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Transient receptor potential (TRP) channels comprise a diverse 
family of ion channels, the majority of which are calcium 
permeable and show sophisticated regulatory patterns in 
response to various environmental cues. Early studies led to 
the recognition of TRP channels as environmental and 
chemical sensors. Later studies revealed that TRP channels 
mediated the regulation of intracellular calcium. Mutations in 
TRP channel genes result in abnormal regulation of TRP 
channel function or expression, and interfere with normal 
spatial and temporal patterns of intracellular local Ca2+ 
distribution. The resulting dysregulation of multiple down-
stream effectors, depending on Ca2+ homeostasis, is associated 
with hallmarks of cancer pathophysiology, including enhanced 
proliferation, survival and invasion of cancer cells. These 
findings indicate that TRP channels affect multiple events that 
control cellular fate and play a key role in cancer progression. 
This review discusses the accumulating evidence supporting 
the role of TRP channels in tumorigenesis, with emphasis on 
prostate cancer. [BMB Reports 2020; 53(3): 125-132]

INTRODUCTION

The onset and progression of cancer is characterized by cell 
cycle dysregulation, leading to enhanced cell growth, con-
comitant with suppression of mechanisms responsible for cell 
death (1-4). Notably, dysregulated homeostasis of intracellular 
Ca2+ is involved in cancer. Altered Ca2+ signaling events 
induced by ion fluxes across various membrane channels and 
transporters mediate every step of cancer metastasis (5). 
Intracellular free calcium ions ([Ca2+]i) are the most abundant 
second messengers in human body playing a diverse role in 
cellular physiology, including cell motility, cell cycle control, 
gene expression, autophagy and apoptosis (6). Multiple mech-

anisms regulating cell growth or apoptosis are strongly de-
pendent on [Ca2+]i homeostasis, emphasizing the role of calcium- 
permeable ion channels. Excitable cells contain highly select-
ive and voltage-sensitive Ca2+ channels, which induce sharp 
and sustained elevation in [Ca2+]i required for exocytosis at 
nerve termini, and for rapid contraction of muscle fibers in 
heart and skeletal muscles. Non-excitable cells such as fibro-
blasts use a different mechanism. For example, ligand binding 
to several membrane receptors triggers a series of events, lead-
ing to the activation of phospholipase C (PLC) and synthesis of 
inositol-1,4,5-trisphosphate (Ins(1,4,5)P3). Ins(1,4,5)P3 opens the 
Ins(1,4,5)P3 receptor (IP3R), which is an intracellular ion chan-
nel and expressed mostly in the endoplasmic reticulum, re-
sulting in the release of Ca2+ from the endoplasmic reticulum 
(7, 8). Ca2+ signals in the form of spikes, oscillations or waves 
are spatially and temporally tightly regulated (9) to avoid 
prolonged intracellular elevation of Ca2+ that is toxic and 
lethal for cells (10). The duration, frequency, and amplitude of 
[Ca2+]i oscillatory signals determine the selective Ca2+- 
specific activation of transcription factors for cellular pro-
liferation and migration (11, 12). Downstream effectors, in-
cluding nuclear factor-B (NF-B), nuclear factor of activated 
T-cells (NFAT), calmodulin (CaM), calmodulin-dependent pro-
tein kinase II (CaMKII) and calpain, decode the selective 
oscillatory [Ca2+]i signals. Mechanistically, the differences in 
their on-/off-rates for Ca2+ enable subsequent activation of dif-
ferent cellular events (13-15). For example, calcineurin, a calcium- 
dependent serine-threonine phosphatase, and calpains, calcium- 
dependent cysteine proteases are crucial calcium-dependent 
factors that regulate the cell cycle. These findings emphasize 
the importance of subtle and local changes in [Ca2+]i in the 
regulation of cell fate, prompting the investigation of alternate 
pathways regulating local delivery of Ca2+.

Notably, a re-evaluation of accepted paradigms of intracel-
lular regulation of Ca2+ appears to be imminent. Interestingly, 
many recent studies investigated new functions of specific 
members of the transient receptor potential (TRP) superfamily 
(16-18) that will be discussed with an emphasis on cancer 
biology. While the traditional role of TRP channels is confined 
to ‘pain’ perception via nociceptive neurons (19), drug dis-
covery efforts targeting TRP channels have expanded into new 
disease areas such as chronic cough, asthma, chronic itch, 
obesity, overactive bladder, anxiety, stroke and cancer. In the 
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Fig. 1. A schematic diagram comparing 
the protein structures of TRP subfamil-
ies. TRP proteins carry six transmem-
brane segments (S1 to S6). (A, E) TRPC 
and TRPP subfamilies contain EF hand 
domain that binds intracellular Ca2+. 
(A) CIRB is a calmodulin/IP3R-binding 
domain. (B, E) TRPML and TRPP contain 
ER retention signlaling domain. (C) 
NUDIX, named after nucleoside diphos-
phate-linked moiety-X, is a homologous 
region in the phosphohydrolase family 
that binds to ADP ribose. The NUDIX 
represents a unique activation mechan-
ism, gating by ADP ribose, on TRPM2. 
Other activators, such as cyclic ADPR and 
NAD+, as well as inhibitors also target 
the NUDIX. C-terminal serine/threonine 
kinase is similar in structure to protein 
kinase A. (D) TRPV contains ARD and 
TRP box, similar to TRPC. (F) TRPA1 
contains more than 14 ARDs at its 
N-terminus.

last decade, the role of TRP channels in enhancing cellular 
proliferation, abnormal differentiation, and impaired death, 
resulting in uncontrolled expansion and invasion of cancer, 
has been increasingly reported (20-22). Metastasis, a major 
hallmark of cancer, is characterized by the spread and inva-
sion of cancer cells from the primary location to distant organs 
(23, 24). When metastasis happens, cancer as a disease that 
can be potentially curable by surgical excision is converted 
into one that requires chemotherapy and may even become 
lethal. Studies investigating several cancer types have shown 
that tumor progression from early to late stages is often char-
acterized by the altered expression of TRP channels. Indeed, 
TRPs have been implicated in cancers of prostate, breast, 
kidney, and bladder as well as in glioma and melanoma (20, 
21). To date, TRP channels have been shown to play a role in 
various late stages of tumor progression rather than carcino-
genesis.

TRP CHANNELS

The TRP superfamily is mostly conserved from nematodes to 
humans, and comprises a diverse group of polymodal ion 
channels. By altering membrane potential or [Ca2+]i concentra-
tion, the TRP channels act as signal transducers. The era of 
TRP channels started in 1969 when blindness was classified as 
a phenotype even under constant bright light, based on a 
Drosophila study (25) and identification of the mutant trp gene 
revealed the first member of the TRP superfamily. The 
mammalian TRP channel superfamily is divided into six 
subfamilies: TRPC (Canonical), TRPML (Mucolipin), TRPM 
(Melastatin), TRPV (Vanilloid), TRPP (Polycystic), and TRPA 
(Ankyrin). As shown in Fig. 1, structural variance across the six 
subfamilies is compared. The first four subfamilies constitute 
group 1 and the last two represent group 2. Several TRP chan-

nels are known targets of S-nitrosylation, which has been 
shown to activate multiple TRP channels, indicating their role 
as nitric oxide (NO) sensors (26). Many oncoproteins undergo 
S-nitrosylation. Nevertheless, there is no direct evidence indicat-
ing that S-nitrosylation of TRP channels is directly involved in 
carcinogenesis (27). All TRPC members are characterized by 
an N-terminus ankyrin-like repeat domain (ARD), a TRP box 
after the sixth transmembrane segment, S6, and a Ca2+-binding 
EF hand domain at the intracellular C terminus. Generally, the 
phospholipase C (PLC) signaling pathway activates all the 
TRPC channels. TRPC subunits assemble into homomeric 
channels, and many of the subunits also form heteromeric 
channels (28-31). TRPC1/TRPC5 (32), TRPC1/TRPC3 (33), 
TRPC1/TRPC4 (34), TRPC1/TRPC3/TRPC7 (35), TRPC3/TRPC4 
(36), and TRPC4/TRPC5 (37, 38) are examples of heteromeric 
channels. Despite its function in other mammals, human TRPC2 
is uniquely considered as a pseudogene. 

TRPML1, 2, and 3 represent the TRPML subfamily, which 
primarily includes cytosolic proteins. Their subcellular locali-
zation appears to be determined by an ER retention-signaling 
domain in the intracellular C terminus. Co-assembly of TRPML 
subunits has also been reported (39, 40). 

The mammalian TRPM subfamily includes TRPM1-8. TRPM 
channels are categorized into three subgroups: TRPM1/TRPM3, 
TRPM4/TRPM5 and TRPM6/TRPM7; TRPM2 and TRPM8 are 
separated from the rest of the subfamily. TRPM subunits con-
tain a large TRPM homology region of around 700 amino 
acids in their very long N termini. Most TRPM subunits also 
contain a C-terminus TRP box and a coiled-coil domain (41). 
Among the TRP channels, TRPM4 and TRPM5 are unique in 
that they are monovalent cation-selective ion channels. Add-
itionally, TRPM2, TRPM6, and TRPM7 contain a unique enzy-
matic domain in their C termini. TRPM6 and TRPM7 assemble 
to form heteromeric channels (42-45).
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Fig. 2. A working model of the re-
presentative mechanisms of calcium sig-
naling mediating the metastatic role of 
multiple TRP channels. FA: focal adhesion.

TRPV1-6 constitute the TRPV subfamily. TRPV channels are 
categorized into two groups: TRPV1-4 and TRPV5/TRPV6. The 
first group of TRPV1-4 form homomeric channels that are 
weakly Ca2+-selective and activated by heat. Each subunit of 
the TRPV1-4 group can also co-assemble to form heteromeric 
channels (46-49). TRPV5 and TRPV6 form both heteromeric 
and homomeric channels and are highly Ca2+ selective but not 
heat activatable. Similar to TRPCs, subunits of this subfamily 
also contain an ARD and a TRP box domain. Subunit assembly 
is promoted by the specific interacting domains in the C 
terminus (50-52). 

The TRPP subfamily comprises TRPP2 (also known as PKD2), 
TRPP3 (or PKD2L1), and TRPP5 (or PKD2L2). TRPP subunits 
also carry an ER retention-signaling domain in their C-termini. 
TRPA1 is the only member of the TRPA subfamily and is nam-
ed after its ARD domain, carrying at least 14 large and unique 
repeats. 

TRP CHANNELS IN CANCER METASTASIS

The mechanotransduction events during metastasis increas-
ingly provide a new perspective for the understanding of mech-
anisms involved in cancer progression. The stiffness of tumor 
microenvironment in solid tumors enhances the activation of 
mechanotransduction signals in cancer cells to promote 
pro-metastatic architecture, including cancer cell invasion and 
metastasis, which are essential for the development of advanc-
ed disease (53-55). 

Some members of the TRP channel superfamily are func-
tionally related to cellular events and structures that are 
essential for mechanotransduction in cell migration, such as 
actin cytoskeleton and focal adhesions. Consequently, they are 
involved in mechanotransduction by significantly contributing 
to metastasis, presumably by strongly promoting cancer cell 
migration and invasion. In the context of metastasis, TRPM7, a 

Ca2+-nonselective cation channel carrying -kinase domain 
(56), appears to be the best studied TRP channel so far. TRPM7 
regulates several events in cell motility such as polarization 
(57), adhesion (58, 59) and migration (60). We summarize the 
representative signaling mechanisms underlying the function 
of specific TRP channels, in Fig. 2.

A study with a mouse xenograft model of human breast 
cancer also showed that TRPM7 is necessary for tumor meta-
stasis and that high mRNA expression of TRPM7 is correlated 
with reduced metastasis-free and recurrence-free survival in 
patients with primary breast cancer (61). Myosin-II-based cell 
tensions and loss of cell matrix proteins regulating cell-cell 
adhesion, and polarized cell movement occurred via TRPM7- 
dependent mechanisms (61). TRPM7 is activated by tension at 
the leading edge of migrating human embryonic lung fibro-
blasts, promoting Ca2+ entry to activate the IP3R2, resulting in 
local Ca2+ fluctuations necessary for cell migration (62). Over-
expression of TRPM7 has also been linked to loss of cell 
adhesion via activation of calpain II (63). Accordingly, TRPM7 
silencing via knockdown of MDA-MB-231 or MDA-MB-435 
breast cancer cells increases contractility and the number of 
focal adhesions, which is strongly correlated with reduced 
migratory and invasive potencies (61). Notably, it has been 
suggested that the role of TRPM7 in calcium-independent 
regulation of migration is at least partly mediated via -kinase 
domain, during the phosphorylation of myosin-IIA heavy chain 
(64-66).

In nasopharyngeal cancer, the increased expression of TRPM7 
is associated with poor prognosis and metastasis (67). Similar 
to breast cancer cells, silencing of TRPM7 decreases the migra-
tion and invasion of metastatic cancer cells, and also the over-
expression of TRPM7 increases both phenomena in nonmeta-
static cancer cells (67). The contribution of TRPM7 to migra-
tion of human nasopharyngeal cancer cells is attributed to 
ryanodine receptor (RyR) activation, which consequently increases 
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[Ca2+]i levels and cellular migration (68). Thus, TRPM7 direct-
ly affects the migration of diverse cancer cell types via mechano-
transduction mediated by [Ca2+]i. 

TRPM7 is also essential for progression and invasion of pan-
creatic ductal adenocarcinoma (PDAC) (69, 70). Increased ex-
pression of TRPM7 is correlated with poor patient prognosis 
(69, 71) and silencing of TRPM7 in PDAC cells reduces cancer 
cell invasion (70). Activation of TRPM7 induces secretion of 
MMP-2 from the Hsp90a/uPA/MMP-2 proteolytic axis, which 
degrades extracellular matrix (ECM) and facilitates cancer cell 
invasion (70). 

In ovarian cancer (72) and bladder cancer, TRPM7 regulates 
cancer cell migration (60). TRPM7 also regulates proliferation 
of cancer cells (73-75), although silencing of TRPM7 does not 
affect the viability of breast cancer cells (61). 

TRPM4 also regulates mechanotransduction in cell migration 
via promotion of focal adhesion disassembly, activation of 
FAK activation and Rac1, and actin cytoskeleton reorganiza-
tion (76). Recently, it has been shown that TRPM2 regulates 
migration and invasion of gastric cancer cells in vitro, and also 
tumorigenesis and expression of N-cadherin, snail, slug, 
integrins, and MMPs that are representative epithelial-mes-
enchymal transition (EMT) markers in vivo (77).

Several members of TRPV subfamily that are known to 
regulate mechanostransduction and migration have also been 
associated with metastasis. Recent studies highlighted a novel 
role of TRPV4 in breast cancer metastasis (78). Studies based 
on phosphoproteomics revealed a significant upregulation of 
TRPV4 in breast cancer metastasis in model cell lines, via 
extravasation. TRPV4 expression in human clinical samples 
using public databases revealed an increase in TRPV4 ex-
pression in basal subtype of breast cancer and was associated 
with a more aggressive phenotype and poor survival. Both 
silencing of TRPV4 and pharmacological inhibition of TRPV4 
lead to suppression of migration and invasion of the 
TRPV4-expressing 4T07 breast cancer cell line, further confirm-
ing the role of TRPV4 in metastasis (78). Further functional 
studies revealed the role of TRPV4 in regulating cancer cell 
stiffness and cell cortex dynamics during cancer cell metastasis 
(78). Subsequent studies by the same research group 
attempted to establish the precise mechanism underlying the 
pro-migratory and pro-metastatic effects of TRPV4 in breast 
cancer (79). The findings suggested that TRPV4 mediates 
breast cancer metastasis by regulating the softness of cancer 
cells via Ca2+-dependent AKT/E-cadherin signaling as well as 
the expression of extracellular proteins involved in cytoskel-
eton and ECM remodeling (79). In addition to reports indicat-
ing TRPV4 function in breast cancer metastasis (78, 79), 
TRPV4 expression has been recently shown in gastric cancer 
metastasis (80). Activation of calcium-sensing receptor (CaSR), 
a Class C G-protein coupled receptor, induces growth and 
metastasis of human gastric cancer, mediated via TRPV4- 
evoked increases in Ca2+ influx, which in turn, activates 
AKT/-catenin signaling pathway (80). The mechanosensitive 

ion channel TRPV4 has also been implicated in the migration 
of human hepatoblastoma HepG2 cells (81), which is one of 
the multiple steps involved in cancer metastasis (82). Appli-
cation of a TRPV4 agonist, 4-PDD resulted in an increase in 
lamellipodial dynamics of HepG2 cells pre-treated with hepato-
cyte growth factor, indicating that functionally expressed TRPV4 
channel mediates Ca2+ influx required for the migration of 
HepG2 cells (81). Although studies investigating the potential 
role of TRPV4 in cancer metastasis are still in their infancy, 
current findings should prompt further research into the 
likelihood of TRPV4 as a drug candidate in cancer therapy, 
especially in the case of metastatic cancers. 

In conclusion, several TRP channels participate in mechano-
transduction during cell migration, and also play a role in the 
metastasis of multiple cancer types.

TRP CHANNELS IN PROSTATE CANCER

Prostate cancer (PCa) is the second most common cause of 
cancer deaths among males in industrialized Western countries. 
With increased access to reliable biomarker detection, 
effective treatments for advanced PCa are still limited. Indeed, 
no effective treatments are available for PCa, once it pro-
gresses to metastatic castration-resistant prostate cancer (mCRPC), 
which is refractory to current androgen deprivation therapy 
(ADT), and accounts for more than 250,000 cancer deaths 
worldwide, annually (83, 84). Several studies provide evi-
dence supporting the role of TRP channels in PCa (85-87), 
especially, the members belonging to TRPV and TRPM sub-
families. TRP channels may be very promising players, be-
cause their expression and activity appear to regulate the 
progression of PCa (21, 88-91). 

Silencing of TRPM4 reduces cell migration, but does not 
affect the growth of PC3 and DU145 cells, which are androgen- 
nonresponsive prostate cancer cell lines (92). miR-150 directly 
targets the TRPM4 gene and suppresses TRPM4 expression in 
PCa tissues (93). Upregulation of miR-150 or silencing of TRPM4 
suppresses EMT phenotypes, migration and invasion, leading 
to inhibition of metastasis (93). In an independent study with 
PC3 cells, silencing of TRPM4 decreased the expression of 
Snail1, an EMT transcription factor, and also multiple repre-
sentative EMT markers, thus inhibiting cell migration and 
invasion and validating the TRPM4-mediated regulation of 
migration and invasion (94). The TRPM2 channel has been 
shown to regulate the proliferation of PCa cell. Increased 
expression of TRPM2 is observed in 75% of PCa cells 
compared with matched benign cells (16, 95) and silencing of 
TRPM2 inhibited cancer cell growth (16, 87). TRPM4 is 
another TRPM channel identified as a player in PCa progres-
sion. TRPM4 was suggested as a cancer driver gene in CRPC 
(96). TRPM4 downregulates store-operated Ca2+ entry (SOCE) 
in normal, human prostate epithelial cells and DU145 cells, 
decreasing the driving force for Ca2+ (92). Silencing of TRPM4 
reduces the migration, without affecting the proliferation, of 
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PCa cells. TRPM7 also regulates the migration and invasion of 
PCa cells (97). TRPM7 is upregulated in PCa cells compared 
with prostate hyperplasia cells, and increases cancer cell 
migration. Silencing of TRPM7 in PCa cells reduced both 
migration and invasion of PCa cells from reversing their EMT 
status, downregulating MMPs and upregulating E-cadherin 
(97). Expression of TRPV1 is upregulated in high-grade PCa, 
when compared with tissues from healthy donors (98). Cap-
saicin, a TRPV1 agonist, inhibits proliferation of PC3 cells in a 
TRPV1-independent manner (99), via inhibition of coenzyme 
Q activity. Therefore, ROS generation is increased, and 
mitochondrial membrane potential is dissipated and caspase-3 
is activated. By contrast, capsaicin was also found to stimulate 
TRPV1-dependent cell proliferation in androgen-responsive 
LNCaP cells, by decreasing ceramide levels and activating Akt 
and ERK pathways (100). The expression of TRPV2 in PCa was 
reported to be 12-fold higher in metastatic PCa than in 
non-metastatic PCa patients. TRPV2 overexpression in androgen- 
responsive LNCaP cells increases cell migration, while down-
regulation of TRPV2 reduces both growth and invasiveness of 
xenograft tumors with PC3 cells. Constitutive activation of 
TRPV2 and increased level of [Ca2+]i, have been associated 
with TRPV2 function during the progression of androgen3- 
responsive PCa to aggressive CRPC (101). In addition to their 
known regulation of migration, invasion and growth in PCa 
cells, it is still unknown whether any of TRP channels are 
involved in castration resistance, associated with aberrant activa-
tion of androgen signaling and resulting non-responsiveness to 
ADT.

DISCUSSION

The emergence of TRP channels as novel regulators in cancer 
growth and progression is specifically associated with their 
role in mechanotransduction and migration of cancer cells. 
However, the functional role of TRP channels appears to be 
unclear, suggesting the need for comprehensive studies. The 
involvement of TRP channels in mechanotransduction raises a 
few outstanding questions suggesting that TRP channels may 
regulate specific mechanosensitive processes and structures 
other than focal adhesions and actin dynamics during migra-
tion, and that YAP/TAZ signaling, a representative regulator of 
mechanosensitive transcriptional programs, may be linked to 
TRP signaling events.

Further elucidation of the role of TRP channels and changes 
in TRP channel expression in cancer progression are required 
for delineation of novel targets for new therapeutic alternatives 
in the ‘war on cancer’.
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