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Abstract

Objective

Cysteine conjugate beta-lyase 2 (CCBL2), also known as kynurenine aminotransferase 3

(KAT3) or glutamine transaminase L (GTL), plays an essential role in transamination and

cytochrome P450. Its correlation with some other cancers has been explored, but breast

cancer (BC) not yet.

Methods

The mRNA and protein expression of CCBL2 in BC cell lines and patient samples were

detected by RT-qPCR and immunohistochemistry (IHC). BC patients’ clinical information

and RNA-Seq expression were acquired via The Cancer Genome Atlas (TCGA) database.

Patients were categorized into high/low CCBL2 expression groups based on the optimal cut-

off value (8.973) determined by receiver operating characteristic (ROC) curve. We investi-

gated CCBL2 and clinicopathological characteristics’ relationship using Chi-square tests,

estimated diagnostic capacity using ROC curves and drew survival curves using Kaplan–

Meier estimate. We compared survival differences using Cox regression and externally vali-

dated using Gene Expression Omnibus (GEO) database. We evaluated enriched signaling

pathways using gene set enrichment analysis (GSEA), explored CCBL2 and relevant

genes’ relationship using tumor immunoassay resource (TIMER) databases and used the

human protein atlas (HPA) for pan-cancer analysis and IHC.

Results

CCBL2 was overexpressed in normal human cell lines and tissues. CCBL2 expression was

lower in BC tissues (n = 1104) than in normal tissues (n = 114), validated by GEO database.

Several clinicopathologic features were related to CCBL2, especially estrogen receptor
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(ER), progesterone receptor (PR) and clinical stages. The low expression group exhibited

poor survival. CCBL2’s area under curve (AUC) analysis showed finite diagnostic capacity.

Multivariate cox-regression analysis indicated CCBL2 independently predicted BC survival.

GSEA showed enriched pathways: early estrogen response, MYC and so on. CCBL2 posi-

tively correlated with estrogen, progesterone and androgen receptors. CCBL2 was downre-

gulated in most cancers and was associated with their survival, including renal and ovarian

cancers.

Conclusions

Low CCBL2 expression is a promising poor BC survival independent prognostic marker.

Introduction

Breast cancer (BC) is the most diagnosed cancer in women, accounting for 11.7% of all types

of cancers worldwide and the highest morbidity rate in women [1–3]. This commonly diag-

nosed malignant tumor is also the leading cause of cancer deaths worldwide, just after lung

cancer [4]. Approximate 2.1 million people were diagnosed with BC in 2018 [5]. As a heteroge-

neous disease, various biomarker-based diagnostic and prognostic approaches have emerged

in recent years. ER, PR and human epidermal growth factor receptor-2 (HER2) have served as

both diagnostic and prognostic biomarkers of BC [6]. Nowadays, with advances in sequencing

technology, DNA methylation, miRNAs, autoantibodies, lipidomics and proteomics as well as

identification of multiparameter gene signatures have facilitated the early diagnosis and prog-

nosis of breast carcinoma [7–10]. These latest studies have sparked our interest in mining

genes as biomarkers associated with BC.

CCBL2 has been found in mouse, rat, and human whose mRNA is widely expressed in sev-

eral organs such as the liver, kidney, heart, and neuroendocrine tissues. However, the highest

expression of CCBL2 is found in the kidney [11, 12]. CCBL2 can effectively catalyze the trans-

amination of glutamine, methionine, histidine, phenylalanine, cysteine, asparagine, and

kynurenine (KYN) to kynurenic acid (KYNA) as well as the pathway of drug metabolism by

cytochrome P450 [11, 13]. All of these functions are involved in the important processes in

human amino acid metabolism. According to the HUGO Gene Nomenclature Committee

(HGNC), CCBL2 is identical to kynurenine aminotransferase 3 (KAT3) and glutamine trans-

aminase L (GTL) genes [12, 14]. In mammalian cells, the essential amino acid tryptophan is

degraded mainly through the kynurenine pathway. Kynurenine aminotransferases (KATs) cat-

alyze the synthesis of KYNA, which is a metabolite of tryptophan and an endogenous antago-

nist of N-methyl-D-aspartate and alpha 7-nicotinic acetylcholine receptors [15–17]. And

KYNA is a recognized neuroprotective and anticonvulsant agent involved in synaptic trans-

mission and in the pathophysiology of various neurological disorders(11). Abnormal expres-

sion levels of CCBL2 are involved in the pathophysiological process of kidney injury, hospital-

acquired VTE, depression and neurological disorders [12, 15, 18–22]. Recently, GTK (Gluta-

mine Transaminase K, which is identical to KAT1 and CCBL1) has been reported to play an

important role in pancreatic tumorigenesis through the glutamine pathway and cysteine con-

jugate beta-lyase (CCBL) had close relation with kidney cancer. Glutamine, as one of the cata-

lytic substrates of CCBL2, plays biosynthetic roles in cells, as it is used in the biosynthesis of

amino acids, proteins, lipids, and nucleotides which are essential to cell division, especially in

cancer cells, also known as glutamine addiction, reported to be concerned with the process of
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pancreatic cancer. Furthermore, cysteine conjugate beta-lyase (CCBL) was found to be closely

associated with the development of kidney cancer. Studies have shown that variants in the

CCBL2 gene were significantly associated with the risk of chronic kidney disease due to a

defect in reductive metabolism that leads to the formation of a cysteine conjugate, which is

then converted to an active metabolite [20, 22, 23]. The findings piqued our curiosity in the

role of the CCBL family member, CCBL2, in breast tissues, as well as the unknown association

between CCBL2 and BC, which is now the most frequently diagnosed cancer worldwide.

Moreover, we assessed whether CCBL2 could serve as a prognostic marker of survival in

patients with BC.

Therefore, to initially ascertain whether CCBL2 expression levels affect BC prognosis, we

studied the correlation between CCBL2 expression in BC tissues and clinicopathological char-

acteristics, as well as with the survival status of patients with BC through analysis of The Can-

cer Genome Atlas-Breast Invasive Carcinoma (TCGA-BRCA) level 3 data. Additionally, the

results were validated using Gene Expression Omnibus (GEO) datasets. At both mRNA and

protein levels, the expression of CCBL2 was verified with real-time quantitative polymerase

chain reaction (RT-qPCR) and immunohistochemistry (IHC) staining in human protein atlas

(HPA) dataset, respectively. Furthermore, a pan-cancer analysis of CCBL2 was performed to

explore the correlation between CCBL2 and various cancers.

Methods

Breast cell lines

During this study, two types of human BC cells, MCF-7 and MDA-MB-231, and human normal

breast epithelial cell lines MCF-10A were used. MCF-7 cell lines, regarded as type of luminal,

were cultured in DMEM (Gibco, USA). MDA-MB -231, regarded as type of basal, were grown

in RPMI 1640 (Gibco, USA). Both cells were supplemented with 10% fetal calf serum (Gibco,

USA) and 1% Penicillin-Streptomycin Solution (Beyotime China). MCF-10A cell lines were cul-

tured in DMEM-F12 (Gibco, USA) with 5% equine serum, 1% Penicillin-Streptomycin Solu-

tion, 20ng/ml epidermal growth factor, 0.5ug/ml hydrocortisone, 0.1ug/ml cholera toxin and

10ug/ml insulin. The cell lines mentioned above were all obtained from the American Type Cul-

ture Collection (ATCC, USA) and cultured in a humid atmosphere of 5% CO2 at 37˚C.

Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)

The total RNA was isolated using the TRIzol reagent (Invitrogen, USA) and reverse transcrip-

tion was implemented using the HiScriptⅢ RT SuperMix for qPCR with gDNA wiper (Vazyme

Biotech) to synthesize cDNA following the manufacturer’s instructions. The RT-qPCR was per-

formed by ChamQ Universal SYBR qPCR Master Mix (Vazyme Biotech) and run by the Mas-

tercycler Ep Realplex (Eppendorf, Hamburg, Germany). The relative gene expression fold

change was normalized using beta-tubulin 2A (TUBB2A) as an internal control and compared

with MCF-10A. The primers sequences used in this study were as follows: CCBL2, F: 5ʹ-ATC
CTT GTG ACA GTA GGA GCA-3ʹ, R: 5ʹ-GGG CTC ATA GCA GTC ATA GAA AG-3ʹ;
TUBB2A, F: 5ʹ-TTG GGA GGT CAT CAG CGA TGA G-3ʹ, R: 5ʹ-AGG CTC CAG ATC
CAC CAG GAT G-3ʹ. The independent experiments were performed at least three times.

Gene Set Enrichment Analyze (GSEA)

GSEA software3.0. (http://software.broadinstitute.org/gsea/downloads.jsp) was applied for

Gene Set Enrichment Analysis (GSEA). The normalized enrichment score (NES) was obtained

by alignment analysis 1000 times with FDR (false discovery rates)<0.25 and NOM p<0.05.
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Gene correlation analysis

Tumor Immunoassay Resource (TIMER) databases (https://cistrome.shinyapps.io/timer/)

(data based on TGGA) were employed to explore the association between CCBL2 and estrogen

receptor 1 (ESR1), estrogen receptor 2 (ESR2), progesterone receptor (PGR), androgen recep-

tor (AR), cytochrome P450 2B6 (CYP2B6), ribosomal protein S6 kinase B1(RPS6KB1) and

MYC genes. Correlation analysis drew the expression scatterplots between a pair of genes in

breast cancer, together with the Spearman’s rho value and estimated statistical significance.

Pan-cancer analysis of CCBL2
The expression differences between normal and tumor tissues were analyzed by TIMER data-

bases (data based on TCGA). Analysis of survival probability of CCBL2 in pan-cancer was

completed systemically in HPA databases (https://www.proteinatlas.org/). Relevant immuno-

histochemistry (IHC) staining images were also obtained from HPA.

Data mining

Breast cancer patients’ data of the clinical information as well as the level 3 RNA-Seq expres-

sion were acquired via TCGA database (https://cancergenome.nih.gov/), involving normal tis-

sues (n = 114) and BC tissues (n = 1104). The analysis process applied the RNA-Seq by

Expectation Maximization (RSEM) expression values. GEO datasets (GSE42568, GSE71053)

[24, 25] were obtained via the GEO database (https://www.ncbi.nlm.nih.gov/geo/).

Statistical analysis

Using the ggplot2 package in R, the differential expression of discrete variables was processed

into visible boxplots with Wilcoxon and Kruskal-Wallis test. Based on the optimal cutoff value

(8.973) determined by the ROC curve, patients were categorized into high and low CCBL2
expression groups. With the implement of Chi-square test as well as Fisher exact test in R pro-

gram (version 3.5.2), the analysis of relationship between the expression of CCBL2 and clinico-

pathological characteristics was performed. ROC curves of the subjects were plotted to

estimate their diagnostic ability by applying the ROC package. Adopting the survival package

of R, we used the Kaplan-Meier curves to compare respective differences in overall survival

(OS) and relapse-free survival (RFS) between high and low groups. Kaplan-Meier Plotter

(https://kmplot.com/analysis/) was used to further explore the relationship between the prog-

nosis of patients with endocrine therapy and CCBL2 expression. Log-rank test was used for p

values calculation. The clinicopathological characteristics were selected by the univariate and

multivariate cox regression analysis. Independent experiment of RT-qPCR was done three

times and measured data expressed as mean ± standard deviation. The result of RT-qPCR was

plotted by GraphPad Prism 8. P value<0.05 was the significance threshold.

Results

CCBL2 expression in BC cell lines and tissues

CCBL2 was overexpressed in the human normal breast epithelial cell line MCF-10A while

downregulated in BC cell lines (Fig 1A) and tissues (Fig 2A–2C). In particular, MCF-7 cells

showed higher CCBL2 expression than MDA-MB-231 cells. Out of a total of 24 samples of BC,

22 of them exhibited moderate IHC staining for CCBL2, other two of them showed weak IHC

staining. However, normal tissues exhibited strong IHC staining for CCBL2 (Fig 2A–2C). This

result indicated that CCBL2 expression varied at the protein level. In addition, it was validated
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in microarrays GSE42568 (p = 1.3e-05) and GSE71053 (p = 0.0490) that CCBL2 expression of

BC was lower in tumor tissue than in normal breast tissues (Fig 1B and 1C).

Patient characteristics

Based on the TCGA-BRCA level 3 data, Table 1 showed the clinical characteristics of tumor

samples, such as molecular subtype, histological type, menopause status, radiation therapy,

margin status, neoadjuvant treatment, targeted molecular therapy, ER, PR, HER-2, TNM

stage, clinical stage, vital status, lymph node status and sample type.

CCBL2 expression in BC

Compared with that in normal tissues (n = 114), the expression of CCBL2 was lower in BC tis-

sues (n = 1104; p = 2.2e-08). Additionally, drawn in boxplots, CCBL2 expression varied with

the molecular subtype (p = 1.6e-10), histological type (p = 0.0150), clinical stage (p = 0.0047),

T classification (p = 3.4e-05), M classification (p = 0.0440) (Fig 3), while no statistical differ-

ence in patient age, menopause status, sample type, N classification, sample type etc. (data not

shown).

The correlation between clinicopathological characteristics and CCBL2
expression in BC

Based on the optimal cutoff value (8.973) determined by the ROC curve, patients were catego-

rized into high and low CCBL2 expression groups. Results of Chi-square or Fisher exact test

demonstrated that several clinicopathologic features, including histological type (p = 0.0010),

molecular subtype (p = 0.0005), ER (p = 0.0005), PR (p = 0.0005), HER2 (p = 0.0085), T classi-

fication (p = 0.0130), M classification (p = 0.0210), vital status (p = 0.0025), stage (p = 0.0320),

OS (p = 0.0025) and RFS (p = 0.0375), were correlated with CCBL2 expression (Table 2).

Fig 1. Overexpressed CCBL2 in normal breast. MCF-7 and MDA-MB-231 mRNA expression was detected lower than MCF-10A and MCF-7 was higher than

MDA-MB-231 (A) (�p<0.05, ��p<0.01). Microarrays related to CCBL2 expression in normal breast and breast cancer were shown (B and C).

https://doi.org/10.1371/journal.pone.0269998.g001
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Diagnostic capacity of CCBL2 expression

The ROC curve was plotted to assess the diagnostic capacity of CCBL2 and the area under the

curve (AUC) showed a value of 0.659, implying a finite diagnostic capacity. In the subgroup

analysis of different stages, CCBL2 showed a relatively valuable diagnostic capacity in patients

Fig 2. Immunohistochemistry staining for CCBL2. The expression of CCBL2 in breast cancer (B and C), renal cancer (E), ovarian cancer (G) and head and neck cancer

(I) cells were decreased than in respective normal tissues (A, D, F and H). In breast cancer, infiltrating lobular carcinoma (B) expressed more CCBL2 than infiltrating

ductal carcinoma (C).

https://doi.org/10.1371/journal.pone.0269998.g002
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Table 1. Clinical characteristics of TCGA-BRCA level 3 cohort.

Characteristics Numbers of cases (%)

CCBL2
High 746(67.57)

Low 358(32.43)

Age

<60 589(53.45)

> = 60 513(46.55)

Gender

Female 1090(98.73)

Male 12(1.09)

NA 2(0.18)

Histological type

Infiltrating Ductal Carcinoma 790(71.56)

Infiltrating Lobular Carcinoma 204(18.48)

Other 107(9.69)

NA 3(0.27)

Molecular subtype

Basal 142(12.86)

HER-2 67(6.07)

Lum A 422(38.22)

Lum B 194(17.57)

Normal 24(2.17)

NA 255(23.1)

ER

Indeterminate 2(0.18)

Negative 239(21.65)

Positive 813(73.64)

NA 50(4.53)

PR

Indeterminate 4(0.36)

Negative 345(31.25)

Positive 704(63.77)

NA 51(4.62)

HER-2

Equivocal 180(16.3)

Indeterminate 12(1.09)

Negative 565(51.18)

Positive 164(14.86)

NA 183(16.58)

T classification

T1 281(25.45)

T2 640(57.97)

T3 138(12.5)

T4 40(3.62)

TX 3(0.27)

NA 2(0.18)

N classification

N0 516(46.74)

(Continued)
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Table 1. (Continued)

Characteristics Numbers of cases (%)

N1 367(33.24)

N2 120(10.87)

N3 79(7.16)

NX 20(1.81)

NA 2(0.18)

M classification

M0 917(83.06)

M1 22(1.99)

MX 163(14.76)

NA 2(0.18)

Stage

I 182(16.49)

II 626(56.7)

III 252(22.83)

IV 20(1.81)

X 14(1.27)

NA 10(0.91)

Lymph node status

No 28(2.54)

Yes 697(63.13)

NA 379(34.33)

Vital status

Deceased 155(14.04)

Living 947(85.78)

NA 2(0.18)

Sample type

Metastatic 7(0.63)

Primary tumor 1097(99.37)

Menopause status

Inde 34(3.08)

Peri 40(3.62)

Post 706(63.95)

Pre 231(20.92)

NA 93(8.42)

Margin status

Close 31(2.81)

Negative 922(83.51)

Positive 79(7.16)

NA 72(6.52)

Radiation therapy

NO 445(40.31)

YES 557(50.45)

NA 102(9.24)

Neoadjuvant treatment

No 1088(98.55)

Yes 13(1.18)

NA 3(0.27)

(Continued)
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with stage IV BC (AUG: 0.828) (AUC values of BC stages I, II, and III were 0.592, 0.673, and

0.659 respectively) (Fig 4).

Table 1. (Continued)

Characteristics Numbers of cases (%)

Targeted molecular therapy

NO 46(4.17)

YES 533(48.28)

NA 525(47.55)

Os

Alive 933(85.83)

Dead 154(14.17)

Rfs

Relapse-free 816(89.47)

Relapse 96(10.53)

Abbreviation: ER: estrogen receptor; PR: progesterone receptor; HER-2: human epidermal growth factor-2; T: tumor;

M: metastasis; N: node; OS: overall survival; RFS: relapse-free survival; NA: not available.

https://doi.org/10.1371/journal.pone.0269998.t001

Fig 3. Differences in CCBL2 expression shown in boxplots. The subgroups included type (A), molecular subtype (B), histological type (C), clinical

stage (D), T classification (E), and M classification (F). (p< 0.05).

https://doi.org/10.1371/journal.pone.0269998.g003
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Table 2. Correlations of CCBL2 expression in BC tissues with clinicopathologic features.

Clinical characteristics Variable No. of cases CCBL2 expression χ2 P value

High n (%) Low n (%)

Age <60 589 404 (68.59) 185 (31.41) 0.7858 0.4108

> = 60 513 339 (66.08) 174 (33.92)

Gender Female 1090 736 (67.52) 354 (32.48) 0.4564 0.5437

Male 12 7 (58.33) 5 (41.67)

Histological type Infiltrating Ductal Carcinoma 790 505 (63.92) 285 (36.08) 16.1545 0.001

Infiltrating Lobular Carcinoma 204 156 (76.47) 48 (23.53)

Other 107 82 (76.64) 25 (23.36)

Molecular subtype Basal 142 82 (57.75) 60 (42.25) 49.4216 0.0005

Her2 67 35 (52.24) 32 (47.76)

LumA 422 332 (78.67) 90 (21.33)

LumB 194 110 (56.70) 84 (43.30)

Normal 24 19 (79.17) 5 (20.83)

ER Indeterminate 2 1 (50.00) 1 (50.00) 19.3441 0.0005

Negative 239 134 (56.07) 105 (43.93)

Positive 813 578 (71.09) 235 (28.91)

PR Indeterminate 4 1 (25.00) 3 (75.00) 20.1547 0.0005

Negative 345 205 (59.42) 140 (40.58)

Positive 704 507 (72.02) 197 (27.98)

HER2 Equivocal 180 129 (71.67) 51 (28.33) 11.7483 0.0085

Indeterminate 12 9 (75.00) 3 (25.00)

Negative 565 382 (67.61) 183 (32.39)

Positive 164 91 (55.49) 73 (44.51)

T classification T1 281 207 (73.67) 74 (26.33) 12.7439 0.013b

T2 640 422 (65.94) 218 (34.06)

T3 138 91 (65.94) 47 (34.06)

T4 40 20 (50.00) 20 (50.00)

TX 3 3 (100) 0 (0)

N classification N0 516 350 (67.83) 166 (32.17) 3.4757 0.5072

N1 367 255 (69.48) 112 (30.52)

N2 120 73 (60.83) 47 (39.17)

N3 79 51 (64.56) 28 (35.44)

NX 20 14 (70.00) 6 (30.00)

M classification M0 917 613 (66.85) 304 (33.15) 7.8213 0.021

M1 22 10 (45.45) 12 (54.55)

MX 163 120 (73.62) 43 (26.38)

Stage I 182 134 (73.63) 48 (26.37) 10.766 0.032

II 626 421 (67.25) 205 (32.75)

III 252 164 (65.08) 88 (34.92)

IV 20 8 (40.00) 12 (60.00)

X 14 10 (71.43) 4 (28.57)

Lymph node status No 28 18 (64.29) 10 (35.71) 0.5126 0.5277

Yes 697 492 (70.59) 205 (29.41)

Vital status Deceased 155 88 (56.77) 67 (43.23) 9.3118 0.0025

Living 947 655 (69.17) 292 (30.83)

Sample type Metastatic 7 4 (57.14) 3 (42.86) 0.3367 0.6982

Primary Tumor 1097 740 (67.46) 357 (32.54)

(Continued)
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Correlation between CCBL2 expression and survival of patients with BC

The correlation between CCBL2 expression and survival of patients with BC was determined

using Kaplan–Meier curves. The log-rank tests indicated that low CCBL2 expression was asso-

ciated with a low overall survival (OS) rate (p<0.0001) (Fig 5) as well as a low relapse-free sur-

vival (RFS) rate (p = 0.0036) (Fig 6). Subgroup analysis revealed that low CCBL2 expression

was correlated with low OS in patients with ER-positive BC (p = 0.0005), PR-positive BC

(p = 0.0001), HER-2-negative BC (p = 0.0011), infiltrating ductal carcinoma (p = 0.0023), infil-

trating lobular carcinoma (p<0.0001), and luminal A (p = 0.0250) (Fig 5). The analysis also

revealed that low CCBL2 expression was associated with low RFS in patients with ER-positive

BC (p = 0.0310), PR-positive BC (p = 0.0340), luminal A BC (p = 0.0400), and infiltrating duc-

tal carcinoma (p = 0.0004) (Fig 6). Additionally, Kaplan–Meier analysis was conducted based

on whether patients with ER-positive BC had received endocrine therapy. The log-rank tests

indicated that high CCBL2 expression was associated with a high RFS rate in patients receiving

endocrine therapy (with or without chemotherapy) (p = 0.0039) and in a subgroup of patients

receiving endocrine therapy alone (without chemotherapy) (p = 0.0035). Furthermore, high

CCBL2 expression was associated with better OS (p = 0.0020) and RFS (p = 7.2e−05) rate in

patients with ER-positive BC without endocrine therapy (Fig 7).

Independent prognostic value of low CCBL2 expression in BC

Univariate and multivariate analyses were performed to demonstrate the prognostic value of

clinicopathological characteristics, which were subsequently used in the evaluation of the

impacts of CCBL2 on the survival of patients with BC. Age, clinical stage, HER-2, margin status

Table 2. (Continued)

Clinical characteristics Variable No. of cases CCBL2 expression χ2 P value

High n (%) Low n (%)

Menopause status Inde 34 24 (70.59) 10 (29.41) 3.1873 0.3683

Peri 40 29 (72.50) 11 (27.50)

Post 706 462 (65.44) 244 (34.56)

Pre 231 164 (71.00) 67 (29.00)

Margin status Close 31 23 (74.19) 8 (25.81) 0.9229 0.6322

Negative 922 617 (66.92) 305 (33.08)

Positive 79 55 (69.62) 24 (30.38)

Radiation therapy NO 445 290 (65.17) 155 (34.83) 1.9235 0.1859

YES 557 386 (69.30) 171 (30.70)

Neoadjuvant treatment NO 1088 735 (67.56) 353 (32.44) 0.2119 0.7686

YES 13 8 (61.54) 5 (38.46)

Targeted molecular therapy NO 46 32 (69.57) 14 (30.43) 0.0035 1

YES 533 373 (69.98) 160 (30.02)

OS Alive 933 646 (69.24) 287 (30.76) 9.7778 0.0025

Dead 154 87 (56.49) 67 (43.51)

RFS Relapse-free 816 566 (69.36) 250 (30.64) 4.8181 0.0375

Relapse 96 56 (58.33) 40 (41.67)

Abbreviations: Bold values of P < 0.05 indicate statistically significant correlations.
bFisher’s exact test.

Note: High n (%) and low n (%) added up to 100% in each subgroup. For example, high BBCL2 expression n (%) of “Age<60” = 404/589 = 68.59%; low CCBL2

expression n (%) of “Age<60” = 185/589 = 31.41%

https://doi.org/10.1371/journal.pone.0269998.t002
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and CCBL2 expression were linked with poor OS according to the results of the univariate

analysis (Table 3). Likewise, ER, PR, margin status, clinical stage, and CCBL2 expression were

linked with an unfavorable RFS (Table 4). Subsequently, multivariate analysis was performed,

the results of which were shown in the forest plot (Fig 8). Low CCBL2 expression served as an

independent prognostic biomarker for low OS (p = 0.0011; HR: 2.18, 95% CI: 1.37–3.47) and

low RFS (p = 0.0382; HR: 1.59, 95% CI: 1.03–2.47) (Tables 3 and 4).

Gene set enrichment analysis (GSEA) of CCBL2
GSEA was performed between the low and high CCBL2 expression datasets, which was signifi-

cantly different in h.all.v6.2.symbols.gmt of the MsigDB database (FDR<0.25, NOM p<0.05)

(Table 5). On the basis of the normalized enrichment score (NES), the most significantly enriched

pathways included estrogen response early and estrogen response late, indicating that the estro-

gen response was downregulated when CCBL2 expression was low. In addition, the correlated

pathway, androgen response, was also declined (Table 5). The oppositely regulated and enriched

pathways included the G2M checkpoint, MYC, mTorc1 signaling, and glycolysis (Fig 9).

Fig 4. The ROC curve of CCBL2 in breast carcinoma cohort. Normal and tumor samples (A). The AUC (0.659) indicated a limited diagnostic capability. Subgroup

analyses: Stage Ⅰ (B) (AUC: 0.592), Stage Ⅱ (C) (AUG:0.673), StageⅢ (D) (AUG:0.659), StageⅣ (E) (AUG:0.828). Abbreviations: AUC, area under the curve; ROC,

receiver operating characteristic.

https://doi.org/10.1371/journal.pone.0269998.g004
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Correlation of CCBL2 with other genes in BC

By the use of TIMER database, we showed that the expression of CCBL2 was significantly asso-

ciated with that of ESR1 (r = 0.2718, p = 4.40e-20), PGR (r = 0.3346, p = 3.57e-30), AR
(r = 0.3412, p = 4.38e-31) (S1 Fig), CYP2B6 (r = 0.1542, p = 2.77e-07) and RPS6KB1
(r = 0.2215, p = 1.07e-13), while no significant association with that of ESR2 (r = 0.0330,

p = 2.75e-01) and MYC (r = 0.0363, p = 2.29e-01) (Fig 10).

Pan-cancer analysis of CCBL2 expression

The differential expression of CCBL2 between normal and tumor tissues was analyzed using

the TIMER database. According to the results, the expression of CCBL2 was significantly

higher in normal tissues compared with that in tumor tissues in not only BC but also in renal

cancer (p<0.0001), ovarian cancer (p<0.0001), and uterine corpus endometrial carcinoma

Fig 5. Kaplan–Meier curves of overall survival in breast cancer according to CCBL2 expression in breast cancer tissues. Overall survival analysis and subgroup

analyses of histological type (B and C), ER (D and E), PR (F and G), HER-2 (H and I) and molecular subtype (J, K and L). High CCBL2 expression had relations with the

high overall survival. (p< 0.0001) (A).

https://doi.org/10.1371/journal.pone.0269998.g005
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(p = 1.31e-05). In cholangiocarcinoma (p = 1.90e-06) and liver hepatocellular carcinoma

(p = 1.38e-04), the expression of CCBL2 was lower in normal tissues compared with tumor tis-

sues. Considering the results of both TIMER and HPA databases, monogenic pan-cancer anal-

ysis of CCBL2 expression (data from HPA) was performed, and the results indicated that apart

from BC, low expression of CCBL2 was associated with poor prognosis of renal, ovarian and

head and neck cancers (p<0.0010). There was no significant relation between CCBL2 and

prognosis of patients with uterine corpus endometrial carcinoma (p = 0.1600) and liver cancer

(cholangiocarcinoma and liver hepatocellular carcinoma) (p = 0.2600) (Fig 11).

Low CCBL2 expression in patient-derived tissue samples of breast, renal,

ovarian and head and neck cancers

The results of IHC staining were downloaded from HPA, and IHC staining was employed to

verify the protein expression of CCBL2 in breast, renal, ovarian and head and neck cancers.

Fig 6. Kaplan–Meier curves of relapse free survival in breast cancer according to CCBL2 expression in breast cancer tissues. Relapse free survival analysis and

subgroup analyses of histological type (B and C), ER (D and E), PR (F and G), HER-2 (H and I) and molecular subtype (J, K and L). High CCBL2 expression had relations

with the high relapse free survival (p = 0.0036) (A).

https://doi.org/10.1371/journal.pone.0269998.g006
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Compared with the strong IHC staining in normal tissues, there were totally 24 samples of

breast cancer. 22 tissue samples exhibited moderate IHC staining and 2 tissue samples exhib-

ited weak staining. Out of 24 renal cancer samples, 3 of them were detected moderate staining,

and 21 of them were detected weak staining. For ovarian cancer, 5 tissue samples presented

Fig 7. Kaplan–Meier curves of overall survival and relapse free survival in ER-positive breast cancer according to CCBL2 expression in breast cancer tissues.

Subgroups analysis included the overall survival and relapse free survival of patients with endocrine therapy (A and E), with endocrine therapy alone (B and F), with

endocrine therapy and chemotherapy (C and G), and without endocrine therapy (D and H). P value<0.05 was the significance threshold.

https://doi.org/10.1371/journal.pone.0269998.g007

Table 3. Univariate and multivariate analyses of overall survival in breast cancer patients.

Parameters Univariate analysis Multivariate analysis

HR 95%CI P value HR 95%CI P value

Age 1.91 1.39–2.63 0 2.16 1.36–3.45 0.0013

Histological type 0.93 0.74–1.17 0.543

Molecular subtype 1.01 0.88–1.16 0.901

ER 0.85 0.71–1.02 0.074

PR 0.87 0.73–1.03 0.096

HER-2 1.29 1.05–1.57 0.013 1.12 0.90–1.40 0.297

Menopause status 1.16 0.94–1.43 0.165

Stage 1.64 1.40–1.91 0 2.20 1.67–2.91 0.0000

Margin status 1.42 1.11–1.81 0.005 1.03 0.74–1.43 0.8795

Lymph node status 1.10 0.93–1.30 0.274

CCBL2 2.12 1.53–2.93 0 2.18 1.37–3.47 0.0011

Abbreviations: HR Hazard Ratio, CI confidence interval, bold values of P < 0.05 indicate statistically significant correlations

https://doi.org/10.1371/journal.pone.0269998.t003
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strong staining, 16 showed moderate staining and 5 showed weak staining. A total of 8 tissue

samples of head and neck cancer were analyzed, out of which 5 showed moderate staining,

and 3 showed weak staining. The first three types of cancer tissues showed evidently weaker

staining than their respective normal tissues (para-tumor tissues); however, no change in the

staining intensity was observed in tissue samples of head and neck cancer. In particular, in BC,

infiltrating lobular carcinoma presented stronger staining than infiltrating ductal carcinoma

(Fig 2).

Table 4. Univariate and multivariate analyses of relapse free survival in breast cancer patients.

Parameters Univariate analysis Multivariate analysis

HR 95%CI P value HR 95%CI P value

Age 1.45 0.97–2.16 0.072

Histological type 0.86 0.65–1.14 0.290

Molecular subtype 0.99 0.82–1.2 0.945

ER 0.78 0.63–0.97 0.026 0.89 0.64–1.23 0.4762

PR 0.78 0.64–0.96 0.019 0.85 0.63–1.16 0.3020

HER-2 0.93 0.7–1.22 0.596

Menopause status 0.95 0.74–1.22 0.713

Stage 1.71 1.4–2.08 0 1.63 1.30–2.03 0.0000

Lymph node status 0.86 0.7–1.06 0.159

Margin status 1.59 1.23–2.06 0 1.50 1.15–1.97 0.0030

CCBL2 1.82 1.21–2.73 0.004 1.59 1.03–2.47 0.0382

Abbreviations: HR Hazard Ratio, CI confidence interval, bold values of P < 0.05 indicate statistically significant correlations

https://doi.org/10.1371/journal.pone.0269998.t004

Fig 8. Multivariate analysis was shown in the forest plot.

https://doi.org/10.1371/journal.pone.0269998.g008
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Discussion

Based on the data acquired from the TCGA database, CCBL2 showed lower expression in

tumor tissues compared with normal tissues, and this result was validated in GEO datasets. In

addition, RT-qPCR and IHC staining demonstrated the enhanced expression of CCBL2 in the

Table 5. Gene sets which were significantly enriched.

Description of gene set NES NOM (p value) FDR (q value)

HALLMARK_ESTROGEN_RESPONSE_EARLY -2.047 0.001 0.005

HALLMARK_ESTROGEN_RESPONSE_LATE -1.632 0.001 0.005

HALLMARK_ANDROGEN_RESPONSE -1.464 0.015 0.016

HALLMARK_G2M_CHECKPOINT 3.164 0.004 0.005

HALLMARK_MYC_TARGETS_V1 2.558 0.005 0.005

HALLMARK_MTORC1_SIGNALING 2.337 0.005 0.005

HALLMARK_GLYCOLYSIS 1.844 0.005 0.005

Abbreviation: NES, normalized enrichment score. FDR, false discovery rate. NOM, nominal p value.

https://doi.org/10.1371/journal.pone.0269998.t005

Fig 9. GSEA results of CCBL2 in breast cancer. GSEA results showed the different enrichment of estrogen response early (A), estrogen response late (B), G2M

checkpoint (C), mTorc1 signaling (D), MYC targets V1 (E) and glycolysis (F) in CCBL2 related to breast cancer. Abbreviation: GSEA, Gene Set Enrichment Analysis.

https://doi.org/10.1371/journal.pone.0269998.g009
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human normal breast epithelial cell line MCF-10A and its diminished expression in BC cell

lines as well as BC tissues. Low CCBL2 expression was correlated with an unfavorable survival,

and we could come to a conclusion that CCBL2 was a prognostic biomarker in BC. To the best

of our knowledge, this is the first study to elucidate the correlation between CCBL2 expression

and BC survival based on TCGA data analysis.

CCBL2, a gene located on chromosome 1p22.2 [11], encodes an aminotransferase that

transaminates kynurenine to form kynurenic acid, which is a metabolite of tryptophan.

According to previous studies, CCBL2 facilitated the clearance of nephrotoxic substances [26].

The expression of CCBL2 was also decreased in patients with hyperoxaluria [27]. Moreover,

CCBL2 expression was positively correlated with the occurrence of hospital-acquired VTE

[19]. As important paralogs, evidence has shown the correlation between CCBL1 (identical to

KAT1 and GTK) and pancreatic, prostate, and bladder cancers [28]. Furthermore, CCBL2
(identical to KAT2) plays an important role in several neurological diseases such as Hunting-

ton’s disease, Alzheimer’s disease and depression [15, 18, 29]. However, limited information is

Fig 10. Correlation analysis between CCBL2 and relevant genes. Results included ESR1 (A), ESR2 (B), PGR (C), CYP2B6 (D), RPS6KB1 (E), and MYC (F) through

TIMER databases. Abbreviation: TIMER, Tumor Immunoassay Resource.

https://doi.org/10.1371/journal.pone.0269998.g010
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available regarding the expression of CCBL2 in tumors, especially BC. In our study, we demon-

strated that CCBL2 expression was lower in tumor tissues than in normal tissues based on

both the TCGA database and microarray datasets GSE42568 and GSE71053.

Low expression of CCBL2 was correlated with several clinicopathologic characteristics,

including histological type, ER, PR, HER2, molecular subtype, T classification, M classifica-

tion, vital status, and stage. Several research groups have reported that the abovementioned

clinicopathologic features could guide the diagnosis, treatment and prognosis of BC, which

promoted us to further explore the correlation between CCBL2 and BC [9, 30]. As confirmed

above, CCBL2 had significantly strong relation with ER (p = 0.0005) and PR (p = 0.0005) sta-

tus, accounting for the lower expression of CCBL2 in tumor cells of basal-like/Her-2-enriched

BC and higher expression in luminal A (ER/PR-positive) BC cells. Therefore, lower OS and

RFS were linked with lower CCBL2 expression because of the low survival rate and poor prog-

nosis of basal-like/Her-2 enriched BC. The prognosis of infiltrating ductal carcinoma was

found to be worse than that of infiltrating lobular carcinoma [31]. And the analysis results

showed that the expression of CCBL2 was lower in infiltrating ductal carcinoma than in infil-

trating lobular carcinoma, which was consistent with the IHC staining results that lower

CCBL2 expression was linked to worse BC survival. A recent study showed that CCBL1 (identi-

cal to GTK) was involved in glutamine utilization through the GLS1 and glutaminase II path-

ways to generate glutamate [23], while the role of CCBL2 (identical to GTL) was unclarified,

although glutamine was one of its metabolic substrates [15]. For this reason, when CCBL2
expression is low, it can be estimated that glutamine is relatively abundant. Glutamine plays an

Fig 11. Pan-cancer analysis of CCBL2. Differential expression of CCBL2 between normal and tumor tissues(A). Low CCBL2 expression had relations with the low

survival probability of renal cancer (B) and ovarian cancer (C) and head and neck cancer (D) (p< 0.0010). Data were obtained from Human Protein Atlas Dataset

available from proteinatlas.org and TIMER databases.

https://doi.org/10.1371/journal.pone.0269998.g011
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important role in the biosynthesis of amino acids, proteins, lipids, and nucleotides, which are

essential to cell division, especially in cancer cells, also known as glutamine addiction. There-

fore, the proliferating BC cells consumed glutamine at a very high rate [32, 33]. Thus, among

all T stages, T4 had the lowest CCBL2 levels and relatively the highest glutamine levels, with

the fastest tumor cell growth and angiogenesis. In the case of the M stage, low CCBL2 levels

tended to be related to distant metastasis [23, 34]. Many cancer cells, especially those driven by

the Myc gene (involving BC, as confirmed by GSEA results), were metabolically repro-

grammed to consume more glutamine. When the expression of CCBL2 was low, the pathway

of Myc in BC cells was upregulated. Altered glutamine metabolism in Myc-driven cancer, BC,

resulted in glutamine addiction, which caused worse survival rate [35].

Our study shows that low expression of CCBL2 is associated with low OS in BC, especially

in ER-positive tumors, PR positive tumors, HER-2 negative tumors, luminal A tumors, and

invasive ductal and lobular carcinomas. Estrogen plays an important role in BC progression.

Through GSEA, we found several relevant pathways, including estrogen response, enriched in

CCBL2. Estrogen response pathway was downregulated when CCBL2 exhibited low expres-

sion, indicating that CCBL2 is positively correlated with this pathway. Oshi et al. found that

the ESR1-associated early estrogen response was upregulated in ER-positive BC, indicating a

better OS [36]. Therefore, that the low expression of CCBL2 was correlated with the worse OS

of ER-positive BC, which was consistent with the results of our survival analysis. However, the

pathway of estrogen response (early) involves 200 relevant genes [36] and the underlying

molecular mechanism remains unclear. Additionally, CCBL2 could favorably predict the

response to endocrine therapy in patients with ER-positive BC. Conventionally, RFS is used to

evaluate the therapeutic effect of adjuvant therapy in carcinomas. The results of the Kaplan-

Meier analysis indicated that with higher CCBL2 expression, patients who received endocrine

therapy showed better RFS rates than lower CCBL2 groups. More specifically, patients receiv-

ing endocrine therapy alone (without chemotherapy) with higher CCBL2 expression presented

a significant better RFS rate, whereas patients receiving both endocrine therapy and chemo-

therapy showed no increase in OS rate and insignificant increase in RFS rate. Therefore,

CCBL2 possesses a significant prognostic value for ER-positive BC patients with or after endo-

crine therapy, particularly in the subgroup receiving only endocrine therapy, but little prog-

nostic value in the subgroup receiving both endocrine therapy and chemotherapy. In patients

with ER-positive BC without endocrine therapy, high CCBL2 expression indicated a favorable

OS and RFS. In other words, CCBL2 also exhibited a valuable prognostic capacity in BC

patients without or before endocrine therapy. Nowadays, the administration of endocrine

therapy is mainly based on ER status (ER-positive tumors). However, patient compliance is

poor due to the requirement for long-term medicine and associated side effects, with 20–50%

of patients failing to finish the treatment cycle [37, 38]. Additionally, drug resistance has

become a growing problem. Hence, novel biomarkers, such as CCBL2, are needed to evaluate

the benefit of endocrine therapy, which would allow for a better prognosis. This will not only

improve patient compliance but also assist in the selection of patients who are likely to benefit

from neoadjuvant endocrine therapy.

Similarly, the mTORC1-signaling pathway is also correlated with ER-positive BC, which

was downregulated when the CCBL2 expression was high. The regulatory targets of rapamycin

(mTOR) are involved in protein translation, metabolism, cell growth, and proliferation [39].

As an enzyme complex, MTORC1, mainly binds with S6 kinases (S6Ks) to mediate its func-

tion. Studies have demonstrated that S6K1 (one of the S6 kinases) and some other relevant

kinases contributed to the activation of ERα through its phosphorylation [40, 41]. It was fur-

ther shown that S6K1 and ERα formed a positive feed-forward loop. The phosphorylation of

ERα by S6K1 facilitated the process, promoting the transcription of RPS6KB1, which in turn
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regulated he proliferation of BC cells [42, 43]. To conclude, lower expression of CCBL2 in ER-

positive or luminal A BC is related to the higher transcription of RPS6KB1 and subsequent BC

cell proliferation. For the reasons mentioned above, the consensus can be reached that lower

CCBL2 expression is associated with worse OS in ER-positive or luminal A BC. Moreover, the

Myc pathway is negatively correlated with CCBL2 according to the GSEA. In triple-negative

breast cancer (TNBC), MYC was found to regulate polyamine metabolism and a plasma poly-

amine signature was related to the development and progression of TNBC [44]. Therefore, for

TNBC, the lower expression of CCBL2 was related to worse OS and RSF, consistent with the

Kaplan–Meier survival analysis. However, to date, not much is known about the correlation

between CCBL2 and Myc, thereby warranting further experimental validation. Other results of

GSEA stated that G2M-checkpoint and glycolysis pathways were negatively correlated with

CCBL2 expression, both of which have close correlation with the proliferation of most types of

malignant tumors [45]. This is obviously consistent with the results of our analysis.

In addition to ER and PR, AR is also a hormone receptor that is expressed on the surface of

mammary cells, regarded as a novel biomarker arousing heated discussion. Our study showed

that the expression of CCBL2 was positively correlated with that of the AR gene and that the

pathway of androgen response was upregulated when CCBL2 expression was high. According

to a prospective clinical study by Anand et al., higher AR expression was correlated with earlier

stage (p< 0.03), lower axillary burden (p< 0.04), higher ER (p = 0.002) and PR (p = 0.001)

expression [46]. More specifically, Lin et al. showed that AR expression was positively corre-

lated with a better prognosis of patients with HER2-positive breast carcinomas [47]. In TNBC,

several studies have confirmed that the luminal androgen receptor (LAR) subtype, defined as

AR-positive subtype, was associated with the highest OS compared with other subtypes [48–

50]. We can conclude that CCBL2 could be a potential prognostic biomarker based on the con-

firmed relationship between higher AR and better BC prognosis, as well as the findings of the

study mentioned above.

Furthermore, we found some proofs to confirm our conclusions with the assistance of web-

site of http://guotosky.vip:13838/GPSA/. In this website, 3048 gene knock out RNAseq datasets

were performed GSEA with four source of gene sets, including TCGA, Genotype-Tissue

Expression (GTEx), and Cancer Cell Line Encyclopedia(CCLE). The result (S1 Table) showed

the negative fold change values of ESR1 and AR with knock-down CCBL2 gene. It could be

assumed that when CCBL2 gene was knocked down, ESR1 and AR genes also declined.

Using multivariate analysis, it was confirmed that low CCBL2 expression might serve as an

independent prognostic marker, which was correlated with the unfavorable OS and RFS of BC

using multivariate analysis. Then, by analyzing the AUC value, we found that CCBL2 possessed

a moderate diagnostic efficacy between tumor and normal tissues, especially in stage IV. There-

fore, CCBL2 can be regarded as a novel biomarker in the field of diagnosis and prognosis in BC.

The pan-cancer analysis revealed differential expression of CCBL2 between normal human

tissues and various types of cancers. In addition to BC, some other cancers exhibited signifi-

cantly different CCBL2 expression levels. Combined with the HPA results, renal, ovarian and

head and neck cancers had significantly different CCBL2-related survival rates. According to

the findings of RT-qPCR and IHC, CCBL2 may be a favorable prognostic biomarker in most

cancer types. Further experimental verification was underway. Further in silico and in vitro
research is needed to explore the correlation between CCBL2 and pan-cancers.

In this study, we initially discussed the value of CCBL2 expression as an independent prog-

nostic marker for BC. Due to the limited samples, further explorations still need to be carried

out based on the large samples data to verify our consequence. Additionally, the results of this

study also promote the subsequent work, involving the further cell function test through gene

overexpression or knock-down.
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Conclusion

Compared with normal tissues, the expression of CCBL2 was lower in BC. The results revealed

that low CCBL2 expression could act as an independent prognostic marker associated with

survival of BC.
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