- The confidence interval, which is used to determine

whether a synthetic sample belongs to the minority class.

OUTPUT: ŜS~ŜSmin|Smaj- The over-sampled training dataset,

where ŜSmin is the minority class sample set after over-sampling.

1. Training a classifier model, denoted as Cmodel , using the

original training set Smin|Smaj :

Cmodel/Train(Smin|Smaj)

2. ŜSmin/1
3. WHILE jŜSminjv b{1ð Þ:Nmin

4. Randomly select two samples, denoted as x
(i)
min and

x
(j)
min, from Smin:

x
(i)
min,x

(j)
min

n o
/RandomSelection(Smin)

5. Synthesize a new sample:

x
(new)
min /x

(i)
minzl:(x(i)

min{x
(j)
min)
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where l is a random value ranging 0 from 1;

6. Predict the confidence of x
(new)
min being a minority

class sample:

P(x
(new)
min )/Predict(Cmodel ,x

(new)
min )

7. IF P(x
(new)
min )[½Tlow,Thigh�

8. ŜSmin/ŜSmin|fx(new)
min g

9. END IF

10. END WHILE

11. ŜSmin/ŜSmin|Smin

12. ŜS/ŜSmin|Smaj

13. RETURN ŜS

Evaluation Indexes
Let TP, FP, TN , and FN be the abbreviations for true positive,

false positive, true negative, and false negative, respectively. Then,

Sensitivity(Sen), Specificity(Spe), Accuracy(Acc), and the Mat-

thews correlation coefficient (MCC) can be defined as follows:

Sensitivity ~
TP

TPzFN
ð15Þ

Specificity~
TN

TNzFP
ð16Þ

Accuracy~
TPzTN

TPzTNzFPzFN
ð17Þ

MCC~
TP:TN{FP:FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFP):(TPzFN):(TNzFP):(TNzFN)
p ð18Þ

However, these four evaluation indexes are threshold-depen-

dent, i.e., the values of these indexes vary with the threshold that is

used in the prediction model. Considering that the MCC measures

the overall quality of the binary predictions, we reported these

threshold-dependent evaluation indexes by choosing the threshold

that maximizes the value of the MCC of the predictions (termed

MaxMCC Evaluation in this study).

It has not escaped our notice that several predictors reported

their performances by selecting the threshold that balances the

values of Sen and Spe [13,25,26] (termed Balanced Evaluation in

this study). For the purpose of a fair comparison, we also used

Balanced Evaluation when comparing the proposed method with

these predictors.

In addition, the Area Under the receiver operating character-

istic (ROC) Curve (AUC), which is threshold-independent and

increases in direct proportion to prediction performance, was used

to evaluate the overall prediction qualities of the considered

prediction models.

Experimental Results and Analysis

Supervised Over-Sampling Helps to Enhance Prediction
Performance

In this section, we empirically demonstrate that the perfor-

mance of protein-nucleotide binding residue prediction can be

further improved by applying the proposed SOS algorithm.

Tables 2 and 3 summarize the performance comparisons between

with-SOS and without-SOS for ATP168 and ATP227 over five-

fold cross-validation under Balanced Evaluation and MaxMCC
Evaluation, respectively. Figure 1 (a) and (b) illustrate the ROC

curves of with-SOS and without-SOS for ATP168 and ATP227

over five-fold cross-validation. The results listed in Tables 2 and 3

show that the prediction performances are remarkably improved

after SOS is applied. An improvement in the AUC of over 2% is

observed for both the ATP168 and ATP227 datasets. In addition,

the other four indexes, i.e., Sen, Spe, Acc, and MCC, of the with-

SOS predictions are consistently higher than that of the without-

SOS predictions. Taking MCC as an example, improvements of

5% and 4% are observed for ATP168 and ATP227, respectively,

under Balanced Evaluation, whereas improvements of 12% and

8% are achieved for ATP168 and ATP227, respectively, under

MaxMCC Evaluation.

Comparisons with Other Over-Sampling Methods
In this section, we compare the proposed SOS with several

other popular over-sampling methods, including ROS, SMOTE

[39], and ADASYN [41].

Table 4 shows comparisons of the performance of SOS, ROS,

SMOTE, and ADASYN for ATP168 and ATP227 over five-fold

cross-validation under MaxMCC Evaluation. The results for the

four other types of nucleotide ligands, i.e., ADP, AMP, GTP, and

GDP, can be found in Supporting Information S2.

From Table 4, it is clear that the proposed SOS significantly

outperforms ROS for both ATP168 and ATP227. Taking AUC
and MCC, which are two overall measurements of prediction

quality, as examples, average improvements of approximately 3%

and 5% are observed. We also found that the proposed SOS

achieves comparable performance to ADASYN and slightly

outperforms SMOTE for ATP168 and ATP227. Similar phe-

nomenon could also be found for the four other types of nucleotide

ligands (refer to Supporting Information S2).

The results listed in Table 4 and Supporting Information S2

show that the proposed SOS performs much better than ROS and

can achieve comparable performances to ADASYN and SMOTE,

which demonstrates the efficacy of the proposed SOS.

Comparisons with Existing Predictors
In this section, we compare the proposed predictor, called

TargetSOS, to the existing popular protein-nucleotide binding

residue predictors to demonstrate its efficacy. TargetSOS performs

predictions using a SVM model, which is trained with the

proposed SOS algorithm in the NUC5 dataset and uses the

LogisticPSSM+PSS feature as the model input. The comparisons

are performed for both the cross-validation test and the

independent validation test. Note that when cross-validation

comparisons are performed for ATP168, only the Balanced
Evaluation results are reported because the results for most

existing predictors that are constructed from ATP168 are reported

under Balanced Evaluation. For the same reason, cross-validation

comparisons for the NUC5 dataset are reported under MaxMCC
Evaluation.

A. Cross-Validation Test. Table 5 lists the performance

comparisons of the proposed TargetSOS, TargetATP [26],
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TargetATPsite [25], and ATPint [13] for ATP168 over five-fold

cross-validation under Balanced Evaluation. By observing Ta-

ble 5, we find that the proposed TargetSOS significantly

outperforms ATPint and is the best performer among the four

considered predictors that were specifically designed for protein-

ATP binding residue prediction. An over 5% improvement is

observed for each of the five considered evaluation indexes, i.e.,

Sen, Spe, Acc, MCC, and AUC. In addition, TargetSOS performs

better, although not significantly better, than the two most recently

released predictors, i.e., TargetATP [26] and TargetATPsite [25].

Table 6 summarizes the performance comparisons between the

proposed TargetSOS and several other popular protein-nucleotide

binding residue predictors for the NUC5 dataset over five-fold

cross-validation under MaxMCC Evaluation. It is found that the

proposed TargetSOS almost always achieves the best perfor-

mance, with only one exception for ATP concerning MCC and

AUC, which are two evaluation indexes that measure the overall

prediction quality of a predictor. Taking MCC as an example,

TargetSOS achieves improvements of approximately 3%, 8%,

6%, 7%, and 3% for ATP, ADP, AMP, GDP, and GTP,

respectively, compared with the second-best performer (i.e.,

TargetATPsite [25] for ATP and NsitePred [14] for ADP,

AMP, GDP, and GTP). The underlying reason for the improve-

ment in MCC is that the TargetSOS can achieve much higher

performance with respect to the true positive rate (i.e., Sen) while

simultaneously achieving comparable or even slightly better

performances for the true negative rate (i.e., Spe). We believe that

this improvement may be a result of the SOS technique.
B. Independent Validation Test. It has been routine

procedure to evaluate the generalization capability of a predictor

using an independent validation test because evaluating a newly

developed predictor by only comparing it to existing predictors

and by using the same datasets may potentially lead to

optimistically biased results, in the sense that the new predictor’s

characteristics over-fit the used datasets [59]. Considering this

potential bias, we also performed independent validation tests for

the proposed TargetSOS and compared their performances with

those of several other popular sequence-based protein-nucleotide

binding residue predictors, as shown in Table 7.

From Table 7, we find that the AUCs for ATP, ADP, AMP,

GDP, and GTP when using TargetSOS in the corresponding

independent validation datasets are 0.912, 0.912, 0.880, 0.866,

and 0.900, respectively. By revisiting Table 6, it is found that the

AUCs of TargetSOS for ATP, ADP, AMP, GDP, and GTP on the

training datasets are 0.893, 0.914, 0.850, 0.923, and 0.850,

respectively. In other words, TargetSOS achieves similar overall

prediction performances (measured by AUCs) on the training

dataset and the corresponding independent validation dataset for

all five nucleotide ligands, indicating that the generalization

capability of the TargetSOS that is derived from the knowledge

buried in the training datasets has not been under- or over-

estimated.

In addition, we find that the proposed TargetSOS achieves

comparable overall performance (AUC) to the state-of-the-art

sequence-based predictors considered in this study. On the other

hand, TargetSOS almost always achieves the best performances

for MCC, with only one exception for GDP, and an average

improvement of approximately 3% is observed compared with the

second-best performer (i.e., TargetATP [26] for ATP and

NsitePred [14] for ADP, AMP, GDP, and GTP).

Conclusion

In this study, a new SOS algorithm that balances the samples of

different classes by synthesizing additional samples for minority

class with a supervised process is proposed to address imbalanced

learning problems. We apply the proposed SOS algorithm to

protein-nucleotide binding residue prediction, and a web-server,

called TargetSOS, is implemented. Cross-validation tests and

independent validation tests on two benchmark datasets demon-

strate that the proposed SOS algorithm helps to improve the

performance of protein-nucleotide binding residue prediction. The

findings of this study enrich the understanding of class imbalance

learning and are sufficiently flexible to be applied to other

bioinformatics problems in which class imbalance exists, such as

protein functional residue prediction and disulfide bond predic-

tion.
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