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Abstract

Context: Migraine and cluster headache are undoubtedly painful conditions. The respective pathogenesis of these two conditions
is incompletely understood. In both cases, the treatments used have largely been empirical and have relied to a much lesser extent
on our understanding of the mechanisms causing pain. We hereby review the pain mechanisms in migraine and cluster headache,
two of the commonest primary headache disorders.
Evidence Acquisition: A review of the English literature was conducted by searching PubMed for studies on pain mechanism in
migraine and cluster headache. We entered [migraine] and [pain mechanism] in Pubmed and 488 articles were obtained. Articles
were then included according to their relevance to the topic. Similarly, [cluster headache] and [pain mechanism] revealed 79 search
results.
Results: There is evidence that the trigeminovascular system and neurogenic inflammation play important roles, together with
certain areas of the brain, leading to these conditions being termed ‘neurovascular headaches’. Functional imaging findings suggest
a possible role of the dorsolateral pons in generating migraine attacks while the role of the hypothalamus in cluster headache is
more firmly established.
Conclusions: Migraine and cluster headache have complex pathophysiologies. The exact mechanism causing pain in both condi-
tions is incompletely understood and more research needs to be undertaken in this area.
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1. Context

Migraine and cluster headaches are primary headache
disorders. Migraine is typically characterized by mod-
erate to severe attacks of unilateral pulsating headache,
aggravated by routine activity and associated with nau-
sea and/or photophobia and phonophobia (1). The two
main sub-types of migraine are: migraine without aura
and migraine with aura. Migraine with aura is associated
with focal transient neurological deficit such as: visual,
speech and/or language, sensory, motor, brainstem or reti-
nal deficit (1). The widely accepted theory suggests that cor-
tical spreading depression (CSD), a wave of neuronal hy-
peractivity followed by an area of cortical depression, ac-
counts for the aura (2, 3). It was previously believed that mi-
graine was associated with cerebral or meningeal vasodi-
latation. There are no human studies to prove this theory.
Schoomman et al. conducted a 3 Tesla magnetic resonance
angiography (3T MRA) study on nitroglycerine induced mi-
graine attacks compared with placebo group. During mi-
graine, blood vessel diameters were no different from base-
line, nor between headache and non-headache sides (4).

Cluster headache (CH), the commonest of the trigemi-

nal autonomic cephalalgias is one of the most painful con-
ditions an individual can experience (5). CH attacks are
characterised by recurrent, severe, unilateral pain which
is orbital, periorbital, temporal, or any combination of
these sites, lasting 15 - 180 minutes (1). The pain of cluster
headache is associated with ipsilateral conjunctival injec-
tion, lacrimation, nasal congestion, rhinorrhoea, forehead
and facial sweating, miosis, ptosis and/or eyelid oedema,
and/or with restlessness or agitation (1). Female patients
who suffer from CH attacks describe the pain as ‘worse
than childbirth’ (6). The pain intensity is estimated to be
100 to 1000 times worse than migraine (7). CH has three
cardinal features: the distribution of pain in the first divi-
sion of the trigeminal nerve, the autonomic features and
the stereotyped activation.

For a long time, cephalic pain has been considered sep-
arate from other forms of pain, and we have therefore wit-
nessed these two research fields develop independently.
More recently, it has become evident that several condi-
tions causing prolonged or chronic pain are associated
with chronic activation and sensitization of peripheral no-
ciceptors and/or central nociceptive neurons in the dorsal
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horn. Integrating these concepts into basic research on mi-
graine pathophysiology, a new animal model for the en-
during headache of migraine has been developed. How-
ever, the use of laboratory animals and in vitro models
is hindered by the fact that no reliable biological mark-
ers for the measurement of cephalic pain exist. There is
also doubt as to whether experimental animals (e.g. rats
or cats) experience headache similar to humans. There-
fore, pain studies in humans during migraine or cluster at-
tacks using modern imaging techniques have offered new
insights into the pathophysiology of headache. We discuss
the pain mechanisms in migraine and cluster headache de-
rived from our understanding of the processes involved in
these two conditions and the areas of the brain involved.

2. Evidence Acquisition

An electronic search of PubMed for all publications on
pain mechanism in migraine and cluster headache was
performed. We used the key works: ‘pain mechanism mi-
graine’, ‘pain mechanism cluster headache’, ‘imaging mi-
graine’ and ‘imaging cluster headache’. We searched ar-
ticles published between 1980 and 2015. Relevant studies
were included.

3. Results

3.1. The Trigeminovascular System and the Trigeminocervical
Complex

The trigeminovascular system is the only sensory (af-
ferent) innervation of the cerebral vessels but it also has an
afferent function in pathophysiological settings (8). Its cell
bodies are located in the trigeminal ganglion and they are
bipolar. The peripheral fibers make a synaptic connection
with the vessel, and other cranial structures, particularly
the pain-producing large cranial vessels and dura mater (9,
10). These fibers are mainly found in the first (ophthalmic)
division of the trigeminal nerve and have a widespread
ramified network that may innervate several vessels ipsi-
laterally (11, 12). In both migraine and CH, pain occurs as a
result of activation of the trigeminovascular system. This
explains the distribution of pain in the ophthalmic divi-
sion of the trigeminal nerve, which is more characteristic
in CH attacks. It is unclear how the migraine attack is trig-
gered but it is thought that CSD can activate the trigemino-
vascular system.

However, patients with migraine often experience
cephalic pain outside the distribution of the ophthalmic
division of the trigeminal nerve and sometimes pain at
the back of the head, innervated by the greater occipital
nerve (GON), can be the sole manifestation. This can be

explained by the convergence of trigeminal and cervical
afferents on to neurons in the trigeminocervical complex
(TCC). The TCC is a part of brainstem and includes the cau-
dal part of trigeminal nucleus caudalis and the dorsal hors
of C1-C2 segments of spinal cord (13). Migraine attacks are a
manifestation of central and peripheral sensitization. The
central sensitization hypothesis suggests an altered pro-
cessing sensory signal in the brainstem, where the neu-
rons of trigemino-cervical (TCC) system become hyperex-
citable (14, 15). Once the attack has begun, central neurons
can propagate information about the pain process with-
out the need for further external stimuli. The symptoms
of central sensitization consist of reduced pain threshold
and exaggerated pain response outside the original site of
pain (16-18). The most common symptom of central sensi-
tization is a phenomenon called allodynia (19). Cutaneous
allodynia represents pain evoked by applying non-noxious
stimuli to normal skin (19). Cutaneous allodynia could be
evoked by activities such as: shaving, combing the hair,
wearing glasses, contact lenses, earrings or tight clothing
and might contribute to the transformation of episodic
migraine to chronic migraine. Peripheral sensitization de-
pends on the activation of peripheral nociceptors (20). The
primary afferent nociceptive neurons express increased re-
sponsiveness to external thermal or mechanical stimuli at
the site of inflammation or injury (21). Clinically, the pe-
ripheral sensitization is associated with the presence of
throbbing headache and its aggravation during physical
activities that increase the intracranial pressure such as
bending over, breath-holding,coughing (21, 22). The sen-
sitisation of the nociceptors that innervate the meninges
may contribute to such intracranial hypersensitivity (23,
24). The first order neuron in the trigeminal ganglion re-
ceives input from the dural blood vessels and the signal is
transmitted to the second-order neuron in the trigeminal
brainstem nuclear system and therefore to the third-order
neuron in the thalamus (25). The clinical expression of
first-order-neuron sensitization is the throbbing pain that
characterizes migraine attacks (25). When the sensitiza-
tion spreads to the second-order neuron in the trigemino-
vascular system scalp sensitivity and allodynia occurs (25).
The sensitization of third-order neuron in the thalamus is
expressed clinically by extracranial hypersensitivity (24).

In CH, activation of the trigeminovascular system trig-
gers autonomic manifestations through the trigeminal-
autonomic reflex. The trigeminal nucleus caudalis has a
functional brainstem connection with the superior saliva-
tory nucleus (26) from which the parasympathetic effer-
ent fibers of the facial nerve arise. Activation of parasym-
pathetic fibers causes rhinorrhea, lacrimation, and nasal
congestion while sympathetic malfunction results in pto-
sis, miosis.The excessive facial sweating present during CH

2 Anesth Pain Med. 2016; 6(3):e35190.

http://anesthpain.com


Buture A et al.

attacks is due to sympathetic over activity (27). Parasym-
pathetic activation is mediated through the 7th nerve (28).
The fibers originating from the superior salivatory nu-
cleus synapse in the pterygopalatine ganglia. Blockade
of the sphenopalantine ganglion is known to relieve the
symptoms of CH. The postganglionic fibres innervate the
cerebral blood vessels and the lacrimal and nasal glands.
High flow-oxygen is an efficient abortive therapy for clus-
ter headache (29). A study on rats conducted by Akerman
et al. suggested that oxygen might act on parasympathetic
outflow to the cranial vasculature and trigeminovascular
system (30).

3.2. Neurogenic Inflammation

Neurogenic inflammation refers to a neurally medi-
ated inflammatory response in meningeal tissue charac-
terised by vasodilatation, leakage of plasma protein from
blood vessels and mast cell degranulation. Neuropeptides
such as calcitonin-gene related peptide (CGRP), substance
P (SP) and vasoactive intestinal peptide (VIP) are released
when the trigeminal fibres or trigeminal ganglion is ac-
tivated (31, 32). This release of neuropeptides has been
proposed as a pain mechanism in migraine and other pri-
mary headaches (33, 34). Histochemical studies on rats
have revealed the presence of calcitonin gene related pep-
tide (CGRP) and substance P in small nerve fibers that in-
nervate the dura mater of the rat (35, 36). The nociceptive
information is transmitted from meningeal blood vessels
to the trigeminal nucleus caudalis through Aδ and C type
nerve fibers arising from the trigeminal ganglion (37). The
release of CGRP, a powerful vasodilator, from afferent ter-
minals produces dilatation of the dural vessels and an in-
crease in blood flow (35, 38). CGRP immunoreactive fibers
are more abundant around the middle meningeal artery
(MMA) whereas SP fibers are mostly found around main
cerebral arteries (35). Another important mediator in mi-
graine and other primary headaches is VIP. Elevated con-
centrations of CGRP, SP and VIP have been found in plasma
samples during migraine attacks (39-41) and also in attacks
of CH (28, 42-44). VIP derives from parasympathetic affer-
ents (41) and raised levels in CH attacks are likely to reflect
parasympathetic activation. CGRP is probably the most im-
portant of these mediators and this is evidenced by the
successful treatment of migraine with antibodies against
CGRP (45) and antagonists of its receptor (46, 47). Triptans
appear to relieve pain by regulating CGRP levels (48).

CGRP mediates the release of histamine from mast
cells and interacts with nitric oxide (NO) (49, 50). NO is an-
other potent vasodilator found in different tissues includ-
ing meningeal circulation (49, 51). Vasodilation resulting
from the interaction between NO and CGRP release may

also play a role in the peripheral sensitization of perivas-
cular afferent fibres (52). The infusion of nitrovasodilators
can trigger CH attacks similar to spontaneous attacks, sug-
gesting a role for NO in nociceptive processes (53). There is
an obvious link between CGRP, vasodilatation and pain but
its exact role during an attack is not yet very clear. While
CGRP has a vasodilatory effect, SP and neurokinin A (NKA)
increase vascular permeability in response to trigeminal
nerve activation (31, 32). SP neurons display unique prop-
erties in that impulses may travel either orthodromically
or antidromically in the various ramifications of the axons,
and that the transmitter may be released both in the cen-
tral and peripheral ends of the neuron (54). It has been hy-
pothesized that activation of SP neurons in the ophthalmic
and maxillary divisions can cause all the symptoms of an
acute CH attack, and this could explain the improvement
witnessed with blockade of the Gasserian or sphenopala-
tine ganglia (54).

3.3. Functional and Structural Brain Changes

Initial imaging in migraine focused on changes in cere-
bral blood flow during attacks. Studies by Olesen and
Friberg (55) using single photon emission computed to-
mography (SPECT) revealed a focal reduction of cerebral
blood flow for migraine attacks with aura, usually in the
posterior parts of one hemisphere. Studies of cerebral
blood flow in cluster headache are scarce and the major-
ity has employed SPECT giving variable results. Some have
reported an increase, some a decrease and others no dif-
ferences in cortical blood flow (56). Modern functional
imaging techniques have shed light on the regions of the
brain involved in migraine and cluster headache, some be-
ing more specific to pain than others. These areas are dis-
cussed in more detail below.

3.4. Migraine

Evidence for the role of the brainstem as a generator
has been gathering for some time. Weiller et al. using
positron emission tomography (PET) imaging, found that
following the administration of sumatriptan succinate in
9 patients during spontaneous migraine attacks, brain-
stem activation persisted even after sumatriptan had re-
lieved the pain (57). The areas of maximum intensity were
around the dorsal midbrain and dorsolateral pons (DLP)
(57). A further PET study involving 5 patients who were not
taking any migraine prophylaxis revealed significant ac-
tivation of the dorsolateral pons during spontaneous mi-
graine attacks, further reinforcing the idea that migraine
is a subcortical disorder (58). There are proponents for
the theory that the origin of migraine headache is in the
periaqueductal gray (PAG). This notion gained popularity
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when a clinical study in which implantation of stimulat-
ing electrodes in the PAG of 175 intractable pain patients
resulted in short-lasting (12 patients) or long-lasting (3 pa-
tients) post-operative migraine-like headache (59). How-
ever, it should be noted that electrical stimulation of the
PAG did not trigger a migraine in 174 of the 175 patients
and that post-operative headache is usually observed fol-
lowing procedures involving craniectomy (60). Borsook
and Burnstein make a good case against the brainstem
as a migraine generator, arguing that it is inconceivable
that the PAG, which is positioned to modulate pain at all
spinal segment levels, would only generate cephalic pain
but no pain in other body parts (61). In fact, DLP activa-
tion is not specific to migraine and is commonly seen in pa-
tients with neuropathic and visceral pain (62). DLP activa-
tion also can be present in response to bladder distension
(63), changes in heart rate, plasma catecholamines during
rectal distention (64) and sympathetic-nerve-related activ-
ity (65). These studies showed that the activation of the DLP
is not specific to pain either.

Therefore, one of the challenges with PET studies is
to differentiate between areas activated by general pain
and areas that might be specific for migraine. One ap-
proach is to compare areas of activation and deactivation
during a migraine attack and after effective abortive ther-
apies. Areas activated during migraine attack are antici-
pated to be deactivated after triptan therapy whereas ar-
eas that generate pain remain active. In addition to the
DLP, several other areas of the brain have shown activa-
tion on functional imaging. Afridi et al. detected activa-
tion in the thalamus, insula, anterior and posterior cingu-
late gyri, cerebellum, prefrontal cortex and temporal lobes
(58). Other areas of increased activation include the red
nucleus (66), substantia nigra (66) and hypthalamus (66)
while areas of decreased activation include the somatosen-
sory cortex (67), nucleus cuneiformis (61), caudate (68) and
putamen (68). However, these regions again do not ap-
pear to be specific to migraine and most are generally ac-
tivated in functional imaging studies on pain and collec-
tively are known as the pain matrix. There is evidence for
almost indistinguishable activation patterns in other pain
conditions, such as low back pain, neuropathic pain, fi-
bromyalgia, irritable bowel syndrome, and cardiac pain
(69). It is therefore possible that the differences between
somatic pain and migraine pain are not due to differences
in central pain processing. In addition to functional alter-
ations, structural changes have been noted in these areas.
A Voxel-based morphometry and diffuse tensor imaging
studies revealed gray matter volume reductions in the in-
sula, motor/premotor cortex, prefrontal cortex, cingulate
cortex, posterior parietal cortex, and orbitofrontal cortex
(70), thickening of the somatosensory cortex (71) and in-

creased gray matter density in the caudate (68).
Functional MRI studies have shown activation of the

pulvinar in patients with migraine attacks with extra-
cephalic allodynia (72). The authors concluded that sen-
sitized posterior thalamic neurons mediate the spread-
ing of multimodal allodynia and hyperalgesia beyond
the locus of migraine headache (72). Medication overuse
headache is a well-known problem in chronic migraine
patients. Orbitofrontal cortex (OFC) hypofunction was a
consistent finding in patients with medication overuse
and after withdrawal of analgesics in a fludeoxyglucose
F18 (FDG)-PET study conducted by Fumal et al. (73). The
study aim was to test how medication overuse transforms
episodic migraine into chronic migraine (73). The hy-
pometabolic areas before withdrawal were the bilateral
thalamus, orbitofrontal cortex (OFC), anterior cingulate
gyrus, insula/ventral striatum and right inferior parietal
lobule, while the cerebellar vermis was hypermetabolic
(74). The orbitofrontal cortex was the only structure that
did not recover after withdrawal of analgesics. The authors
concluded that medication overuse is associated with re-
versible changes in the chronic pain processing structure,
except OFC hypofunction that is seen in patients with drug
addiction as well (73). More recently, functional imaging
studies have shown activation of posterior/dorsal thalamic
areas in spontaneous migraine (74). Animal studies on cats
have identified trigeminothalamic projections in the pos-
terior (Po), lateral posterior/dorsal (LP/LD) and ventral pos-
teromedial (VPM) thalamic nuclei (75). Neuroanatomical
studies showed that thalamo-cortical projections are de-
fined by their thalamic nucleus of origin (74). Neurons in
VPM project in primary, secondary sensory cortices and in-
sula suggesting a role in the location, quality and inten-
sity of pain (74). Contrariwise, thalamic neurons from Po,
LP and LD nuclei project to brain areas such as the mo-
tor, auditory, olfactory, retrosplenial, ectorhinal, and visual
cortices suggesting involvement in motor function, visual
and auditory perception, spatial orientation, olfaction, dif-
ficulty focusing, transient amnesia, allodynia, common
neurological symptoms during migraine (76).

3.5. Cluster Headache

Studies conducted by Kudrow et al. were the first to im-
plicate the hypothalamus in the pathogenesis of CH with
the demonstration of lower levels of testosterone during a
bout (77). This was supported by studies showing observa-
tions of disordered circadian rhythm for cortisol, luteiniz-
ing hormone, growth hormone, and prolactin (78) and a
suppressed nocturnal peak in melatonin is seen during the
active phase of a CH (79). Neuroimaging further supports
the role of the hypothalamus in CH. PET imaging stud-
ies in nitroglycerine-provocation or spontaneous CH have
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found activation in the posterior hypothalamic gray mat-
ter (80). The activation pattern was not seen in patients
with migraine or experimental ophthalmic division head
pain, suggesting the involvement of hypothalamus in the
pain process (80). Findings from PET studies were sup-
ported by Voxel-based morphometric MR imaging that has
found significant structural differences in the hypothala-
mic posterior gray matter compared with controls (81).
Sprenger et al. used PET with the opioidergic ligand [11C]
diprenorphine on CH patients in and out of a bout and
have found decreased tracer binding in the pineal gland,
suggesting that the descending opioidergic mechanisms
in the pineal gland and hypothalamus may play a role in
the generation of cluster headache attacks (82). There is ev-
idence of anatomical connections between the hypothala-
mus and the trigeminal nucleus (83) and between the hy-
pothalamus and the superior salivatory nucleus (84). The
importance of the superior salivatory nucleus activation
has been shown in a novel model of TAC (30).

Imaging studies in CH have also implicated other brain
areas that are generally associated with the pain matrix.
The initial studies used single photon emission computed
tomography (SPECT). Di Piero et al. conducted a Xe-133
SPECT study that showed differences in the cerebral blood
flow in the contralateral primary sensorimotor and thala-
mic regions compared to control subjects (85). These find-
ings suggested the involvement of central tonic pain in
the pathogenenesis of CH. Hsieh et al. conducted a PET
study on nitroglicerine-induced CH attacks that showed in-
creased cerebral blood flow in the right caudal and ros-
trocaudal anterior cingulate cortex (ACC), temporopolar
region, supplementary motor area, bilaterally in the pri-
mary motor and premotor areas, opercular region, in-
sula/putamen, and lateral inferior frontal cortex (86). The
same study showed reduction in cerebral blood flow bi-
laterally in the posterior-parietal cortex, occipito-temporal
region and prefrontal cortex (86). The authors suggested
that there is a preference for the non-dominant hemi-
sphere in chronic pain processing (86). A FDG-PET study
that measured the cerebral glucose metabolism during
and outside the bout showed increased metabolism in the
perigenual ACC, posterior cingulate cortex, the OFC, the
nucleus accumbens, ventrolateral prefrontal cortex, dor-
solateral prefrontal cortex and temporal cortex, and de-
creased metabolism in the cerebellopontine area (87). The
same study revealed hypometabolism in the perigenual
ACC, prefrontal and OFC in and out of the CH bout com-
pared with normal group (87). The authors concluded that
the hypomethabolism in and out of a bout in the PACC,
a structure involved in the central descending opiatergic
pain control system, may predispose to CH and to its recur-
rence (87).

4. Conclusions

Migraine and CH are neurovascular disorders with
multiple processes and complex pathophysiologies. We
have acquired better understanding of the role of the
trigeminal vascular system in causing pain in these dis-
orders. However, it is clear that other brain areas and
trigeminothalamic projections all have a role to play in mi-
graine. In CH, it is evident that activation of the hypothala-
mus is the key in generating attacks. Our understanding of
the pain mechanisms of these two conditions continues to
improve and is crucial for the development of novel treat-
ments. Research in this field, using animal models and
the ever-advancing techniques of functional imaging, will
undeniably assist in the quest for specific drugs for these
painful disorders.
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