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Background: In recent years, the annual incidence of thyroid cancer (TC) has increased,
with papillary thyroid cancer (PTC) identified as the most commonwinwordpathological type
accounting for approximately 80% of all thyroid cancer cases. The tumor microenvironment
is known to play a vital role in tumor information transmission and immune detection.
Methods: In the present study, we examined gene expression data from 518 patients with
PTC. The ESTIMATE algorithm was used to calculate immune and stromal scores of PTC
patients. Based on a protein–protein interaction (PPI) network, functional enrichment and
overall survival analyses, C-X-C motif chemokine ligand 10 (CXCL10) was identified as a
core gene. We further investigated the roles of core genes of PTC in the tumor immune
microenvironment using LinkedOmics, GSEA, and TIMER tools.
Results: Immune, stromal and ESTIMATE scores were related to clinicopathological vari-
ables of patients with PTC, but not survival outcomes. Eight differentially expressed genes
(DEGs) were associated with survival outcome. In addition, immunochemical staining ex-
periments revealed lower expression of CXCL10 in PTC than paracancerous tissues. GSEA
pathway enrichment analysis revealed downregulation of CXCL10 in multiple cancer path-
ways. CXCL10 and related genes were enriched in pathways related to adaptive immune
response, cellular defense response and regulation of innate immune response.
Conclusion: The tumor microenvironment plays a critical role in development of PTC and
CXCL10 may serve as a novel target of precision therapy for this patient population.

Introduction
Thyroid cancer is not only the most common malignancy of the human endocrine system, accounting
for ∼3% of the total incidence of systemic malignant tumors, but also one of the fastest growing malig-
nant solid tumors. According to the histopathological classification system, thyroid cancer is mainly cat-
egorized into papillary thyroid, follicular thyroid, medullary thyroid and undifferentiated thyroid cancer
types. Among these, papillary thyroid carcinoma accounts for approximately 80% of all pathological thy-
roid cancer cases [1]. In 2018, approximately 52,070 new cases of thyroid cancer in the United States were
recorded [2]. Due to improvements in diagnostic techniques, such as ultrasound and fine-needle biopsy,
the incidence of PTC has been increasingly reported in recent years [3]. The majority of PTC patients have
slow disease progression and good prognosis, with a 10-year survival rate of more than 90%. However,
patients with papillary thyroid microcarcinoma commonly develop lymph node metastasis at an early
stage of disease with an incidence of 30–40%, leading to a 50% decrease in the 10-year survival rate [4–6].
Lymph node metastasis from thyroid cancer cells serves as an independent risk factor for poor prognosis
of PTC, with more than 8–10% eventually evolving to distant metastasis or potential cancer-related death
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[7–10]. Early and effective interventions are critical for diagnosis of PTC and blocking the development of lymph
node metastasis in thyroid cancer cells, which would significantly improve patient outcomes. Therefore, identifica-
tion of biomarkers related to the tumor microenvironment is currently an important consideration in the clinical
management of PTC.

Recent studies suggest that immune cells, such as macrophages, mast cells, neutrophils, and lymphocytes, play a tu-
morigenic role in PTC, supporting the potential efficacy of targeted immunotherapy as a treatment strategy [11]. Im-
mune escape, an important feature of tumor malignancy, plays a critical regulatory role in the evolution of many solid
tumor types. The term ‘tumor microenvironment’ is used to describe the milieu surrounding tumor cells composed of
inflammatory mediators, extracellular stromal molecules, and immune cells [12]. Essential non-tumor components
of the tumor microenvironment are immune and stromal cells, which are critical for transmitting information and
stimulating the formation and evolution of tumors. The diagnostic and prognostic value of immune and stromal cells
in tumors has been established [13,14]. Tumor immune escape can be modulated by immune cell components in the
microenvironment, where by alterations in these components promote the formation of an immunosuppressive state
[15]. Clinicopathological typing of thyroid cancer patients is reported to be closely related to immune and inflam-
matory cells in the tumor microenvironment [16,17]. The ESTIMATE algorithm has been further used to evaluate
immune and stromal scores through analysis of expression patterns of specific genes in immune and stromal cells
for the purpose of predicting cancer cell infiltration into non-tumor cells [18]. The ESTIMATE algorithm has been
increasingly applied to a variety of tumor models, including breast and colon cancer types [19,20]. However, to our
knowledge, a few studies have explored the ratio of stromal and immune cells in PTC using the ESTIMATE algorithm.

In the present study, we evaluated immune scores by extracting tumor microenvironment-related genes based on
TCGA data of PTC patients and the ESTIMATE algorithm and explored one or several gene modules playing crucial
roles in the PTC microenvironment, with a view to providing a theoretical basis for further research.

Materials and methods
TCGA database
Gene expression data for thyroid cancer patients were retrieved from the TCGA database (https://tcga-data.nci.nih.
gov/tcga/). The RNA expression profiles of PTC patients were further analyzed and annotation data of the Affymetrix
HT human genome U133 array plate set extracted. Clinical information, including gender, age, histologic grade,
pathologic stage, survival and outcome, were additionally extracted from TCGA. After downloading the data, the
ESTIMATE algorithm was implemented in the form of the ‘ESTIMATE’ package in R for calculation of the immune
and stromal scores [18].

Identification of differentially expressed genes
To improve screening for differentially expressed genes, the limma software package was employed [21]. Differentially
expressed genes (DEGs) were identified based on cutoffs of fold change > 2 and adj. P<0.05.

Heatmaps and clustering analysis
To construct cluster analysis and immune stromal heatmaps, we used pheatmap R software package [22].

Construction of the PPI network
To analyze protein–protein interactions (PPI), the STRING database was employed [23]. To clarify the interactions
between genes, protein–protein interaction networks of genes that were up- or down-regulated were constructed
based on immune and stromal scores and reconstructed via Cytoscape software. The active interaction source settings
were as follows: text mining, experiment, database, co-expression, neighborhood, gene fusion and co-occurrence. The
minimum interaction score requirement was 0.4. Only a single network consisting of more than 10 nodes was shown
and allowed to proceed to the next level of analysis. The MCODE plug in was subsequently used to analyze closely
related gene modules.

Overall survival analysis
To evaluate the prognostic value of DEGs in thyroid cancer, Kaplan–Meier survival analysis was used and overall
survival curves obtained using Kaplan–Meier plotter.
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Enrichment analysis of DEGs
To establish the potential biological functions of intersecting DEGs, KEGG pathway enrichment [24] and GO [25]
analyses were performed using the Profiler package. GO assessed biological processes (BP), molecular functions (MF)
and cellular components (CC). The results from both GO and KEGG pathway analyses were processed using ‘cluster-
Profiler’, ‘enrichplot’ and ‘ggplot2’ packages. The results were visualized with the ggplot2 package. The P value cut-off
was set at 0.05.

LinkedOmics
The LinkedOmics (http://www.linkedomics.org/) database is a unique platform for accessing, analyzing and compar-
ing multi-omics data within and between tumor types, providing a convenient resource for biologists and clinicians
[26]. To explore the kinase target of the PTC hub gene, CXCL10, the LinkInterpreter module of LinkedOmics was
applied in the present study.

TIMER
The TIMER (https://cistrome.shinyapps.io/timer/) database is a practical platform for systematic evaluation of the
interactions between tumor and immune cells [27]. In the current study, we aimed to explore the associations among
immune infiltrates, immunomodulatory factors and CXCL10 gene expression. All analyses were based on the TCGA
TCHA dataset (N= 501).

Open targets
Open targets provide a target-centric workflow to aid in identifying diseases potentially related to specific targets
[28]. Here, we used Open targets to explore diseases related to CXCL10.

GeneMANIA
GeneMANIA (www.genemania.org) is a portal to establish protein–protein interaction (PPI) networks and provide
insights into the functions of submitted genes [29]. In the present study, GeneMANIA was used to visualize gene
networks of CXCL10 and its related genes.

GSCALite
GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) is a portal website providing a platform for analysis of
gene sets in cancer. Genomic aberrations can affect clinical response to treatment and serve as potential biomarkers
for drug screening [30]. We integrated 265 small molecules from Cancer Drug Sensitivity Genomics (GDSC) and
analyzed the expression of each gene in the genome in relation to small molecule/drug sensitivity (IC50) via Spearman
correlation analysis. P-values less than 0.05 were considered statistically significant.

Gene set enrichment analysis
GSEA is a calculation method that performs genome-wide expression profiling of two sample types, with the aim of
identifying significant and consistent differences. In this study, according to CXCL10 expression patterns, samples of
PTC were divided into high and low expression groups. GSEA was subsequently applied to evaluate the differences
between the high and low CXCL10 expression groups. Data were considered significant at P<0.05 and the false
discovery rate (FDR) was <25%. According to the normalized enrichment score (NES), an enrichment approach
related to the biological process of papillary thyroid carcinoma was selected.

Immunohistochemical (IHC) staining and evaluation
For IHC, PTC tissue microarrays were firstly deparaffinized with xylene and rehydrated with a gradient of ethanol to
distilled water. Antigen retrieval was performed by heating the tissue microarrays in 10 mM sodium citrate buffer for
30 min. Next, endogenous peroxidase was blocked with 3% H2O2 and the microarray treated with normal goat serum
working solution for 30 min to reduce non-specific binding. After overnight incubation with the rabbit monoclonal
anti-CXCL10 antibody (1:100 dilution, BOSTER, Wu Han, China, BA4723) at 4◦C, 120-point PTC tissue microarrays
were washed with PBS and incubated with broad-spectrum secondary antibodies. Slides were further washed with
PBS, followed by incubation with horseradish enzyme-labeled streptavidin working solution at 37◦C for 30 minutes.
After a further three washes with PBS, signal detection was performed with the DAB staining kit. According to Rem-
mele’s semi-quantitative immune response score (IRS) scale, the overall IHC score (1–5) was evaluated [31].

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

3

http://www.linkedomics.org/
https://cistrome.shinyapps.io/timer/
http://genemania.org/
http://bioinfo.life.hust.edu.cn/web/GSCALite/


Bioscience Reports (2021) 41 BSR20203459
https://doi.org/10.1042/BSR20203459

Figure 1. Correlations among immune/stromal score, clinical pathological variables and overall survival in PTC

(A) Analysis of tumor stage based on immune score (P=0.044), stromal score (P=0.048) and ESTIMATE score (P=0.046). (B) No

significant differences in PTC overall survival analysis were evident based on immune/matrix/ESTIMATE score; *, P<0.05.

Results
Patient characteristics
In March 2020, the gene expression profiles and corresponding clinicopathological data from 518 PTC patients, in-
cluding 369 (70.89%) female patients and 149 (29.11%) male patients, were extracted from the TCGA database. The
minimum age of initial diagnosis was 15 years and average age was 46 years. PTC stages were distributed as follows:
I (55.98%, n=290), II (11%, n=57), III (23.16%, n=120) and IV (9.84%, n=51). Using the ESTIMATE method, im-
mune scores were in the range of -1304.72 to 3233.39, stromal scores were -1714.40 to 1608.17and ESTIMATE scores
were -2470.47 to 4199.50. With increase in the tumor staging level, the corresponding average immune (P=0.044),
stromal and ESTIMATE (P=0.046) scores were increased (Figure 1). Next, Kaplan–Meier survival analysis was con-
ducted to establish the associations of immune, stromal and ESTIMATE scores with prognosis. Patients with PTC
were divided into high and low score groups. However, none of the scores were associated with survival outcomes in
PTC (Figure 1).

Gene expression profiles associated with immune scores and stromal
scores in PTC
To obtain the gene expression profiles of patients with PTC in association with immune and stromal scores,
Affymetrix microarray data analysis was conducted on 518 PTC samples from patients in the TCGA database.
The population with a higher immune score, presented in heatmap2A, had a total of 1269 DEGs, including 954
up-regulated and 315 down-regulated genes. Based on the higher stromal score (Figure 2B), 986 DEGs were identi-
fied, including 914 up-regulated and 72 down-regulated genes. Venn diagram analysis disclosed that compared with
the low group, the high group had a total of 854 DEGs, including 789 up-regulated and 65 down-regulated genes
(Figure 2C,D).

Functional enrichment analysis of DEGs
To establish the functions of DEGs, enrichment analysis using GO and KEGG functions was conducted. GO anal-
ysis demonstrated that the main ‘Biological Process’ (BP) ontology was enriched in leukocyte migration, leukocyte
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Figure 2. Relationship between gene expression profiles and immune/stromal scores in PTC

(A and B) Heatmap showing significant DEGs based on immune and stromal scores. Red represents higher expression and green

represents lower expression. Venn diagram showing the number of DEGs up- (C) or down-regulated (D) in the immune and stromal

score groups.

chemotaxis, cell chemotaxis, chemokine-mediated signaling pathway, response to chemokine, cellular response to
chemokine, myeloid leukocyte migration, neutrophil chemotaxis, neutrophil migration and granulocyte chemotaxis
functions. For the ‘Cellular Component’ (CC) ontology, enriched terms included the external side of the plasma
membrane, plasma membrane receptor complex, receptor complex, membrane raft, membrane microdomain, mem-
brane region, T-cell receptor complex, immunological synapse, protein complex involved in cell adhesion and plasma
membrane raft. With regard to ‘Molecular Function’ (MF), cytokine receptor binding, chemokine receptor binding,
cytokine activity, G protein-coupled receptor binding, receptor ligand activity, chemokine activity, CCR chemokine
receptor binding, CXCR chemokine receptor binding, C-C chemokine receptor activity and C-G chemokine bind-
ing terms were enriched (Figure 3A). KEGG pathway analysis additionally disclosed involvement of DEGs in
cytokine–cytokine receptor interactions and the chemokine signaling pathway (Figure 3B). PPI network analysis
was an important analytical tool to identify the critical genes associated with PTC interactions from a systems per-
spective. In the present study, the top three PPI networks of CXCL10, KRT, and ZAP70 modules were selected using
Cytoscape software (Figure 3C).Greater connectivity was signified by larger gene nodes. The top five connected genes
were CXCL10, CCL20, CCL5, CD4, and CXCL1 (Figure 3D).

Roles of individual DEGs in overall survival in PTC
To establish the relationships between the 789 up-regulated and 65 down-regulated genes and prognostic survival of
PTC patients, Kaplan–Meier survival analysis was conducted. All TC tumor samples were divided into high and low
expression groups based on specific genes. Overall, 15 genes were associated with prognosis and survival. Groups with
high expression of GATA5 (HR = 2.95, 95% CI: 1.11–7.89, P=0.023), LRRN4CL (HR = 10.13, 95% CI: 1.34–76.75,
P=0.0055), OGDHL (HR = 4.2, 95% CI: 1.55–11.93, P=0.0022), PSAT1 (HR = 3.57, 95% CI: 1.32–9.65, P=0.0073),
SLC25A47 (HR = 3.45, 95% CI: 1.28–9.32, P=0.0093) and TWIST2 (HR = 3.23, 95% CI: 1.04–10.03 and P=0.032)
showed poorer overall survival rates while higher survival rates were associated with high expression of CXCL10 (HR
= 0.24, 95% CI: 0.07–0.86, P=0.017), ADGRG5 (HR = 0.17, 95% CI: 0.05–0.59, P=0.0016), ASB2 (HR = 0.37, 95%
CI: 0.14–0.97, P=0.036), DMBT1 (HR = 0.15, 95% CI: 0.03–0.66, P=0.0038), GPR34 (HR = 0.17, 95% CI: 0.05–0.61,
P=0.0019), GZMK (HR = 0.3, 95% CI: 0.11–0.8, P=0.011), GZMM (HR = 0.2, 95% CI: 0.07–0.58, P=0.00094),
HTRA1 (HR = 0.25, 95% CI: 0.09–0.72, P=0.0056) and TBX21 (HR = 0.28, 95% CI: 0.09–0.88, and P=0.02; Figure
4).Accordingly, we speculate that expression levels of these 15 genes are critical for prognosis of PTC patients. Based
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Figure 3. Functional enrichment analysis of DEGs

(A) Top 10 terms in GO analysis (P<0.05). (B) Enriched terms in KEGG pathway analysis (P<0.05). (C) Top three PPI networks of

CXCL10, KRT, and ZAP70 modules. The network includes three modules and 14 nodes showing the association between tumor

microenvironment-related genes and PTC. (D) Bar chart signifying important genes (degree>10) in the PPI network.

on the highest degree, CXCL10 was selected as the core gene in the PTC immune microenvironment for further
exploration.

GO and KEGG pathway analyses of genes correlated with CXCL10
expression in PTC
The genes related to CXCL10 and differentially expressed in PTC were investigated via LinkedOmics to establish
the specific mechanisms of action of CXCL10 in thyroid cancer. As a result, 19,928 genes related to CXCL10 were
identified. Among these, 10,157 genes (dark red dots) were positively correlated and 9769 genes (dark green dots)
were negatively correlated with CXCL10 (Figure 5A; false discovery rate <0.05). The top 50 genes that were sig-
nificantly positively and negatively correlated with CXCL10 are presented in Figure 5B,C, respectively. As shown in
Figure 5D, CXCL10 and neighboring genes were mainly implicated in adaptive immune response, cellular defense re-
sponse, T-cell activation, response to interferon-gamma, immune response, regulation of signaling pathways, antigen
processing and presentation, and regulation of the innate immune response. The results of KEGG pathway analysis
showed that the functions of CXCL10 and its neighboring genes were mainly enriched in the NF-kappaB signaling
pathway, allograft rejection, primary immunodeficiency and leishmaniasis (Figure 5E). To further establish the dis-
eases caused by aberrant expression of the CXCL10 gene, an analysis using the Open Targets website was conducted.
As expected, CXCL10 was significantly implicated in diseases of the immune and endocrine systems (Figure 6). Our
findings demonstrate that the CXCL10 gene plays an important regulatory role in immune pathways of the PTC mi-
croenvironment, supporting its utility as a novel immunotherapeutic target for PTC. The potential mechanisms of
action of CXCL10 were further explored.
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Figure 4. Kaplan–Meier analysis of the relationship between prognosis and DEGs related to the tumor microenvironment

Use of GSEA to identifyCXCL10-related signaling pathways
To determine the CXCL10-associated signaling pathways involved in PTC, we conducted gene set enrichment analysis
(GSEA) to determine differences in CXCL10 gene expression. The most significantly enriched signal pathway was
identified based on the normalized enrichment scores (NES). High expression of CXCL10 was markedly associated
with activation of oxidative phosphorylation, glycolysis gluconeogenesis, glycerolipid metabolism, PPAR signaling,
fatty acid metabolism and calcium signaling pathways and inhibition of p53 signaling, cell cycle, pathways in cancer,
and colorectal cancer signal pathways (Figure 7).

Identification of the kinase target of CXCL10
The potential kinase targets of CXCL10 in thyroid carcinoma were analyzed using the LinkedOmics database. The
kinase network corresponding to CXCL10 included LCK, LYN, HCK and SYK (Table 1). To clarify the potential reg-
ulatory mechanisms between these four kinases and CXCL10, PPIs were constructed using GeneMANIA to establish
their specific functions. The gene sets were mainly implicated in regulation of lymphocyte activation, regulation of
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Figure 5. Co-expressed genes and functional enrichment analysis of CXCL10 (LinkedOmics)

(A) Correlations between CXCL10 and differentially expressed genes in PTC. (B and C) Heatmaps indicate the top 50 genes pos-

itively and negatively correlated with CXCL10 in PTC. Red refers to positively correlated genes and green refers to negatively

correlated genes. Statistical analysis was performed using Pearson’s test. GO function (D) and KEGG pathway (E) analyses of

CXCL10.

Figure 6. Diseases related to CXCL10 (Open Targets)

leukocyte activation, regulation of T-cell activation, regulation of cell activation, antigen receptor-mediated signal-
ing and T-cell receptor signaling pathways (Figure 8). Next, we performed tissue microarray immunohistochemical
staining to evaluate expression of CXCL10 in PTC and matched adjacent tissues. Compared with adjacent tissues,
expression of CXCL10 in PTC tissues was clearly decreased (Figure 9).

8 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2021) 41 BSR20203459
https://doi.org/10.1042/BSR20203459

Figure 7. Gene set enrichment analysis (GSEA) of CXCL10 gene expression

Table 1 The kinase target networks of CXCL10 in PTC (LinkedOmics)

Enriched kinase target Description Leading Edge Num P value

CXCL10 Kinase LCK LCKproto-oncogene, Srcfamily
tyrosine kinase

22 0

Kinase LYN LYN proto-oncogene, Src family
tyrosine kinase

22 0

Kinase HCK HCK proto-oncogene, Src family
tyrosine kinase

8 0

Kinase SYK spleen associated tyrosine
kinase

15 0.0020704

Correlation between CXCL10 and immune cell infiltration
We further analyzed the correlation between CXCL10 and immune cells infiltrating the tumor microenvironment
using the TIMER database. CXCL10 expression was positively associated with B cell infiltration (Cor = 0.394, P =
2.16e-19), CD8 + T cells (Cor = 0.535, P = 1.98e-37), CD4 + T cells (Cor = 0.177, P = 8.55-05), macrophages (Cor =
0.338, P = 1.53e-14), neutrophils (Cor = 0.624, P = 5.84e-54) and dendritic cells (Cor = 0.749, P = 1.90e-88; Figure
10). The relationship between CXCL10 expression and a number of immune markers was further evaluated. As shown
in Table 2, significant correlations (correlation coefficient> 0.6) were observed between CXCL10 and expression of
PD-1 (PDCD1), CD2, CD19, CD79A, CD68, IL10, VSIG4, HLA-DPB1, CD11c (ITGAX), T-bet (TBX21), STAT1,
IFN-g (IFNG), FOXP3 and CTLA4.
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Figure 8. PPI networks of CXCL10 and related genes (GeneMANIA)
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Table 2 Correlation analysis between CXCL10 and gene biomarkers of immune cells in THCA (TIMER)

Immune cells Biomarkers None Purity
Cor P-value Cor P-value

CD8+ T cell CD8A 0.717 0.00E+00 0.725 3.91E-80

CD8B 0.638 0.00E+00 0.643 2.46E-58

T cell (general) CD3D 0.834 0.00E+00 0.837 3.96E-129

CD3E 0.838 0.00E+00 0.843 4.90E-132

CD2 0.846 1.15E-140 0.847 2.15E-135

B cell CD19 0.684 1.71E-71 0.686 3.27E-69

CD79A 0.767 1.24E-99 0.769 1.67E-96

Monocyte CD86 0.796 0.00E+00 0.792 2.08E-106

CD115(CSF1R) 0.703 0.00E+00 0.707 2.79E-75

TAM CCL2 0.548 0.00E+00 0.541 1.92E-38

CD68 0.698 1.10E-75 0.692 6.78E-71

IL10 0.634 1.10E-58 0.632 1.13E-55

M1 Macrophage INOS (NOS2) 0.101 2.30E-02 0.101 2.58E-02

IRF5 0.489 5.18E-32 0.486 2.48E-30

COX2(PTGS2) 0.337 6.84E-15 0.325 1.68E-13

M2 Macrophage CD163 0.585 4.89E-48 0.577 1.23E-44

VSIG4 0.654 1.61E-63 0.654 7.96E-61

MS4A4A 0.701 0.00E+00 0.699 9.50E-73

Neutrophils CD66b (CEACAM8) 0.187 2.24E-05 0.183 4.65E-05

CD11b (ITGAM) 0.706 4.1E-76 -0.095 3.56E-02

CCR7 0.741 0.00E+00 0.74 6.70E-86

Natural killer cell KIR2DL1 0.243 2.95E-08 0.266 2.34E-09

KIR2DL3 0.377 1.24E-18 0.37 2.78E-17

KIR2DL4 0.422 1.92E-23 0.409 4.57E-21

KIR3DL1 0.361 4.45E-17 0.367 5.49E-17

KIR3DL2 0.524 2.56E-37 0.525 5.49E-36

KIR3DL3 0.34 3.16E-15 0.337 1.92E-14

KIR2DS4 0.305 2.06E-12 0.312 1.84E-12

Dendritic cell HLA-DPB1 0.802 0.00E+00 0.801 2.86E-110

HLA-DQB1 0.531 0.00E+00 0.528 2.03E-36

HLA-DRA 0.795 0.00E+00 0.791 7.65E-108

HLA-DPA1 0.797 0.00E+00 0.79 3.68E-105

BDCA-1(CD1C) 0.506 1.94E-34 0.496 1.14E-31

BDCA-4(NRP1) 0.04 3.63E-01 0.023 6.13E-01

CD11c (ITGAX) 0.679 0.00E+00 0.671 4.52E-65

Th1 T-bet (TBX21) 0.722 3.28E-83 0.724 1.60E-80

STAT4 0.598 0.00E+00 0.593 1.10E-47

STAT1 0.698 1.86E-75 0.692 9.45E-71

IFN-g (IFNG) 0.802 1.72E-115 0.803 2.39E-111

TNF-a (TNF) 0.516 4.86E-36 0.51 1.17E-33

Th2 GATA3 0.211 1.48E-06 0.198 1.03E-05

STAT6 0.118 7.62E-03 0.105 1.98E-02

STAT5A 0.33 2.17E-14 0.329 8.56E-14

IL13 0.196 8.37E-06 0.201 8.06E-06

Tfh BCL6 0.162 2.38E-04 0.142 1.62E-03

Th17 STAT3 0.213 1.36E-06 0.195 1.49E-05

IL17A 0.314 4.04E-13 0.318 6.11E-13

Treg FOXP3 0.696 0.00E+00 0.703 4.75E-74

CCR8 0.556 1.14E-42 0.548 1.62E-39

STAT5B -0.038 3.96E-01 -0.054 2.37E-01

TGFb (TGFB1) 0.213 1.28E-06 0.205 5.05E-06

T-cell exhaustion PD-1 (PDCD1) 0.678 1.08E-69 0.69 3.45E-70

CTLA4 0.807 7.24E-118 0.804 5.16E-112

LAG3 0.819 0.00E+00 0.828 2.22E-124

TIM-3 (HAVCR2) 0.784 0.00E+00 0.78 6.40E-101

GZMB 0.73 0.00E+00 0.737 8.01E-85
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Figure 9. Expression of CXCL10 in PTC and tumor-adjacent tissues

(CXCL10 protein levels were higher in tumor-adjacent tissues compared to PTC tissues; 400× magnification).

Figure 10. Relationship between CXCL10 and various infiltrating immune cells (TIMER)

Drug sensitivity analysis of hub genes
For drug sensitivity analysis, we assessed the correlation between CXCL10 expression and IC50 values of molecules
from the Cancer Drug Sensitivity Genomics (GDSC) database. Our data showed that four drugs or small molecules
were effective in association with reduced expression of CXCL10 (Figure 11). Specifically, CXCL10 was negatively
regulated by docetaxel, BRD-K30748066, BRD-K01737880, and BRD-A86708339, supporting its utility as a potential
therapeutic drug target for PTC.

Discussion
PTC is a common malignant tumor of the endocrine system with increasing annual incidence. The tumor immune
microenvironment is known to play a critical role in the evolution of malignancy and related to various biological be-
haviors of cancer, affecting tumor growth and spread. In the present study, we extracted data from the TCGA database
to explore genes in the tumor microenvironment affecting overall survival, tumorigenesis and development of PTC.

12 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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Figure 11. Drug resistance analysis of the central gene, CXCL10, using GSCALite
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Furthermore, biomarkers related to prognosis and treatment in the microenvironment of PTC were identified. The re-
lationships between clinicopathological variables and immune and stromal scores in PTC were initially evaluated. As
shown in Figure 1, immune and stromal scores were related to tumor stage. With increase in the tumor staging level,
the corresponding average immune and stromal scores as well as ESTIMATE score were increased, supporting the
potential value of immune and stromal scores in the treatment and prediction of PTC. After grouping of all samples
based on high and low immunity/stromal scores, 854 differentially expressed genes (DEGs) were identified. To clarify
the roles of these DEGs in immune and stromal systems, we explored their functions in PTC. GO analysis disclosed
the involvement of DEGs in leukocyte migration, leukocyte chemotaxis, cell chemotaxis, chemokine-mediated sig-
naling pathways, response to chemokines, cellular response to chemokines and myeloid leukocyte migration. KEGG
pathway analysis showed that DEGs are involved in cytokine–cytokine receptor interactions and the chemokine sig-
naling pathway. Both GO and KEGG data suggest that the functions of these DEGs are closely related to specific
pathways and molecular functions in the tumor microenvironment in PTC. Our results are in agreement with pre-
vious studies showing that aberrant expression of specific genes contributes significantly to development of the PTC
tumor microenvironment through regulatory effects on the activities of various immune cells together with extracel-
lular matrix molecules [32,33].

To further clarify the interactions between DEGs in PTC, we used STRING and Cytoscape software to construct
protein–protein interaction networks and identify central genes. As shown in the results, the top five connected degree
genes were CXCL10, CCL20, CCL5, CD4 and CXCL1. The top three PPI networks of CXCL10, KRTs, and ZAP70
modules were further selected as core modules. Immune evasion is a signature of tumorigenesis [34]. An earlier
study by Marina et al. [35] reported that the gene encoding the chemokine CCL20 is overexpressed in PTC compared
with normal thyroid tissue and independent of oncogene (RET/PTC or BRAF) status, suggesting the involvement
of this chemokine in tumor-associated inflammation and the microenvironment. Several researchers have addition-
ally demonstrated that four chemokines, CXCL1, CCL5, CCL20 and CCL21, biologically affect thyroid cancer cells
by modulating inflammation and the immune microenvironment [36–40]. Abnormal secretion of CXCL10 in PTC
and its involvement in regulation of malignant biological behavior have been previously reported [41,42]. Here, we
further explored the association between DEGs and prognosis of PTC and identified 15 genes related to the tumor
microenvironment. High expression of GATA5, LRRN4CL, OGDHL, PSAT1, SLC25A47, and TWIST2 was associ-
ated with poorer overall survival rates and high expression of CXCL10, ADGRG5, ASB2, DMBT1, GPR34, GZMK,
GZMM, HTRA1 and TBX21with longer overall survival rates in thyroid carcinoma patients. Accumulating evidence
suggests that aberrant expression of CXCL family peptides leads to abnormal recruitment of immune cells in tumors
and various types of immune cells can increase CXCL peptide secretion by modulating the corresponding signaling
pathways (particularly NF-kappaB), which suppress the immune surveillance status of the organism, ultimately re-
sulting in a vicious cycle and reduced survival of cancer patients [43,44]. In view of the finding that the degree of
connectivity of CXCL10 gene was up to 23 and associated with PTC survival, we selected CXCL10 as a core gene
for analysis. Our data suggest that the CXCL10 gene plays an important regulatory role in the immune microenvi-
ronment of PTC, supporting its utility as a novel immunotherapeutic target. Next, we focused on the mechanisms
underlying the function of CXCL10 in PTC. Immunochemical staining experiments revealed that CXCL10 was ex-
pressed at lower levels in PTC than paracancerous tissues. GSEA pathway enrichment analysis further showed low
expression of CXCL10 in multiple cancer pathways (p53 signaling pathway, Cell cycle, Pathways in cancer, Colorectal
cancer signal pathway).The LinkedOmics database was used to explore the top 50 positively and negatively correlated
genes and kinase targets of CXCL10.As shown in Figure 5B,C, the top five genes negatively associated with CXCL10
were CXCL11, CXCL9, GBP5, UBD, and IL12RB1 and the top five genes positively associated with CXCL10 were
CMTM4, TOM1L2, LCLAT1, CRY2, and PCBD2 with CXCL10. LCK, LYN, HCK, and SYK were the main kinase
targets of CXCL10. All four kinases, along with CXCL10 were significantly involved in T-cell activation, regulation of
lymphocyte activation, regulation of leukocyte activation, regulation of T-cell activation, regulation of cell activation,
antigen receptor-mediated signaling and T-cell receptor signaling pathways. The kinase LCK belongs to the Src fam-
ily and is critical for T-cell proliferation and activation in physiological conditions. Under pathological conditions,
aberrantly expressed LCKs can directly trigger an inflammatory immune response [45]. In addition, LCK has been
shown to be overexpressed in many cancer types and LCK inhibitors have been clinically used to treat a number of
solid cancers [46–48]. Another study by Silvia and co-workers demonstrated that LCK kinases are involved in reg-
ulating the progression of thyroid cancer [49]. The collective results suggest that kinases play regulatory roles in the
evolution of cancer. In many solid tumors, the degree of immune cell infiltration is strongly associated with patient
prognosis [50,51]. In our experiments, Significant correlations were detected between CXCL10 and expression of im-
mune markers, including PD-1 (PDCD1), CD2, CD19, CD79A, CD68, IL10, VSIG4, HLA-DPB1, CD11c (ITGAX),
T-bet (TBX21), STAT1, IFN-g (IFNG), FOXP3 and CTLA4, suggesting that the CXCL10 gene exerts its effects in

14 © 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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the thyroid cancer microenvironment by influencing immune cells and related molecules. Our results showed that
CXCL10 is related to the overall survival of PTC patients and positively correlated with the infiltration level of B
cells, CD8 + T cells, CD4 + T cells, macrophages, neutrophils and dendritic cells. While the CXCL10 gene could be
used to provide additional information on the correlation between immune cell infiltration and clinical outcomes of
PTC patients, the specific mechanisms of action of CXCL10 in PTC remain to be elucidated. The tumor microen-
vironment is composed of immune and stromal cells that participate in the progression of cancer and interact with
PTC, thereby affecting occurrence, development, migration, metastasis and prognosis of cancer. The present study
focused on the correlation between immune/stromal scores and PTC clinicopathological variables and explored the
functions and prognostic value of genes related to the tumor microenvironment. We selected CXCL10 as a poten-
tial core gene of the PTC microenvironment and showed its significant correlation with prognosis and immune cells
in PTC. CXCL10 expression was additionally regulated by a number of small-molecule drugs, including docetaxel,
BRD-K30748066, BRD-K01737880, and BRD-A86708339. The collective evidence supports the utility of CXCL10 as
a potential therapeutic drug target and novel potential biomarker for improving management and prognosis of PTC.
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