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Dengue is the most widespread vector-borne disease worldwide. Timely diagnosis and treatment of dengue 
is the main objective of medical professionals to decrease mortality rates. In this paper, we propose an 
autonomous cycle that integrates data analysis tasks to support decision-making in the clinical management of 
dengue. Particularly, the autonomous cycle supports dengue diagnosis and treatment. The proposed system was 
built using machine learning techniques for classification tasks (artificial neural networks and support vector 
machines) and evolutionary techniques (a genetic algorithm) for prescription tasks (treatment). The system 
was quantitatively evaluated using dengue-patient datasets reported by healthcare institutions. Our system was 
compared with previous works using qualitative criteria. The proposed system has the ability to classify a 
patient’s clinical picture and recommend the best treatment option. In particular, the classification of dengue 
was done with 98% accuracy and a genetic algorithm recommends treatment options for particular patients. 
Finally, our system is flexible and easily adaptable, which will allow the addition of new tasks for dengue 
analysis.
1. Introduction

Dengue is an arthropod-borne viral disease transmitted by Aedes

mosquitoes, mainly Aedes aegypti and Aedes albopictus [1]. Currently, 
this infection is considered the most important arbovirosis worldwide 
in terms of morbidity, mortality and economic impact [2]. Between 
epidemiological weeks 1 and 49 of 2021, 1,173,674 dengue cases in 
the Americas region were reported, with a cumulative incidence rate 
of 118 cases per 100,000 inhabitants. In this period, the most af-
fected subregions were the Southern Cone with a cumulative incidence 
of 323 cases/100,000 inhabitants, and the Andean subregion with 89 
cases/100,000 inhabitants. Within the Andean subregion, Colombia is 
in third place with an incidence of 95 cases per 100,000 inhabitants, 
surpassed by Peru and Ecuador with 140 and 108 cases per 100,000 
inhabitants, respectively [3]. Mortality rates for dengue can be high 
when diagnosis and treatment are not appropriate, reaching values of 
20% [4].

In 2009, World Health Organization (WHO) published guidelines 
for diagnosis, treatment, prevention and control of dengue [5]. These 
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guidelines are, currently, used by medical personnel for the clinical 
management of dengue, from diagnosis to treatment of patients, and, 
used to avoid complications leading to death. However, there are still 
difficulties in the diagnosis and treatment of the disease. The main dif-
ficulty in these two aspects of dengue lies –mainly– in the large amount 
of information that the medical staff must analyze in a short time to 
define the procedure to follow for each particular patient. This informa-
tion corresponds to demographic, clinical and laboratory variables such 
as age, signs and symptoms that a patient with dengue may present 
[6]. One way to address this problem is to use decision support systems 
(DSS) to support the decision-making of medical personnel caring for 
dengue patients. Such systems can use data to enhance the processes 
performed by a human being [7].

With respect to the previously presented background, the contribu-
tion of this paper is a clinical DSS using an autonomous cycle of data 
analysis tasks (ACODAT) to aid decision-making in clinical settings. In 
particular, ACODAT uses the interaction of different successive tasks 
to extract the necessary knowledge to recommend improvements in a 
given process [8]. The use of ACODAT in different fields such as educa-
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tion, telecommunications and industry 4.0, have been reported [9, 10, 
11]. For example, in the educational field, ACODAT has been used to 
determine learning styles in smart classrooms. Aguilar et al. [9] used 
ACODAT to analyze web and social network data to build knowledge 
models about students. These models are used to permanently moni-
tor the learning process. The results showed the capacity of ACODAT 
for the generation of useful knowledge to improve the learning pro-
cess. In the field of telecommunications, Morales et al. [10] developed 
ACODAT for quality of service management in Internet of Things (IoT) 
platforms. The implemented ACODAT allowed analyzing the quality 
of IoT platforms using classification and clustering tasks. In Industry 
4.0, ACODAT has been developed and implemented to improve the 
efficiency of production processes. For example, Sanchez et al. [11] 
presented a framework that helps to solve the problems of integration 
and heterogeneity of the actors involved in manufacturing processes. 
The results show that ACODAT allowed to these actors (people, data, 
things and services) to interact for the creation of a self-configuration 
and self-optimization plan. Finally, it also has been used in smart cities, 
to control and supervise heating, ventilation, and air conditioning sys-
tems [12, 13].

The ACODAT concept has not been applied in the field of medicine. 
Particularly, ACODAT has not been used for clinical disease manage-
ment to date. Based on the problem of dengue, a disease that generates 
high mortality rates if not diagnosed or treated in time, and its economic 
impact on health systems, it is necessary to develop clinical DSS for the 
clinical management of dengue. For this reason, the objective of this 
work is to develop an ACODAT to support decision-making for the clin-
ical management of dengue. Currently, there are different clinical DSS 
for dengue [14]; however, the studies reported in the literature use pre-
dictive and prescriptive approaches separately, and to date, there are no 
models that integrate these two approaches, which are closely related 
to each other. Especially, prediction alone is not very useful when there 
is no prescriptive model to recommend the best options for solving the 
problem. The main contribution of this work is the development and 
implementation of an ACODAT that verifies and corrects clinical data, 
classifies dengue patients and recommends the best treatment options 
to avoid complications and death of patients.

The remainder of this paper is structured as follows: Section 2
presents a brief literature review about dengue modeling for the clin-
ical management of dengue. Section 3 introduces the generalities of 
dengue and the conceptualization of ACODAT. Section 4 describes the 
ACODAT proposed in this article, and the methodology used for its def-
inition and implementation. Section 5 shows the results of ACODAT’s 
implementation in two dengue datasets. Section 6 discusses the results 
and compares them with previous studies. Finally, Section 7 concludes 
the paper.

2. Related work

In this section, we show a brief literature review on dengue mod-
eling for the clinical management of dengue. To date, many machine 
learning (ML) models have been developed to support dengue diagnosis 
(see [14] for more information). Here, we present the most recent ones 
related to early detection, classification of the disease and prescription 
of the treatment.

2.1. Early detection of dengue

Early detection of dengue is difficult and challenging due to the lack 
of specificity in the clinical presentation of the disease. However, in re-
cent years, computer-aided strategies have been developed to support 
medical professionals in these difficult tasks. [15, 16]. For example, 
Khosavanna et al. [15] used two techniques, logistic regression (LR) and 
decision trees (DT), to develop predictive models for the assessment of 
possible early dengue infections. The authors used self-reported clinical 
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manifestations from patients in non-endemic regions. The best perfor-
mance was from the DT model with an area under the curve (AUC) of 
0.75. Ho et al. [16] compared several ML techniques to identify con-
firmed dengue cases using only age, body temperature, white blood cell 
count and platelet count. Models were built with deep learning, DT and 
LR, where deep learning performed best with an AUC of 0.86.

2.2. Dengue classification

Dengue is classified into three types according to WHO: non-severe 
dengue (with or without warning signs) and severe dengue (SD). Dif-
ferentiation of these stages can be difficult in some cases due to the 
variability of the signs and symptoms of dengue. Different studies have 
attempted to model this type of problem to support diagnostic decision-
making [17, 18, 19]. For instance, Huang et al. [17] used demographic 
data and laboratory test results to classify dengue patients based on its 
severity. Several ML methods such as LR, random forest (RF), support 
vector machines (SVM) and artificial neural networks (ANN) were used 
to train the models. The best model was ANN with an accuracy of 0.75.

Chatterjee et al. [18] proposed a hybrid ANN model with a modi-
fied cuckoo optimization algorithm. The model proposed by Chatterjee 
et al. had an accuracy of 0.957 using gene expression data. However, 
the classification performed was based on that recommended by WHO 
in 1997 (dengue fever, dengue hemorrhagic fever and dengue shock 
syndrome) [20].

Hoyos et al. [19] developed a DSS for dengue using fuzzy cognitive 
maps (FCM). They implemented diagnostic models using FCM to clas-
sify patients according to the type of dengue, with an accuracy of 0.89. 
Also, they analyzed the behavior of signs, symptoms, laboratory tests 
and disease severity. This study goes further, and not only classifies the 
patient, but also evaluates the behavior of the signs and symptoms of 
dengue over time, giving recommendations as to what factors might 
influence and appear in the course of the disease.

2.3. Dengue treatment

Treatment of dengue consists of palliating symptoms and avoiding 
complications leading to death. The complexity of the treatment is rep-
resented by the high variability of the clinical manifestations presented. 
Despite WHO recommendations, the treatment of dengue remains a 
challenge for medical professionals. Unfortunately, to date, no com-
putational models have been developed to support decision making 
regarding the treatment of dengue.

In summary, the approaches proposed for the diagnosis of dengue 
based on severity are few. The models developed by [15] and [16] have 
the limitation of only detecting the disease without classifying it. On the 
other hand, the approaches developed for the classification of dengue 
have limitations such as the low classification performance in the work 
of [17], or the use of genetic data by [18], which is not useful in clinical 
practice because this type of data is not easy available for the clinician. 
Finally, there are no prescribing approaches that recommend treatment 
options for dengue.

The clinical management of dengue comprises both diagnosis and 
treatment. Thus, there is a need for the development of prescriptive 
models (treatment) integrated with classification models (diagnosis) to 
support decision making. The use of clinical data such as signs, symp-
toms and routine laboratory tests for the development of these models 
is important because of the availability and ease of collection in regular 
clinical settings.

3. Theoretical background

3.1. Clinical management of dengue

In this section, we describe the principal aspects of dengue, includ-
ing generalities, diagnosis and recommendations for treatment.
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Table 1. Summary of clinical management of dengue by treatment group recommended by 
WHO [5].

Treatment group Characteristics Management
A No warning signs Paracetamol

Tolerate adequate volumes of oral fluids Drink water

Adequate diuresis Oral intake of rehydration solutions

Normal hemogram Daily monitoring

B Warning signs Hospitalization

Comorbidities Isotonic solutions

Social conditions Hematocrit and platelets monitoring

C Severe extravasation Hospitalization

Severe bleeding Isotonic solutions 5-7 ml/kg/hour

Shock Colloid solutions 10-20 ml/kg/hour

Organ failure Vital signs monitoring
3.1.1. Generalities of dengue

Dengue is an acute infection caused by a virus of the flavivirus 
group. To date, there are four (4) serotypes of the virus (DENV-1, 
DENV-2, DENV-3 & DENV-4). The infection is transmitted from per-
son to person by the bite of an Aedes mosquito [21]. Dengue can be 
classified according to the severity of the disease into: 1) non-severe 
dengue without warning signs (NoWS-Dengue), 2) non-severe dengue 
with warning signs (YesWS-Dengue) and, 3) SD. This classification 
was recommended by a WHO expert group in 2009 [5]. Dengue has 
various forms of clinical expression: undifferentiated fever, headache, 
general malaise, osteomyoarticular pain, with or without exanthema 
and leukopenia. Severe forms of the disease are characterized mainly 
by hypovolemic shock caused by plasma extravasation, with moderate 
or severe thrombocytopenia and major bleeding in the gastrointestinal 
tract and other locations [22]. Dengue is also capable of expressing itself 
through the so-called “atypical” forms, which are relatively infrequent 
and result from particularly intense involvement of an organ or system: 
encephalopathy, cardiomyopathy or hepatopathy, among others [23].

3.1.2. Diagnosis of dengue

The definitive and confirmatory diagnosis of dengue is made using 
direct methods such as virus isolation, detection of viral nucleic acid 
or antigens; and indirect methods such as detection of antibodies pro-
duced against the virus [2]. However, these laboratory tests can take a 
long time, which could cause the patient with dengue to develop com-
plications and die. To solve this problem, there are dengue diagnosis 
guidelines published by WHO [5]. These guidelines state that the first 
step in the diagnosis of dengue is the general evaluation of the patient 
by the physician to classify the patient into a group: NoWS-Dengue, 
YesWS-Dengue & SD. The physical examination, analysis of the medical 
history, and laboratory tests such as a complete blood count, allow the 
identification of warning signs and evaluation of the patient’s hydration 
status. Classification of the patient into a group constitutes the second 
stage in the clinical management of dengue. The use of this guide is 
crucial to provide adequate management of the disease due to the wide 
spectrum of clinical manifestations of dengue.

3.1.3. Recommendations for treatment

The third step in the clinical management of dengue is treatment. 
The information obtained in the previous two steps is vital to provide 
an adequate and timely treatment for the patient with dengue. Table 1
summarizes the clinical management of dengue, by treatment group, 
based on the WHO guidelines. The treatment routes for dengue are cat-
egorized into three groups (A, B & C). In group A, we have patients 
who do not present warning signs or comorbidities and who tolerate 
oral water volumes. In addition, this group includes patients with ad-
equate diuresis. In group B, we have patients with warning signs or 
pre-existing conditions such as diabetes mellitus, obesity, renal failure, 
pregnancy, among others. Patients with some social conditions, such as 
living alone or living far from a health institution, are also classified 
in this group. Finally, group C constitutes all patients with any of the 
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following complications: severe plasma extravasation, severe bleeding, 
shock, and severe organ deterioration.

3.2. ACODAT

The high amount of data generated today continues to increase con-
siderably. For this reason, it is necessary to develop new tools for data 
manipulation to extract meaningful knowledge. ACODAT is one of these 
strategies, which consists of a set of data analysis tasks that must be per-
formed together to achieve an objective in a given system or situation 
[24]. This set of tasks interacts, and has different roles in the cycle [25, 
26]: observing the process, analyzing and interpreting what happens in 
it, and making decisions to achieve the objective for what the cycle was 
designed.

The performance of successive tasks connected allows solving com-
plex problems that require a lot of knowledge for the solution [8]. The 
tasks in an ACODAT can be classified into three types [27]: observation, 
analysis and decision making. Observation tasks are those in charge of 
collecting data and information about the system or environment. The 
analysis tasks are in charge of interpreting or diagnosing the system 
using data. This function is performed by building knowledge models 
about the behavior of the cycle. Finally, the decision-making tasks are 
those in charge of performing decision-making activities to improve the 
process.

4. Methodology

In this section, we describe the methodology to create an ACODAT 
for the clinical management of dengue. Then, we specify each of ACO-
DAT’s tasks. Finally, we show the implementation of these tasks on 
specific datasets to support decision-making related to clinical manage-
ment of dengue.

MIDANO is a methodology for data analytic based on organizational 
characterization that has been defined for the development of appli-
cations based on data analysis, and especially, ACODAT [28]. In this 
paper, we use the MIDANO methodology with a little modification for 
the development of this work. The MIDANO methodology consists of 
three main phases (see Fig. 1). The objective of phase 1 is to know ev-
erything related to the organization to define the objective of the data 
analysis application. This stage focuses on identifying and conceptu-
alizing the solution to a problem, from the perspective of developing 
applications based on data analysis. Phase 2 is in charge of data prepa-
ration and treatment. This process is based on the ETL paradigm (E = 
Extraction of data from its sources, T = Transformation of data, and 
L = Loading of data). The main objective of this stage is to generate 
quality data in order to create knowledge models, and define the mul-
tidimensional data model of ACODAT. The objective of phase 3 is the 
implementation of the data analysis tasks in the ACODAT to generate 
knowledge models (descriptive, predictive, classification, prescriptive, 
among others) [29]. In our work, the first phase was used to char-
acterize the problem. In addition, we included data preparation and 
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Fig. 1. MIDANO methodology. Adapted from [29].

treatment (second phase) inside the ACODAT, such a way that the data 
is processed online (real-time) by the cycle to make the process more 
autonomous. Also, the second phase was responsible to identify the data 
sources needed to build the ACODAT. Next, we explain –in detail– each 
of the MIDANO phases applied to the clinical management of dengue.

4.1. Characterization of the dengue context

The first phase of the MIDANO methodology is to identify sources 
to extract knowledge in an organization [29]. In this case, we met with 
dengue clinical experts to identify those knowledge sources. The clini-
cal experts in dengue expressed the difficulties presented in the hospital 
environment: 1) problems with the labeling of patients with each type 
of dengue due to unintentional errors in the database entry, 2) difficul-
ties in the classification of patients with dengue due to the high number 
of variables to analyze in a short time, added to this, the lack of expe-
rience of some physicians for a correct classification of the patient with 
dengue, and, 3) difficulties in the palliative treatment of dengue for the 
same reasons expressed above.

4.2. Identification and analysis of data sources

The second phase of MIDANO corresponds to the identification of 
data sources that can help develop clinical DSS for dengue. In this case, 
the most suitable option is the use of open databases published by the 
Colombian government through the National Institute of Health (INS 
in Spanish). The data that health institutions report to the Colombian 
national health institute were identified. These data correspond to de-
mographic variables such as age, clinical variables such as signs and 
symptoms, and finally, results of laboratory tests. In MIDANO method-
ology, this phase also considers the preparation and treatment of the 
data; however, to make the process more dynamic, we included the 
processing of the data within the ACODAT.

4.3. Specification of the ACODAT for the clinical management of dengue

The last phase of MIDANO corresponds to the specification of ACO-
DAT. This paper proposes an ACODAT for the clinical management of 
dengue. Fig. 2 shows the architecture of ACODAT for clinical man-
agement of dengue. This ACODAT is composed of three steps with 
interconnected tasks for the improvement of dengue decision-making 
at the hospital level. Step 1, called monitoring, comprises the tasks of 
data verification and correction. Step 2, called disease analysis, consists 
of the task of classifying patients based on their signs, symptoms and 
laboratory tests. Finally, step 3, called treatment decision making, com-
prises the prescription task, which consists of recommending the best 
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treatment option for a given patient. The data analysis tasks used tech-
niques that belong to different fields of artificial intelligence (AI), such 
as ANN and genetic algorithm (GA) which belong to the field of com-
putational intelligence; and SVM which belongs to the ML field.

4.3.1. Task 1: data verification and correction

The results obtained in modeling depend largely on the quality of the 
data [30]. The first task of our ACODAT is to detect and correct possible 
errors to perform the next tasks in the best way. Missing data is very 
common in this kind of data; for this reason, rows with missing data 
are removed from the dataset. Another problem with dengue datasets is 
the imbalance of their classes, because one of the classes (SD) is always 
in lower proportion to the other two classes (NoWS-Dengue & YesWS-
Dengue). For this reason, an oversampling technique was used.

4.3.2. Task 2: classification

After data are prepared and verified, they are passed to the second 
ACODAT task. This task uses classification techniques to determine the 
type of dengue in patients. For this task, we used ANN and SVM. The 
main characteristics of this task are shown in Table 2.

4.3.3. Task 3: prescription

This task uses a list of prescriptions for dengue –described in the 
WHO guidelines– for the clinical management of dengue. Based on the 
results of the previous task, a GA optimizes the best treatment option 
for a particular patient. Table 2 shows the characteristics of this task.

4.4. Implementation of ACODAT for the clinical management of dengue

In this section, we implemented ACODAT for the clinical manage-
ment of dengue using datasets from two regions of Colombia.

4.4.1. Datasets

The Data used for this implementation are those stored in the 
database of the Colombian epidemiological surveillance system (SIVIG-
ILA in Spanish), which correspond to records of dengue patients re-
ported by health institutions to the Colombian National Health Institute, 
the entity in charge of managing this type of information in Colombia. 
For the experiments, we used data from the city of Medellin (2008-
2018) and the department of Córdoba (2010-2021) [31]. We chose 
these regions because they are endemic for dengue. According to epi-
demiological reports, the annual incidences reported are 161-745 and 
51-503 per 100,000 inhabitants for Medellín and Córdoba, respectively 
[32].

Medellín and Córdoba datasets were composed of 52,051 and 
16,670 patients, respectively. Both datasets had 36 variables, of which 
14 were eliminated because they did not contribute to our study or were 
not related to the clinical management of dengue, for example: address, 
type of social security, city and department codes, among others. Fi-
nally, 22 variables were selected corresponding to the signs, symptoms 
and laboratory tests that the medical professional observes or detects in 
each patient suspected of dengue. Table 3 shows each of the variables 
included in the datasets, their type and a brief description. All predictor 
variables in the datasets are binary (except age, which was numeri-
cal), where 1 represents the presence of the sign or symptom and 0 
represents the absence. The target variable is categorical with 3 classes 
corresponding to the WHO classification of dengue (No WS-Dengue, Yes 
WS-Dengue & SD).

4.4.2. Implementation of task 1: data verification

In general, health data have some very common particularities, such 
as low quality [30]. In the case of dengue data, there are many errors 
for different reasons. One of the reasons is the speed of the medical 
professionals in entering the dengue notification forms to the health 
authorities. Also, the high demand for hospital care causes medical pro-
fessionals to enter unintentional errors into the datasets. For example, 
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Fig. 2. Architecture of ACODAT for

Table 2. Description of the ACODAT’s tasks for clinical management 
Task name Characteristics of the task

Description Data source
Data verification Verification of data 

and correction of errors
Datasets of National Ins
of Health about dengue

Classification Classification of a patient 
by their variables

Previous task

Prescription Determination of the best 
treatment option for dengue

Previous task
a very common error in the databases is to find patients with NoWS-

Dengue classified as having SD.

Missing data treatment was carried out using the listwise method, 
which consists of eliminating all the data of an observation if there is 
at least one missing data. For class balancing, we used the Synthetic 
Minority Oversampling Technique (SMOTE) due to the low frequency 
of the SD category. Table 4 shows the distribution of dengue type in the 
datasets after applying preprocessing techniques.

For this first task, a Python 3.5 program was written to verify and 
correct the data. We used libraries such as Pandas [33] to extract and 
process the structured data. The Imbalanced-learn library [34] was used 
to correct the imbalance of the classes. The steps to follow in this task 
are the following: 1) extract the structured database of patients with the 
three types of dengue, 2) verify if there are errors in the patient labels; 
for example, if there are patients without warning signs classified as SD, 
reassign the label as NoWS-Dengue, 3) eliminate rows with missing data 
because the value of the variable for that patient cannot be established, 
4) Balance the classes using the oversampling technique that consists 
of increasing the number of samples of lower frequency in the dataset 
[35]. In this case, the records for the SD class. Fig. 3 represents the 
activities or subtasks performed in this task.
5
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clinical management of dengue.

of dengue.

Analytics type Technique Knowledge model
titutes Description Verification 

Oversampling
Descriptive

Classification 
Prediction

ANN
SVM

Predictive

Optimization Genetic algorithm Prescriptive

Fig. 3. Activities or sub-tasks related to task 1 (data verification and correction).
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Table 3. Variables used to build the ACODAT for clinical management of dengue.

Code Variable Type of variable Description
V1 Age Demographic Time elapsed since the birth of an individual

V2 Fever Sign/symptom Increase in body temperature

V3 Cefalea Symptom Pain and discomfort located in any part of the head

V4 Pain BE Symptom Pain behind eyes

V5 Myalgias Symptom Muscle aches

V6 Arthralgias Symptom Joint pain

V7 Rash Sign/symptom Skin exanthema

V8 Abd. pain Sign/symptom Intense pain, located in the epigastrium and/or right hypochondrium

V9 Vomit Symptom Violent expulsion by the mouth of what is contained in the stomach

V10 Lethargy Sign/symptom State of tiredness and deep and prolonged sleep

V11 Hypotens. Sign Excessively low-blood pressure on the artery wall

V12 Hepat. Sign Condition of having an enlarged liver

V13 Muc. hemo. Sign/symptom Manifestations of mild to severe bleeding in the nasal mucosa, gums, skin, female genital tract, brain, lungs, digestive tract and 
hematuria

V14 Hypoterm. Sign/symptom Decrease of body temperature

V15 High hem. Lab. test Indirect increase in hematocrit test

V16 Low plat. Lab. test Decrease of platelet levels in the blood

V17 Edema Sign/symptom Swelling caused by excess fluid trapped in body tissues

V18 Extrav. Sign It is characterized by serous spills at the level of various cavities

V19 Bleeding Sign/symptom Blood leaks from the arteries, veins or capillaries through which it circulates, especially when it is produced in very large 
quantities

V20 Shock Sign Manifestation of severity evidenced by cold skin, thready pulse, tachycardia and hypotension

V21 Org. fail. Sign Affectation of several organs due to the extravasation of liquids

V22 Dengue category Target Type of dengue based on the severity

Table 4. Distribution of dengue categories in the datasets.

Dataset Dengue category Original After listwise deletion After balancing
Medellín No WS-Dengue 27,230 10,210 10,210

Yes WS-Dengue 12,669 11,123 11,123

SD 437 123 11,186

Total 52,051 21,456 32,519

Córdoba No WS-Dengue 9,905 4,563 4,563

Yes WS-Dengue 6,179 5,134 5,134

SD 586 231 5,623

Total 16,670 9,928 15,320
Fig. 4. Steps related to task 2 (classification).

4.4.3. Implementation of task 2: classification

The second task of the ACODAT classified the patients in the three 
labels of the dataset. Fig. 4 shows the activities in this task. The labels 
were NoWS-Dengue, Yes-WS-Dengue & SD. This task was performed 
using ANN and SVM techniques, which were chosen for their high per-
formance for classification with clinical datasets [19].
6

This task had as input the clean and verified dataset product of the 
previous task (data verification and correction). We divide the dataset 
in 70% for training and validation, and 30% for testing. We used 10-
fold cross-validation to find the best combination of hyperparameters 
and used different configurations for both ANN and SVM. In the case 
of ANN, we used a multi-layer perceptron with a single layer, and for 
SVM, we used SVM in its classifier version. Table 5 shows the different 
configurations of hyperparameters for each implemented technique.

The implementation of this task was performed in Python 3.5 using 
the Scikit-learn library [36] for modeling and the Numpy library [37] for 
matrix and vector processing.

4.4.4. Implementation of task 3: prescription

Task 3 was focused on decision-making. In this case, it was focused 
on determining the best treatment option for a patient with a particular 
type of dengue. Fig. 5 shows the steps of this task. The implementation 
of this task was performed using a GA to find an optimal solution to the 
problem. The first step of this task was to identify some prescriptions 
recommended by WHO in the guidelines for the treatment of dengue. 
We identified six prescriptions: paracetamol (𝑃 ), drinking water (𝑊 ), 
oral rehydration solutions (𝑂𝑅𝑆), isotonic solutions 5-7 ml/kg/hour 
(𝐼𝑆), colloid solutions 10-20 ml/kg/hour (𝐶𝑆) and hospitalization (𝐻). 
These are the main prescriptions recommended by WHO for the treat-
ment of dengue (see Table 1 and [5] for more information).

Fig. 6 summarizes the methodological framework for the creation of 
a prescriptive model using a GA. The prescriptions were binary coded 
to feed the GA. The steps to find the optimal solution were: 1) gener-
ation of random binary chromosomes representing different solutions 
(alternative prescriptions). The number of generations depended on 
having individuals with prescriptions greater than or equal to 95% as-
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Table 5. Hyperparameter settings used to build the ANN and SVM models.

Technique Hyperparameter Options
ANN Number of hidden units 16, 32, 64, 128, 256

Learning rate 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5

Activation function tanh, ReLU

Optimizer Gradient descent, Adam

SVM Kernel Linear, radial, sigmoid

C 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0

gamma 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0
Fig. 5. Steps related to task 3 (prescription).

sertiveness. 2) estimation of the fitness of each chromosome using a 
function, 3) creation of new individuals using genetic operators. In this 
step, two parent chromosomes with the best fitness are selected, and 
crossover and mutation operators are used in them. 4) generation of a 
new population for a new iteration/generation. Fig. 7 shows a graphical 
representation of the chromosomes, crossover and mutation processes. 
The crossover and mutation probabilities were set to 0.5, respectively.

Several studies have shown that these probability values generate 
the best performance results on similar problems [38, 39, 40]. The 
crossover operator takes two selected parents and cuts the chromosomes 
at a randomly chosen position to produce two initial and two final gene 
subsets. The final subsets are then swapped, producing two new com-
plete chromosomes. The mutation operator is applied to each offspring 
individually, and consists of the random alteration of each component 
gene of the chromosome. Regarding the fitness functions to evaluate the 
possible solutions, these were established based on the type of dengue. 
All the fitness equations proposed have as output a value between 0 and 
100 that corresponds to the fitness of a solution (chromosome) to solve 
the problem, being 0 not suitable at all and 100 very suitable. The vari-
ables involved in these functions are: the list of prescriptions described 
above (𝑃 , 𝑊 , 𝑂𝑅𝑆 , 𝐼𝑆, 𝐶𝑆, 𝐻), 𝑊𝑃𝑖, {𝑖 = 1,2,3}, which corresponds 
to the penalty when unsuitable treatment options are recommended 
for the type of dengue, 𝐹𝑖 which corresponds to the result of the fit-
ness function for each type of dengue. The 𝑖𝑡ℎ value corresponds to the 
dengue type. Finally, the 𝑟 value is a random number to increase the 
searching space.

𝑊𝑃1 = 𝐼𝑆 × 2 +𝐶𝑆 × 2 (1)

𝐹1 = (𝑟(30,40) × 𝑃 + 𝑟(50,60) ×𝑊 ) × 0.8𝑊𝑃1 × 0.1𝐻 (2)

𝑊𝑃2 = 𝑃 +𝐶𝑆 × 2 (3)

𝐹2 = (𝑟(65,75) × 𝐼𝑆 + 𝑟(15,25) ×𝑂𝑅𝑆) × 0.8𝑊𝑃2 × 0.11−𝐻 (4)
7

𝑊𝑃3 = 𝑃 +𝑊 × 2 (5)

𝐹3 = (𝑟(65,75) ×𝐶𝑆 + 𝑟(15,25) × 𝐼𝑆) × 0.8𝑊 𝑃3 × 0.081−𝐻 (6)

All fitness equations were constructed with the help of dengue clini-
cal experts, who assigned the coefficients for each variable or treatment 
option depending on its importance in the clinical management of the 
disease for each type of dengue. Eq. (2) is the fitness function for NoWS-
Dengue. In this type of dengue, the use of recommendations such as the 
application of IS and CS is not recommended, so the fitness function 
penalizes the use or the presence of this recommendation in a chromo-
some during the optimization process (see Eq. (1)). For this case, the 
clinical experts in dengue assigned a coefficient of 0.8 to penalize the 
use of these strategies in this type of patient. In addition, the fact of 
being hospitalized (H) is penalized, because a patient with no warning 
signs does not need to be hospitalized [5]. For this case, the experts as-
signed a coefficient of 0.1 for this variable, because it is not so serious 
for the patient to be hospitalized. Random intervals are included to sim-
ulate the fact that prescriptions are not absolute and a prescription will 
not work the same for all patients. In these random intervals, a little 
more weight is given to W since hydration is key to keeping the patient 
from getting worse [5]. In Eq. (4) corresponding to YesWS-Dengue, the 
use of CS is penalized because they are patients who are not in severity 
and do not require this type of treatment (see Eq. (3)). Besides, there 
is a severe penalty if the patient is not hospitalized, since patients with 
warning signs need to be closely monitored given the high risk of wors-
ening [5]. In the same way as in Eq. (2), experts assigned coefficients 
for each treatment variable. Finally, Eq. (6) represents the fitness func-
tion for SD. In this function, the use of P and W is penalized (see Eq. (5)) 
because these patients are in a state of severity and do not tolerate the 
use of oral solutions or medications. Finally, it is penalized if the pa-
tient is not hospitalized, since patients with SD need to be treated on 
an emergency basis [5]. In the same way as in Eq. (2) and Eq. (4), ex-
perts assigned coefficients for each treatment variable to build fitness 
functions.

Due to the lack of datasets with dengue treatment results, we imple-
mented this prescriptive task in some specific scenarios. We use a binary 
vector to represent the patient’s age, clinical and laboratory variables, 
where 0 means the absence of the variable and 1 means the presence 
of the variable. For the type of dengue, we used 1 = NoWS-Dengue, 
2 = YesWS-Dengue and 3 = SD. With respect to treatment options, 
1 means that this treatment option is recommended for that patient, 
while 0 represents that this treatment option is not recommended. The 
implementation of this task was done using the Python 3.5 Pandas and 
Numpy libraries [33, 37].

5. Results

In this section, we show the results of each of the tasks implemented 
in ACODAT. First, we show the main characteristics of the cleaned and 
corrected datasets. Second, the results of the classification model and, 
finally, the results of the prescription in specific scenarios.

5.1. Clean and corrected dataset

The first task aims to detect and correct errors in the dataset. Table 4
shows the results of the dataset after applying different data science 
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Fig. 6. Methodological flowchart to create a prescriptive model using a GA.

Fig. 7. Example of chromosomes, crossover and mutation processes in a GA.
techniques for data correction. Finally, we used 32,519 and 15,320 
records to generate the classification models for Medellín and Córdoba, 
respectively.

The description of the categorical variables in the dataset was done 
in the previous section. The only quantitative variable was age, and its 
distribution is shown in Fig. 8. Plots A, B and C in Fig. 8 represent the 
age distribution in the Medellín dataset, while plots D, E and F rep-
resent the age distribution in the Córdoba dataset. The distribution of 
age, in the three dengue categories, showed similar results for both the 
Medellín and Córdoba datasets. The Kolmogorov-Smirnoff test was per-
8

formed to test the normality of this variable. The results showed that 
they do not follow a normal distribution (𝑝 < 0.001 for the three cate-
gories). The right-skewed density curves in Fig. 8 confirm the results, 
where the average age is greater than the median.

5.2. Classification models

Table 6 and Fig. 9 show the performance results of this task, and 
the optimal values of the hyperparameters for each technique. Plot A 
in Fig. 9 corresponds to the performance of the classification model on 
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Fig. 8. Age distribution in the datasets according to the dengue category (yellow = NoWS-Dengue, blue = YesWS-Dengue, red = SD). A, B and C correspond to the 
Medellín dataset, while D, E and F correspond to the Córdoba dataset. The solid and dash lines indicate the mean and the median, respectively. The p-values are the 
result of normality test for each class.
Table 6. Quality of developed models used to classify dengue patients.

Model Hyperparameters Dataset

Medellín Córdoba

Accuracy F1-Score Accuracy F1-Score
ANN ∙ 256 hidden units 0.979 0.978 0.977 0.977

∙ ReLU

∙ Adam

∙ 𝛼 = 0.01

SVM ∙ Radial kernel 0.981 0.981 0.972 0.971

∙ C = 10

∙ 𝛾 = 10

the Medellin dataset, while Plot B represents the performance on the 
Córdoba dataset. The implemented models showed an excellent perfor-
mance to classify patients based on severity. The best performing model 
was the one developed with the Medellin dataset, with an accuracy of 
0.981 and AUC of 0.98. However, all models had a high performance 
with accuracies above 0.97.

5.3. Prescriptive model

In this section, we show the results of the prescriptive model in spe-
cific scenarios. We chose three scenarios (one for each type of dengue) 
to show the ability of the model to prescribe treatment for dengue in 
each disease variant.

5.3.1. Scenario 1
Patient 65 years old with following symptoms: fever, headache, 

myalgias. The previous task (classification) classifies this patient as 
NoWS-Dengue. This information is received by the prescriptive task, 
and based on the fitness function assigned for this type of dengue 
(Eq. (2)), it optimizes the solution that corresponds to the best treat-
ment option for this patient. Table 7 shows the vectors corresponding 
to the patient variables, the result of the classifying task, and the result 
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of the prescriptive task showing the options that are recommended for 
this particular patient. In this case, the output of the predictive model 
is used by the prescriptive model to optimize the optimal treatment for 
this patient.

The results show that the prescriptive model recommends the use of 
P, W and ORS. This result is correct because, in this patient, it is only 
important to rehydrate to maintain plasma volume and P to relieve 
symptoms such as fever, headache and muscle aches. Regarding the 
other decision variables, it is not necessary to apply IS or CS because 
there are no signs indicating fluid accumulation in the patient’s body. 
Furthermore, this type of patient does not need to be hospitalized, so 
the prescriptive model does not recommend this treatment option. In 
summary, the prescriptive model makes a correct recommendation with 
respect to the WHO recommendations.

5.3.2. Scenario 2
Patient 35 years old with: headache, myalgias, arthralgias, vomiting, 

abdominal pain. Using the result of the previous task, this patient is 
classified as YesWS-Dengue. The GA uses the fitness function of Eq. (4)
to choose the best solutions for this particular patient. A chromosome 
with the best fitness is obtained. In Table 8, we can observe the age, 
signs, symptoms and laboratory tests of this patient represented in a 
vector. In addition, we can observe the type of dengue classified by 
the previous task, and, finally, we observe the best treatment options 
for this patient. In this scenario, the most important finding is that the 
patient presents two warning signs, such as vomiting and abdominal 
pain. Based on these findings, the prescriptive model recommends P, 
W, ORS, application of IS and H.

The presence of fever and pain in the patient confirms the recom-
mendation of analgesics such as P. The use of ORS and W is recom-
mended in this type of patient, since hydration is an important aspect to 
prevent dengue complications. However, as this patient presents some 
warning signs, such as vomiting and abdominal pain, the application 
of IS is necessary to help with the patient’s hydration. Regarding hos-
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Fig. 9. ROC curves to evaluate the quality of the models used to classify dengue patients. A = Medellín dataset, B = Córdoba dataset.
pitalization, the model prescribes that it is one of the best treatment 
options, due to the patient’s warning signs. This type of patient must be 
constantly monitored and assessed to avoid complications and death. In 
summary, the prescriptive model developed makes a correct recommen-
dation with respect to the clinical management guidelines for dengue 
published by WHO.

5.3.3. Scenario 3
Case 3: Patient 49 years old with: fever, myalgias, arthralgias, shock. 

Using the result of the previous task, this patient is classified as having 
SD. The GA uses the fitness function of Eq. (6) to choose the best so-
lutions for this particular patient. In Table 9, we can observe the age, 
signs, symptoms and laboratory tests of this patient represented in a 
vector. In addition, we can observe the type of dengue classified by the 
previous task, and, finally, we observe the best treatment options for 
this patient. In this case, the most important manifestation of the pa-
tient is shocked.

The use of P, W and ORS are not the best options. The prescriptive 
model does not recommend any of these options because it does not 
find them feasible for this patient. Instead, the prescriptive model rec-
ommends the application of IS and CS to restore the patient’s plasma 
volume. In addition, the prescriptive model recommends hospitaliza-
tion, since this patient should be hospitalized immediately for adequate 
treatment and follow-up. In summary, the prescriptive model recom-
mends optimal and feasible treatment options for patients with SD. The 
recommendations made by the prescriptive model are in accordance 
with the recommendations published by the WHO.

6. Discussion

The clinical management of dengue is of vital importance to reduce 
mortality rates from the disease. Diagnosis and treatment must be op-
timal and prompt to avoid complications leading to death. We set out 
to develop an ACODAT to support decision-making in the clinical man-
agement of dengue.

Our proposal monitored data quality and corrected possible errors 
related to missing data, misclassification of dengue patients, and balanc-
ing of dengue categories. The quality of the models depends to a large 
extent on the quality of the data. The excellent quality of the classifi-
cation models obtained in ACODAT’s task 2 indicates the quality of the 
data used to train these models. Although in recent years data-driven 
strategies continue to increase, this aspect remains a challenge for mod-
eling in medicine.

Dengue classification was performed using two ML techniques 
widely used in the medical field. ANN and SVM are excellent tech-
niques for finding linear and nonlinear variable relationships in medical 
datasets. Few works have been developed using SIVIGILA datasets for 
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dengue classification. The work of Hoyos et al. [19] developed a classi-
fication model using FCM. The results of this work showed an accuracy 
of 0.89. The results of our model showed a higher performance (see 
Table 6 and Fig. 9), perhaps because the relationships were extracted 
from the data and not assigned by experts, as occurs with FCM.

On the other hand, to date, there is no specific treatment for dengue. 
However, WHO has published treatment guidelines to alleviate symp-
toms and avoid complications. The non-specificity of signs and symp-
toms makes it difficult to choose the appropriate treatment in specific 
scenarios. The development of computer-aided strategies could support 
decision-making in clinical settings. In this sense, our work is the first 
study to report a prescriptive model to generate treatment recommen-
dations based on WHO guidelines. The prescriptive model developed 
has the capacity to prescribe suitable actions for the palliative treat-
ment of dengue.

We qualitatively compare our work with other similar works using 
some criteria listed below: A) The proposed approach uses AI tech-
niques for the classification of dengue. B) The proposed approach uses 
a technique of AI to recommend the best option for the treatment of 
dengue. C) The proposed approach automates the clinical management 
of dengue (diagnosis and treatment). D) The proposed approach is intu-
itive, extensible y easily adaptable (e.g., if it can become a multi-agent 
clinical decision-making system [41]).

Table 10 shows the comparison between previous works and our 
research. The study by Chatterje et al. [18] implemented a hybrid ap-
proach to dengue classification using gene expression data. The authors 
used an ANN enhanced with the Cucko search optimization algorithm. 
The type of ANN used was the multi-layer perceptron with a single hid-
den layer in its structure. The aim of this work was to classify patients 
into different dengue classes; however, 2009 WHO dengue classifica-
tion was not used. The authors used 1997 WHO dengue classification, 
which proposed to classify dengue into classic dengue, dengue hemor-
rhagic fever and dengue shock syndrome. Additionally, the data used 
were genetic, which is not easy or inexpensive to collect in routine clin-
ical practice. Finally, this work does not present treatment options for 
the disease.

Macedo-Hair et al. [42] analyzed the clinical profiles of dengue 
patients to identify clusters of patients, and thus classify them into 
the three types of dengue suggested by WHO. The authors used self-
organizing maps and RF with clinical and laboratory data to identify 
characteristics that could be used as risk criteria for dengue severity. 
The results of this work are interesting because they show the charac-
teristics of each disease group; however, it only focused on the diagnosis 
or classification of the disease and the recommendation of the best treat-
ment option was not addressed.

Park et al. [43] implemented predictive models to classify patients 
with dengue. The authors used clinical and laboratory variables that 
fed into structural equation models. This was the first work that imple-



W
.
H

o
y
o
s,

J.
A

gu
ila

r
a
n
d

M
.
T
o
ro

H
eliy

o
n

8
(2

0
2
2
)

e1
0
8
4
6

reatment options

W ORS IS CS H
- - - - -

- - - - -

1 1 0 0 0

reatment options

W ORS IS CS H
- - - - -

- - - - -

1 1 1 0 1

reatment options

W ORS IS CS H
- - - - -

- - - - -

0 0 1 1 1

11
Table 7. Results of classification and prescription tasks for a patient with NoWS-Dengue.

Variables (age, signs, symptoms and laboratory tests) Dengue type T

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 P
1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - -

↓

Classification task

↓

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -

↓

Prescription task

↓

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Table 8. Results of classification and prescription tasks for a patient with YesWS-Dengue.
Variables (age, signs, symptoms and laboratory tests) Dengue type T

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 P
0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 - -

↓

Classification task

↓

0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 -

↓

Prescription task

↓

0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1

Table 9. Results of classification and prescription tasks for a patient with SD.

Variables (age, signs, symptoms and laboratory tests) Dengue type T

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 P
0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 - -

↓

Classification task

↓

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 -

↓

Prescription task

↓

0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3 0
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Table 10. Criteria for evaluation of our 
work with previous works.

Research Evaluation criteria

A B C D

[18]

[42]

[43]

Our work

mented structural equations applied to clinical data to develop predic-
tive models; however, their work only used children and a small sample 
size to develop the models. It is difficult to generalize these results to 
patients of all ages. Additionally, the work was only focused on diagno-
sis and did not take into account the treatment of the disease.

The approaches and models previously developed and reported in 
the literature only meet two criteria corresponding to the use of ML 
techniques to generate the models, and the intuitiveness, extensibility 
and adaptability to increase their capabilities. It is important to remem-
ber that the clinical management of dengue involves not only diagnosis, 
but also treatment. The prediction or classification of dengue is insuffi-
cient if it does not support decision-making regarding treatment.

With this problem in mind, we proposed an ACODAT for the clin-
ical management of dengue. The proposed approach considers data 
processing, classification and diagnosis of the patient into one of the 
three categories recommended by the WHO. Besides, our approach also 
provides an additional feature, which consists of the recommendation 
of the best treatment option (within a range of initially defined pre-
scriptions) for a patient according to the type of dengue presented. The 
integration of different tasks that use AI techniques in the ACODAT was 
effective and allowed a more efficient clinical management of dengue 
patients, knowing that time is a critical factor for this type of patient. 
The proposed ACODAT was evaluated in different types of dengue. The 
results shown in previous sections demonstrate the diagnostic and pre-
scriptive capability of the proposed approach.

In summary, our model is the only one that meets the four crite-
ria defined in Table 10. Our approach uses AI techniques, not only for 
the classification of dengue, but also for prescribing the best treatment 
options (criteria A and B). To the best of our knowledge, there are no 
reports of automated systems for classifying dengue and recommending 
treatment (criteria C). Using only the variables used in conventional 
dengue diagnosis, our system can classify the clinical picture and rec-
ommend automatically treatment options. According to criteria D, our 
system is intuitive and easy to use, because the clinician only must en-
ter age, signs, symptoms and laboratory tests. With this information, the 
system will automatically classify the patient and then recommend the 
best treatment options for that particular patient. Finally, our system is 
flexible and easily adaptable because it is possible to add new tasks to 
the cycle to consider other important aspects of dengue.

7. Conclusions

This paper proposed a clinical DSS for dengue using ACODAT. The 
objective was to develop a system that allows the processing of data, 
classification of the patient according to the type of dengue, and based 
on this last characteristic, recommendation of the best treatment option 
from a list of available treatments. The ACODAT developed has the abil-
ity to prepare the data and process them so that they are ready for the 
next task of the cycle. The AI techniques used, ANN and SVM, have the 
ability to correctly classify patients with high performance. The GA used 
in the last task of the cycle has the potential to recommend (prescribe) 
the best treatment option according to symptoms, signs and laboratory 
tests. The joint use of data analysis tasks in a cycle had key advan-
tages over separate approaches. One of them is time to diagnose. With 
the proposed approach, it is possible to diagnose and recommend auto-
matically patient treatment. This is very important because the time to 
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diagnose and treat dengue is crucial to avoid complications and death 
of patients. To the best of our knowledge, this is the first work that uses 
an autonomic approach to support the clinical management of dengue. 
In addition, it is the first work to propose a prescriptive model for the 
clinical management of this disease.

This study has several limitations. First, some variables involved in 
the overall assessment process by the medical professional were not 
available to be included in the implementation of the models. Second, 
the unavailability of cohort datasets (before/after) to verify whether 
the recommended treatment had a positive impact on patients’ health. 
For this latter, it is necessary to validate the results of this study in real 
hospital environments.

Future work should be aimed at improving the models implemented 
using routine laboratory tests such as white blood cell counts, blood 
levels of liver enzymes and cytokines. In addition, the inclusion of co-
morbidities such as diabetes and arterial hypertension could improve 
the performance of the models due to the influence of these diseases on 
the severity of dengue. Finally, the creation of available datasets with 
prescriptive or treatment variables would be useful to validate the re-
sults of prescriptive models.
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