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Abstract: The mucus of fish skin plays a vital role in innate immune defense. Some mucus proteins
have the potential to incapacitate pathogens and/or inhibit their passage through the skin. In
this study the aim was to isolate and characterize galectin(s), β-galactosides binding proteins,
present in skin mucus. A novel short form of galectin-3 was isolated from Atlantic salmon skin
mucus by α-lactose agarose based affinity chromatography followed by Sephadex G-15 gel filtration.
Mass spectrometric analysis showed that the isolated protein was the C-terminal half of galectin-3
(galectin-3C). Galectin-3C showed calcium independent and lactose inhabitable hemagglutination,
and agglutinated the Gram-negative pathogenic bacteria Moritella viscosa. Galectin-3 mRNA was
highly expressed in skin and gill, followed by muscle, hindgut, spleen, stomach, foregut, head kidney,
and liver. Moritella viscosa incubated with galectin-3C had a modified proteome. Proteins with
changed abundance included multidrug transporter and three ribosomal proteins L7/12, S2, and S13.
Overall, this study shows the isolation and characterization of a novel galectin-3 short form involved
in pathogen recognition and modulation, and hence in immune defense of Atlantic salmon.

Keywords: galectin-3; bacteria; proteomics; Gram-negative; lectin; innate immunology;
mucosal immunology; agglutination; hemagglutination; multidrug transporter

1. Introduction

The fish skin is a living, mucosal tissue where the mucus is essential to protect the animal [1]. Fish
skin mucus is a rich source of molecules with immune relevant functions [2]. Lectins are proteins that
recognize sugar moieties through their lectin domain(s) and hence bind to carbohydrates, glycolipids
and glycoproteins. Lectins can also bind directly to proteins [3] or adenine [4] in a non-carbohydrate
dependent manner.

The diversity in binding partners results in multiple functions of lectins. In mucosal surfaces they
can contribute to immune defense by agglutinating pathogens and inhibit uptake [5]. However, lectins
can also contribute to pathogenesis probably by stimulating pathogen uptake [6]. Extracellular
functions of lectins include opsonization, cellular uptake through endocytosis and phagocytosis,
start of the lectin pathway of the complement system and cell-cell interaction. Intracellularly lectins
have diverse roles including roles in protein folding [7], in organelle movement, in uptake (into
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endocytic, autophagic and lysosomal organelles) and subsequent destruction of virus and bacteria
found in cytosol [8], as well as roles in mRNA splicing and stability [9]. Lectins were first purified and
characterized from plants; later lectins have been reported from microorganisms to humans, including
aquatic animals such as teleosts [10–12].

We have previously isolated and characterized β-galactoside binding galectin 1-1 and galectin
1-2 [13] from Atlantic cod Gadus morhua skin mucus. In the present study we aim to isolate galectin from
Atlantic salmon skin mucus by affinity purification by lactose-binding. Three groups of galectins exist,
the prototype galectins where the whole protein is essentially a globular carbohydrate binding domain
(such as in galectin-1), chimera type galectins with a N-terminal tail in addition to the carbohydrate
binding domain (galectin-3) and tandem repeat galectins where there are two carbohydrate binding
domains (such as galectin-4). Previously characterized skin and/or skin mucus galectins AJL-1 from
Japaneese eel (Anguilla japonica) [14], Congerin I and II from conger eel (Conger myriaster) [15], and
galectin 1-1 and 1-2 from Atlantic cod (Gadus morhua) [13] were all prototype galectins, hence the
isolation of prototype galectin(s) from Atlantic salmon skin mucus was expected to be the outcome of
this study.

Further we aim to identify and characterize the isolated protein(s) and we hypothesize that
galectin present in skin mucus can bind to and affect bacteria relevant for skin disease. The bacteria
used Moritella viscosa (formerly named Vibrio viscosa) cause skin ulcers, winter ulcers, in Atlantic salmon
at low water temperatures [16].

2. Results

2.1. Isolation of Lactose Binding Protein from Atlantic Salmon Skin Mucus

Galectins bind to β-galactosides and affinity purification with α-lactose agarose followed by
Sephadex gel filtration was used to isolate putative galectin(s) from Atlantic salmon skin mucus.
SDS-page of the isolated protein showed a single band at 15 kDa (Figure 1). This molecular weight is
close to that of galectin 1-1/galectin 1-2 from Atlantic cod [13], and hence indicated that the isolated
protein was a prototype galectin consisting of only the carbohydrate recognizing domain.
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Figure 1. Confirmation of the purity of the protein isolated from Atlantic salmon skin mucus. Lactose
binding protein from Atlantic salmon skin mucus was isolated by α-lactose agarose. The desalted
eluate was run on a 15% SDS polyacrylamide gel under reducing conditions. The gel was stained by
colloidal Coomassie G-250. Precision Plus, KaleidoscopeTM (ProteinTM Standards, Bio-Rad) protein
marker was used as a molecular weight marker. A single band was observed.
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2.2. Identification of the Isolated Protein as a Short Form of Galectin-3

To identify the protein(s) present the band was excised and analyzed by mass spectrometry
with ESI-Quad-TOF followed by Mascot search (http://www.matrixscience.com/). The band
was shown to consist of one protein, identified as chimera type Salmo salar galectin-3
([gi|213514684|ref|NP_001134305|]), with a mascot score of 220 and a peptide protein coverage of
19%. The unique peptides identified are found in Supplementary File 1. The galectin-3 protein in the
database is 271 amino acids long with a molecular weight of 29,580 Dalton, twice the ~15 kD of the
isolated protein. Two conserved domains in galectin-3 were found by searching the Conserved Domain
Database (CDD, https://www.ncbi.nlm.nih.gov/cdd/). The first, the galectin’s galactose-binding lectin
domain binds β-galactosides, such as lactose, and maps to the C-terminal part of galectin-3. The second
domain, PRK10263, DNA translocase FtsK is provisional and maps to the N-terminal part of the protein.
Dimerization areas are also present (Figure 2).
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The part covered from amino acid 136 (methionine) to the C-terminal is 50.2% of the full-length 
protein (molecular weight 29.6 kD), this is in accordance with the protein weight of 15 kD observed 
in SDS-page (Figure 1) for the isolated lactose binding protein. The isolated protein is hence identified 
as the C-terminal part of galectin-3 (galectin-3C) with a theoretical molecular weight of ~15 kD, this 
part covers the galectin domain and the dimerization domains (Figure 2). In mammals it is shown 

 1 MDLSDALGGE PGWPSQNNQQ SSGGVWPGGQ PNQPTWPGQP GGQPTWPGQQ 
 51 QPGQPAPMWP GQQPNPSQPS WPGQPGGGQP SQPTWPGQPG GGQPSQPTWP 
101 GQPGQISQPT GPGWPSPSPG PGPAQPTAPQ QSSLKMPYDL NLPNGCYDKM 
151 LITIRGTINQ nakmftinlt kgndiamhvn prFNDQGKKT IVRnsqignt 
201 wgkeerehnh fpfiqgqpfe mkimctnsef kVAVNSSHIL EFKHRIRDIH 
251 SIKHLGIYND VTLTSVEIDK L 

Figure 2. Conserved domains on [gi|213514684|ref|NP_001134305|] galectin-3. Information used
in the figure is from www.ncbi.nlm.nih.gov/Structure/cdd/. Blue GLECT superfamily domain, red
sugar binding pocket, green dimerization areas, light green putative dimerization domains, and
orange PRK10263 domain. Arrowheads point to amino acids involved in sugar binding (red) or
dimerization (green).

The ESI-Quad-TOF identified peptides that were Mascot mapped to galectin-3 were all unique
and in the C-terminal part of the protein from amino acid 161 to 231 (Figure 3). To increase the
sequence covered by mass spectrometric analysis and to more precisely identify which part of
galectin-3 was isolated from skin mucus, further mass spectrometric analysis was performed with
Q-Exactive Quadrupole Orbitrap (Thermo scientific). The Q-Exactive protein coverage was 38.75% of
the full-length protein with a Mascot score of 3739.77. Of the matched peptides 10 of 11 were unique
and were all found from amino acid 136 to amino acid 271 of the full-length protein (Figure 3).
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Figure 3. Peptides mapped to galectin-3 by mass spectrometry analysis of the Atlantic salmon skin
mucus galectin-3. Underlined, the galectin domain. Amino acids highlighted in red were covered by
Q-Exactive, the sequence in small letters was covered by ESI-Q-TOF. In blue the PTAP sequence.

The part covered from amino acid 136 (methionine) to the C-terminal is 50.2% of the full-length
protein (molecular weight 29.6 kD), this is in accordance with the protein weight of 15 kD observed in
SDS-page (Figure 1) for the isolated lactose binding protein. The isolated protein is hence identified as
the C-terminal part of galectin-3 (galectin-3C) with a theoretical molecular weight of ~15 kD, this part
covers the galectin domain and the dimerization domains (Figure 2). In mammals it is shown that the
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sequence P(S/T)AP is needed for extracellular export of galectin-3 [17]. This sequence is present once
in Atlantic salmon galectin-3 from amino acids 126 to 129 (Figure 3 in blue).

2.3. Tissue Distribution of the leg3 Gene

Primers were designed and reverse transcription qPCR was used to determine the tissue
distribution of the leg3 gene (coding for galectin-3) in skin, gill, muscle, spleen, liver, head kidney,
stomach, foregut, and hindgut of Atlantic salmon. The expression of leg3, i.e., mRNA, was detected in
all tissues tested (Figure 4). The expression was high in gill and skin, liver showed the lowest level of
expression, and medium expression was found in the other tissues examined. The high expression of
leg3 in skin suggests local synthesis of skin mucus galectin-3C.
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2.4. Hemaglutination Activity of Galectin-3C

Galectin-3C showed calcium independent (calcium was not added in the assay) hemagglutination
activity at 50, 25, and 12.5 µg/ml and this activity was inhibited by 0.5 M lactose (Figure 5), confirming
the lactose binding property of galectin-3C suggested by the lactose affinity column isolation.
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Figure 5. Hemagglutination and inhibition assay. The purified C-terminal half of galectin-3 (galectin-3C)
(50 µg protein/ml final concentration) in upper left well was twofold serially diluted and mixed with
horse blood (final well concentration 1%), BSA in PBS (final well concentration 0.25%), upper row. C1
is control with PBS instead of galectin-3C. C2 is control with 0.5 M lactose in the presence of 50 µg/mL
galectin-3C), showing inhibition of hemagglutination.
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2.5. Galectin-3C and Lactose Change the Growth Curves of Moritella viscosa

Galectin-3C did not change the optical density of the Moritella viscosa culture in the log phase
nor in the beginning of the stationary phase (Figure 6). Late in the stationary phase and in the death
phase, however, the optical density was higher in galectin-3C containing samples compared to the
PBS control samples. Incubation with lactose, both in the presence and absence of galectin-3C, led to
lower optical density levels compared to the PBS control samples, suggesting growth inhibition in the
presence of lactose. Late in the stationary phase galectin-3C with lactose increased in optical density
compared with the only lactose samples.
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Figure 6. Growth curve of Moritella viscosa at 15 ◦C. M viscosa was grown in tubes under orbital shaking
(200 rpm) at 15 ◦C in medium (3% TSB and 1.5% NaCl) with PBS (control) with or without 0.5 M lactose,
or with galectin-3C (13 µg/mL) with or without 0.5 M lactose for the indicated time. Aliquots (n = 3)
were removed at each time point and OD at 590 nm was measured. Error bars show SD. The figure is a
representative figure from one out of 3 independent experiments with similar results.

2.6. Galectin-3C agglutinate Moritella viscosa

Increased optical density can be the result of agglutination of bacteria. Forty-hour samples were
microscopically compared, and bacterial agglutination was observed in the galectin-3C sample, but
not in control and in very limited extent in galectin-3C with lactose (Figure 7). This suggest that
agglutination in samples with high cell density increase the optical density.
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Figure 7. Bacterial agglutination. Moritella viscosa was incubated for 40 h in the absence (A) or presence
of galectin-3C, 13 µg/mL (B). Rod shaped aggregates of M. viscosa (white arrows) were observed. In
(C) bacteria was incubated in the presence of both galectin-3C and 0.5 M lactose, very few aggregates
were observed.
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2.7. Galectin-3C Modulate the Proteome of Moritella viscosa

Moritella viscosa incubated in the presence of galectin-3C had a modulated proteome compared
to control samples without galectin-3C present. Gels were normalized and analyzed using PDQuest
Advance 2D analysis software (BioRad). Seven spots were identified showing significant increased
intensity (p < 0.05 and fold change more than 2) in two-dimensional gel electrophoresis gels (Figures 8
and 9) of galectin-3C samples compared to control.
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Table 1. List of proteins that are differentially expressed in Moritella viscosa between samples incubated for 40 h without (control) and with galectin-3C.

Spot ID Accession
ID/Database

Protein Name/Organism/
Major Protein Domain

Calculated pI/Nominal
Mass (Mr)

Mascot ion Score/
p-Value

SC (%)/
UP Score ST Peptide Sequences

SS1 WP_002958882
NCBIprot

50S ribosomal protein
L7/L12 Pseudoalteromonas

Ribosomal_L7_L12 superfamily
4.45/12194 407/

p < 0.01 50/406 69

KDLTEAGAEVEVK
KEGVSKEEAEALAKD
KTEFDVILTGAGANKV

KFGVTAAAAMVAGPA-AEAAEEKT

SS2 Q3ILQ0
NCBIprot

50S ribosomal protein
L7/L12/Pseudoalteromonas haloplanktis

Ribosomal_L19 superfamily
4.45/12222 161/

p < 0.008 19/161 71 KALVEAAPTPVKE
KDLTEAGAEVEVK

SS3 Q3IJK6
Swissprot

30S ribosomal protein
S13/Pseudoalteromonas haloplanktis

Ribosomal_S13 superfamily
10.95/13162 123/

p < 0.0005 11/123 72 KIGELSDETLDVLRD

SS4 P21219
SwissProt

High-molecular weight cobalt-containing
nitrile hydratase subunit

alpha/Rhodococcus rhodochrous
4.85/22991 58/

p < 0.05 6/58 37 RDFGFDIPDEVEVRV

SS5 WP_016707503
NCBIpro

multidrug transporter/Pseudoalteromonas
SapC superfamily 5.38/26438 178/

p < 0.01 15/178 70 KEALVSFIEFSHVTEAFTKY
KYLADKELLVAQTLTVDIKG

SS6 WP_045111824
NCBIprot

30S ribosomal protein S2/Moritella viscosa
RPS2

superfamily
6.60/26834 169/

p < 0.01 12/169 66 KLYAGAVAASVNEGRN
RNQDIAAQAESDFIEEAK

SS7 CCQ10658
NCBIprot

Transcription termination factor
Rho/Pseudoalteromonas luteoviolacea

Rho superfamily
6.55/47155 149/

p < 0.01 6/77 66 KGEVIASTFDEPASRH
KILFENLTPIHANERL
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The spots were analyzed by MS-MS followed by Mascot homology search and identified
as 50S ribosomal protein L7/L12 (two spots), 30S ribosomal protein S13, high-molecular weight
cobalt-containing nitrile hydratase subunit alpha, multidrug transporter, 30S ribosomal protein S2,
transcription termination factor Rho (Table 1). Changes in spots densities mean increased amounts of
the protein in the spot. The spot that is increasing could be a post-translationally modified version of
the protein, hence an increased spot density means that a change is made in protein modification(s)
and/or total protein amount.

3. Discussion

Mucosal surfaces of animals including humans have living cells that are vulnerable for invasion of
pathogens. The molecular defense system in fish skin include the mucus that both provides a physical
barrier and is a reservoir for defense molecules [1,2]. One group of defense molecules is the lectins,
glycan binding proteins with a large range of specificities and immune related functions. Galectins can
for example both stimulate and inhibit inflammation and galectin-1, -2, -3, -4, -7, -8, -9, and -12 can all
induce T-cell apoptosis [18]. Galectins can also work as opsonins to stimulate phagocytosis, they are
produced and secreted by many cells including immune cell (reviewed in [19]).

The galectins that were previously characterized in skin and/or mucus are prototype galectins
consisting of only the globular carbohydrate recognition domain [13–15], the size of our isolated
protein (Figure 1) fits with the expected molecular weight of carbohydrate recognition domains of
approximately 15 kD. However, the Atlantic salmon skin mucus galectin was identified as galectin-3 by
mass spectrometry. Galectin-3 is a chimeric galectin with both a N-terminal domain and a C-terminal
carbohydrate recognition domain, and an expected molecular weight of ~30 kD. The observed
molecular weight of the isolated protein was however around 15 kD, as expected for prototype
galectins. This discrepancy in observed and expected molecular weight was explained when further
analysis showed that we isolated a truncated form, galectin-3C, with only the C-terminal carbohydrate
recognition domain. In accordance with our observation, in humans galectin-3 (~30 kD) can also
be found in a truncated form due to cleavage by metalloproteases [20], resulting in a 22 kD protein.
Galectin-3 is a multifunctional protein, the protein’s location and activity is thought to be modulated
by post-translational modifications and different interaction partners. In mammals including humans,
results suggest that extracellular full length galectin-3 promotes transformation and metastasis of
tumor cells, whilst galectin-3C can inhibit metastasis [21], showing that the post-translational cleavage
of galectin-3 affects its function.

Galectin-3 does not have a signal peptide for translation on the endoplasmic reticulum, for
later export out of cells through the endoplasmic reticulum-Golgi secretion pathway. It is thought
to be exported from the cytosol by non-classical mechanism(s) [22] likely through exosomes [17].
The N-terminal of the protein is needed for secretion [17,23,24] and a sequence needed for import
into multivesicular endosomes and export in exosomes, P(S/T)AP [17], is present once as PTAP in the
N-terminal of salmon galectin-3. For humans it has been shown that the N-terminal domain is sensitive
to metalloproteases [20]. Metalloproteases are present in the skin mucus of several fish species [25]
including Atlantic salmon [26], and could hence be responsible for removal of the N-terminal resulting
in truncated galectin-3 in skin mucus.

We found the highest expression of galectin-3 mRNA in skin and gills. High skin mRNA levels
could suggest that that galectin-3C is made in its full-length form in skin cells, is exported with the
N-terminal intact and then cleaved by metalloproteases in skin mucus. However, further studies are
needed to confirm this hypothesis.

Galectin-3 can polymerize using its N-terminal usually to make pentamers [27]. Dimers can
also be formed with interactions between two C-terminals [28]. The dimerization of the C-terminal
part can be inhibited by the addition of glucan ligand [28]. Galectin-3C isolated in this study gives
hemagglutination and bacterial agglutination in a lactose inhibitable manner.
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Moritella viscosa is a bacterium that causes ulcers in the skin of Atlantic salmon [16]. The binding
of galectin-3C to Moritella viscosa could be part of defense against the bacterium. Bacterial aggregates
will have difficulties in penetrating host cells and can be sloughed off the fish with skin mucus during
swimming. If the level of molecules that cause bacterial agglutination, including galectin-3C can be
modulated for example with functional feeds, this holds a potential to reduce infection by pathogens
that enter through mucosal surfaces. Agglutination of bacteria by immunoglobulin hinders bacterial
colonization and also transfer of bacteria between animals [29]. Some galectins such as galectin-4 and
8 can directly kill bacteria [30], the killing activity is specific and restrained to only some bacteria [30].
Mucus galectin-3C did not inhibit growth of Moritella viscosa as assessed by measurement of turbidity
nor did it produce clear zones in a zone of inhibition test [31] (results not shown). There was an
increased optical density in the presence of galectin-3C at later time points (Figure 6), this could be
explained by the formation of aggregates (Figure 7). This is in accordance with findings in a study
of chitosan introduced aggregates of Escherichia coli [32]. Low concentrations of chitosan give abrupt
increase in optical density in the Escherichia coli growth curve, but measurement of green fluorescence
(from the bacterial strain’s green fluorescent protein (GFP)) amount indicates that there are fewer
rather than more bacteria present than in the control samples. Scanning electron microscopy shows
bacterial aggregates in samples with abrupt optical density increases, but not in control samples or
at chitosan concentrations where no sudden increases in optical density was observed [32]. In the
presence of lactose the bacteria grew slower, in accordance with the known inhibition of bacterial
growth of carbohydrates due to hyperosmotic extracellular fluid and in accordance with a previous
study showing no oxidative production of acid for the bacteria in the presence of lactose [33]. Lactose
inhibited galactose-3C induced hemagglutination. Limited bacterial agglutination was observed in
samples incubated with both galectin-3C and lactose. In both the presence and absence of lactose,
galectin-3C aggregate formation formed at later time points. This could indicate that the aggregates
are forming on the galectins as the bacteria divide, and not by simple aggregation of already present
bacteria. Aggregate formation by bacterial division on immunoglobulin A has been shown to be
responsible for aggregate formation in the mucosal surface in the gut [34].

To further study the interaction between galectin-3C and Moritella viscosa, the bacteria incubated
with and without galectin-3C was studied by two-dimensional gel electrophoresis. Increased spot
densities for multi drug transporter, high-molecular weight cobalt-containing nitrile hydratase subunit
alpha, transcription termination factor Rho, and ribosomal proteins, were found. The multidrug
transporter is used to export harmful substances from bacteria, and also is involved in cell-cell contact
and biofilm formation [35]. Nitrile hydratases hydrates harmful nitriles to amides, hence protect the
bacteria. It can be upregulated in stressed bacteria as shown in bacteria treated with the pesticide
linuron [36]. Transcription termination factor Rho is as the name says involved in termination of
transcription, it is targeted by the antibiotics bicyclomycin. Interestingly, knock down of Rho has been
linked to increased Staphylococcus aureus virulence [37], indicating that bacteria under less favrable
conditions increase their virulence after Rho silicing.

The bacterial ribosome consists of two parts, the 50S and the 30S subunits. Since ribosomes are
key for cell growth and survival, targeting them can kill cells, there are antibiotics targeting both
the 30S [38] and 50S [39] subunits. Galectin-3C induced spot differences in 50S ribosomal protein
L7/L12 (two spots), 30S ribosomal protein S13, and 30S ribosomal protein S2. Typically changes in
ribosomal subunits for example have been observed when bacteria are in non-favorable conditions
and proteomics changes in ribosomal subunits have been found with antibiotics that are inhibitors of
translation elongation [40].

Overall, the changes observed in Moritella viscosa indicate that galectin-3C is not simply binding
to the bacteria and aggregating them, but are also inducing changes in signaling pathways to change
proteins in the bacterial cytoplasm. Further studies are needed to understand the interaction between
galectin-3C in the host immune system and pathogens, and whether galectin-3 and galectin-3C have
the same function.
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In mammals galectins are focused upon because they have important roles in human disease as
well as regulating functions such as inflammation and metabolism [18]. For experimental purposes
they are targeted with inhibitors and their amounts increased by injection. Galectins from other species,
including fish, could have potential to be used to inhibit or kill bacteria and to promote wound healing.
A galectin from Japanese eel Anguilla japonica, AJL-1 inhibits biofilm formation by human bacteria
important for periodontal disease [41]. Fish skin has antibacterial and wound healing promoting
properties and are appealing for use in human medicine as there is less risk of disease transfer including
prions than when mammalian grafts are being used [42]. Since galectins can kill bacteria [30], inhibit
bacterial biofilm formation [41] and have wound healing properties [43], at least some of the wound
healing property of fish skin could be due to the presence of galectin. Galectins could be isolated from
by-products from industrial processing of fish. However, additional research is needed to establish the
effectivity and biosafety of fish galectins on human pathogens and human wound healing.

4. Materials and Methods

4.1. Fish and Their Maintenance

Atlantic salmon, AquaGen Strain: DIPLOID R*E QTL IPN/PD + ILA/IPN/PD arrived from Cermaq
Hopen; Norway as smolt, and were reared in indoor tanks at Mørkvedbukta research station, Nord
University, Bodø, Norway. The fishes were maintained at temperature 12 ◦C in a sea water flow
through system and fed to saturation on a commercial diet (Skretting, Norway).

4.2. Sampling of Skin Mucus and Tissues

Atlantic salmon weighing approximately 1 kg were used for sampling. Fishes were anesthetized
with MS-222 (70 mg/L), mucus was scraped from the skin on the dorsal and ventral body surface
of Atlantic salmon with a sterile glass slide avoiding the anal region to prevent fecal contamination.
The skin mucus samples were stored in −80 ◦C freezer for later use. Tissue samples (approximately
two mm3) of skin, muscle, gill, foregut, hindgut, stomach, liver, head kidney, and spleen were collected
and immediately frozen in liquid nitrogen and moved to a −80 ◦C freezer for storage until further
analysis. National guidelines for animal rearing and handling procedures from The Norwegian Food
Safety Authority (www.mattilsynet.no/language/english/about_us/) were followed. For use of animals
for sampling of organs and tissues only i.e., no experimenting on live animals, an ethical approval is
not needed under local legislation.

4.3. Purification of Salmo salar Galectin-3 from Skin Mucus

4.3.1. Preparation of Skin Mucus Sample for Purification

Skin mucus samples stored at −80 ◦C were thawed on ice. Five ml of mucus sample in a 50 mL
tube was mixed with protease inhibitor (10 µL/mL) (GE Healthcare, Chicago, IL, USA). The sample
was diluted by adding 3 volumes of binding buffer (20 mM Tris-HCl, 10 mM CaCl2, 10 mM MgCl2,
0.5 M NaCl, pH-7.5) and mixed well by pipetting. The sample was sonicated 3 times 5 s using an
ultrasonic processor (SONICS Vibracell VCX750, Newtown, CT, USA), with cooling in an ice bath
between sonications. The sonicated mucus sample was centrifuged at 14,000× g for 30 min at 4 ◦C to
remove debris. The supernatant was used for purification.

4.3.2. Binding of Skin Mucus Protein to α-Lactose Agarose

The purification was done by following the protocol described by Rajan et al. [13] with minor
modifications. Approximately 5 mL of α-lactose agarose resin (Sigma-Aldrich, St. Louis, MO, USA)
in a 50 mL tube was washed twice with 3 volumes of 15 MΩ/cm analytic grade water. Washed
resin was equilibrated with 3 volumes of binding buffer at 4 ◦C, and 20 mL of prepared skin mucus
supernatant was added and allowed to bind for 2 h at 4 ◦C under rotation, followed by three times

www.mattilsynet.no/language/english/about_us/
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washing with binding buffer. The resin was loaded to a 10 ml Bio-Rad gravity purification column.
The lactose binding protein was eluted manually using elution buffer (20 mM Tris-HCl, 0.5 M NaCl,
0.5 M α-lactose).

Ten fractions of eluate, 500 µL each, were collected and the protein concentration in each fraction
quantified by Qubit®Protein Assay Kit in a Qubit®fluorometer (Life Technologies, Camarillo, CA,
USA). Each fraction containing protein was then desalted.

4.3.3. Desalting of Purified Protein Using Sephadex G-15

Dry resin of Sephadex G-15 (GE Healthcare, Life Sciences, Buckinghamshire, UK) were washed
and let to swell overnight at 4 ◦C in analytic grade water (15 MΩ/cm). Two ml of swollen resin in a
10 mL Bio-Rad gravity purification column was equilibrated with PBS (phosphate buffered saline). Five
hundred µl of eluted fraction from α-lactose agarose column was loaded to the equilibrated Sephadex
G-15 column. Ten fractions (0.5 mL each) were eluted from the column. Eluted fractions containing
protein were pooled and up concentrated using 3K cut off centrifugal filters (VWR, Radnor, PA, USA).
The protein after concentration was quantified using Qubit® Protein Assay Kit and Qubit fluorometer
(Life Technologies, Camarillo, CA, USA) and kept in −20◦ C for further use.

4.4. SDS-PAGE

The protein profile of the purified product was determined on a 15% poly acrylamide gel [44].
In short sample was mixed with protein loading buffer (Laemmli sample buffer [44] mixed with
β-mercaptoethanol, Bio-Rad, Irvine, CA, USA) and incubated at 95 ◦C for 5 min before loading to the
gel. The gel was run in Bio-Rad Mini PROTEAN®Tetra cell, at 100 V. Precision Plus, KaleidoscopeTM

(ProteinTM Standards, Bio-Rad) protein marker was used as a molecular weight standard. Gels
were stained in colloidal Coomassie G-250 (0.08% Coomassie Blue G-250 in buffered 20% methanol)
overnight, destained using analytic grade water, and digitalized (ChemiDocTM XRS System, Bio-Rad).

4.5. LC/MS-MS Analysis

Protein band (Figure 1) in the gel was excised, reduced, alkylated and trypsinized to obtain a
peptide mixture as described elsewhere [45]. LC-MS/MS analysis of the peptide mixture was done
with ESI-Quad-TOF, USA and Q-Exactive, Thermo Scientific. Peak lists (pkl) were obtained by Protein
Lynx Global server software (version 2.1, Waters Corporation, Milford, MA, USA).

4.6. Bioinformatic Analysis of Mass Spectrometry Files

The peak list files obtained were analyzed using MASCOT MS/MS Ions search (http://www.
matrixscience.com) against NCBIprot 20,180,429 (152462470 sequences; 55858910152 residues) or if no
hits where obtained then SwissProt 2019_09 (561176 sequences; 201,758,313 residues). Lactose-binding
isolated protein pkl-files were searched against Actinopterygii (ray-finned fishes) (2346792 sequences)
and Moritella viscosa pkl-files against Bacteria (Eubacteria) (114425735 sequences). The Mascot
parameters set were fixed carbamidomethyl (C) modification, variable oxidation (M) modification,
peptide mass tolerance of 100 ppm, fragment mass tolerance of 0.1 Da, monoisotopic mass values,
maximum 1 missed cleavages by the enzyme trypsin.

4.7. Hemagglutination and Inhibition Assays

Hemagglutination activity was measured by using horse erythrocytes from Statens Serum Institute,
Copenhagen, Denmark. The horse blood was treated with 0.05% trypsin EDTA, and fixed in 1%
glutaraldehyde as described by Nowak et al. [46]. Serial two-fold dilutions of the purified protein (200
µg/mL) was used. The assay was performed in a U-bottomed microtiter plate (VWR, Norway). Each
well contained 25 µL of 1% BSA in PBS, 25 µL of PBS, 25 µL of undiluted or diluted protein sample
and 25 µL of 4% erythrocyte suspension. In the negative control the protein sample was replaced

http://www.matrixscience.com
http://www.matrixscience.com
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by 25 µL of PBS and for hemagglutination inhibition assay PBS was replaced with 0.5 M lactose in
PBS. Samples were mixed for 30 s at slow speed in a microplate vortex (Genie®, Scientific industries,
INC, Long islands, Bohemia, NY, USA). The plate was incubated for an hour at room temperature and
hemagglutination activity was visually observed and documented by photography.

4.8. Tissue Distribution of Galectin-3 Gene Expression

4.8.1. RNA Extraction and cDNA Synthesis

RNA from gill, skin, muscle, stomach, foregut, hindgut, spleen, head kidney, and liver of healthy
Atlantic salmon were extracted from frozen (liquid nitrogen and −80 ◦C) tissue using EZNA total RNA
kit (Omega Bio-Tek, Norcross, GA, USA) following the manufacturer’s manual. Extracted RNA was
quantified with Qubit® RNA BR Assay kit and Qubit® fluorometer (Life technologies, Carlsbad, CA,
USA). The total RNA integrity was assessed by running a 1.2% agarose gel. cDNA was synthesized
using QuantiTect Reverse Transcription kit with integrated removal of genomic DNA contamination
(Qiagen, Germantown, MD, USA) following the manufacturer’s protocol.

4.8.2. Primer Design

The mRNA sequence of Atlantic salmon (Salmo salar) galectin-3, (Accession No: NM_001140833
GI: 213514683) was retrieved from NCBI (http://www.ncbi.nlm.nih.gov). The sequence was blasted
against NCBI Primer blast (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) to pick primers specific
for galectin-3 (gene symbol: leg3). The Primers obtained were analyzed for melting temperature and
secondary structures (hairpins, self-dimers, cross dimers, palindromes, repeats and runs) using the Net
Primer http://www.premierbiosoft.com/netprimer) software. Two sets of primers having minimum
secondary structures and suitable thermal conditions were chosen for the study (Table 2).

Table 2. Galectin-3 primers used in the study.

Gene Name Gene Symbol Sequence (5′>3′)

Galectin-3 leg3 Forward: GAGTTCAAACACCGCATCCG
Reverse: GGCTGAAACCAACCCTGCTA

4.8.3. Reverse Transcription-qPCR for Tissue Distribution Analysis

Reverse transcription-qPCR using the primers in Table 2 was performed to assess the distribution
of leg3 expression in tissues of Atlantic salmon.

The thermocycling condition used was: holding stage of 20 s at 95 ◦C for activation of Taq DNA
polymerase, followed by 45 cycles of denaturation at 95 ◦C for 3 s, annealing at 60 ◦C for 30 s, a data
acquisition step of 15 s at 60 ◦C during the annealing stage in each cycle. The qPCR reaction mixtures
in 96 wells plate (Applied Biosystems, Foster City, CA, USA) wells were 10 µL containing 5 µL of SYBR
Green master mix (Applied Biosystems, USA), 4 µL of 25x diluted cDNA, 0.5 µL of each primer. The
prepared 96 well plates were covered with an optical adhesive (Applied Biosystems, Foster City, CA,
USA), centrifuged for a minute before analysis using StepOneplus real time PCR system (Applied
Biosystems, Foster City, CA, USA). Each reaction was run in duplicates with appropriate standards
(a fivefold dilution series of pooled cDNA) and negative control (no template reaction). The same
reaction set up and PCR conditions were used for the reference gene elongation factor 1 alfa [47,48].

4.9. Effect of Salmo salar Galectin-3C on the Proteome of Moritella Viscosa and Agglutination of the Bacteria

4.9.1. Bacterial Strain and Experimental Set Up

Stock culture of M. viscosa (Glomfjord isolate, in house isolate from an outbreak of winter ulcers
in Glomfjord, Norway) stored at −80 ◦C was used in the study. A loop of bacteria from stock was
streaked on a nutrient agar plate supplemented with 3% TSB and 1.5% NaCl and incubated at 15 ◦C. A

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.premierbiosoft.com/netprimer


Mar. Drugs 2020, 18, 102 13 of 16

colony from the plate was picked and inoculated in media containing 3% TSB (Tryptic soy broth, Fluka,
Sigma-Aldrich, St. Louis, MO, USA) supplemented with 1.5% NaCl at 15 ◦C.

The experimental media included 3% TSB, 1.5% NaCl supplemented with 13 µg of purified
galectin-3C per ml of media. To observe the inhibitory effect of lactose in one set up 0.5 M lactose
was added to the media along with galectin-3C (13 µg/mL of medium). One more set up was made
by adding only 0.5 M lactose but no galectin-3C. In control (3% TSB + 1.5% NaCl) samples PBS was
added in place of galectin-3C to make the volume equal in all set ups. A bacterial culture of 0.6 OD
was used as inoculum for the experiment. The experiment was done in duplicates at 15 ◦C. Cell
growth of bacteria was measured at 590 nm at interval of every 4 h. Samples for two-dimensional
gel electrophoresis (2D) analysis were taken at 40 h. For 2D the samples were centrifugated (4,000× g,
10 min, 4 ◦C), the pellets washed two times in a low salt buffer (3 mM KCl, 1.5 mM KH2PO4, 20 mM
NaCl and 9 mM NaH2PO4) [49], and stored at −80 ◦C.

4.9.2. Sample Preparation for 2D Analysis

Samples for 2D was further prepared following a published protocol [49] with small modifications.
Briefly, bacterial cell pellets was thawed in lysis buffer (9 M urea, 4% CHAPS, 1% DTT and 0.8%
Bio-Lyte 3/10 ampholyte (Bio-Rad, Irvine, CA, USA)), sonicated (2 × 5 s) using an ultrasonic processor
(SONICS Vibracell VCX750, Newtown, CT, USA). One microliter of benzonase nuclease (BenzonaseTM

Nuclease, Sigma-Aldrich, St. Louis, MO, USA) was added to degrade DNA and reduce the viscosity of
the sample. The sample was dialyzed using 3 kD cut off Nanosep spin columns (VWR, Oslo, Norway)
following the manufacturer’s protocol. Protein concentration was measured using Qubit® Protein
Assay Kit and QubitTM fluorometer (Life Technologies, Carlsbad, CA, USA).

A volume of sample giving 100 µg protein was mixed with rehydration buffer (7 M urea, 2 M
thiourea, 4% CHAPS, 15 mM DTT, 0.5% Biolyte 3-10, 10% glycerol and 0.001% bromophenol blue) to a
total volume of 300 µL. This volume was used to rehydrate 17 cm IPG strip (pH 3-10, Bio-Rad, Irvine,
CA, USA) overnight following the manufacturer’s protocol.

Rehydrated IPG strips were isoelectricaly focused in Protean IEF cell (Bio-Rad, USA) to total
60,000 volt hours at a maximum of 10,000 V using three steps of slow ramping at a constant temperature
of 20 ◦C [50]. Next, the electro focused IPG strips were sequentially reduced for 15 min and alkylated
for 15 min in equilibration buffer (6 M urea, 0.375 M Tris- HCl (pH 8.8), 2% SDS, 20% glycerol)
containing 2% w/v DDT or 3% w/v iodoacetamide respectively. The equilibrated strips were subjected
to a second dimension run in 12.5% polyacrylamide gels using Bio-Rad Protean IIxii system (Irvine,
CA, USA). After completion of the run gels were stained (Sypro® Ruby Protein gel stain, Life
technologies, Carlsbad, CA, USA) and images documented by the ChemiDocTM XRS system (Bio-Rad).
The documented gels were analyzed with PDQuestTM Advanced 2D analysis software (Bio-Rad),
including only spots with a fold change more than 2 and p < 0.05. The PDQuest software uses a local
regression model to normalize the spots. The normalization compensates the gel to gel variation in
spots that are not related to protein variation such as inconsistency in staining, and differences in
sample density. To test the significance of the spots the default t-test from PDQuest was used.

Differentially expressed spots were manually excised on a blue light transilluminator (Safe
Imager™ 2.0 Blue-Light Transilluminator, Life technologies, USA) and subjected for LC-MS/MS
analysis. The LC-MS/MS and MASCOT analyses for protein identification were performed as described
in Sections 4.5 and 4.6.

4.9.3. Bacterial Agglutination

Moritella viscosa was grown in media supplemented with purified galectin-3C or with PBS (control)
as described in 4.9.1. To check the inhibition of bacterial agglutination, 0.5 M of lactose in addition to
galectin-3C was present during the incubation (as described in 4.9.1). Forty hours bacterial cultures (OD
< 1) were smeared on sterile glass slides and observed under light microscope (Leica microsystems).
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