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Abstract: Fusarium graminearum is one of the most devastating diseases of wheat worldwide, and
can cause Fusarium head blight (FHB). F. graminearum infection and mycotoxin production mainly
present in wheat and can be influenced by environmental factors and wheat cultivars. The objectives
of this study were to examine the effect of wheat cultivars and interacting conditions of temperature
and water activity (aw) on mycotoxin production by two strains of F. graminearum and investigate
the response mechanisms of different wheat cultivars to F. graminearum infection. In this regard, six
cultivars of wheat spikes under field conditions and three cultivars of post-harvest wheat grains
under three different temperature conditions combined with five water activity (aw) conditions were
used for F. graminearum infection in our studies. Liquid chromatography tandem mass spectrometry
(LC–MS/MS) analysis showed significant differences in the concentration of Fusarium mycotoxins
deoxynivalenol (DON) and its derivative deoxynivalenol-3-glucoside (D3G) resulting from wheat
cultivars and environmental factors. Transcriptome profiles of wheat infected with F. graminearum
revealed the lower expression of disease defense-factor-related genes, such as mitogen-activated
protein kinases (MAPK)-encoding genes and hypersensitivity response (HR)-related genes of infected
Annong 0711 grains compared with infected Sumai 3 grains. These findings demonstrated the
optimal temperature and air humidity resulting in mycotoxin accumulation, which will be beneficial
in determining the conditions of the relative level of risk of contamination with FHB and mycotoxins.
More importantly, our transcriptome profiling illustrated differences at the molecular level between
wheat cultivars with different FHB resistances, which will lay the foundation for further research on
mycotoxin biosynthesis of F. graminearum and regulatory mechanisms of wheat to F. graminearum.

Keywords: wheat; Fusarium graminearum; mycotoxin; water activity; temperature; transcriptome

Key Contribution: Mycotoxin production by F. graminearum in different FHB-resistant wheat spikes
under field conditions and in post-harvest wheat grains under different laboratory conditions and
transcriptomes of different FHB-resistant wheat cultivars during F. graminearum infection were
investigated, which provides references for mycotoxin control and mechanism research governing
the response of wheat to F. graminearum.

1. Introduction

Wheat is an essential food source for humans. Plant diseases and insect pests such
as head blight, rusts, powdery mildew, leaf blotch, and wheat curl mite negatively affect
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the quality and yield of wheat [1,2]. Fusarium head blight (FHB) is a devastating disease
that occurs widely in wheat crops in humid and semihumid regions of the world [3]. The
average yearly occurrence of FHB has caused severe yield losses [4,5]. During recent
decades, many efforts have been deployed to dissect FHB resistance, investigating both the
wheat responses to infection and the fungal determinants of pathogenicity [6]. From this,
different cultivars of wheat with FHB resistance have been widely conducted as research
objects [7–9].

FHB can be caused by a variety of Fusarium graminearum species complexes (FGSC),
and among them, F. graminearum is the most prevalent and aggressive pathogen of FHB in
wheat [5,10,11]. During infection of wheat, F. graminearum can synthesize a large amount
of deoxynivalenol (DON) and its derivates, and different F. graminearum strains show
differences in the capacity of infection and toxin biosynthesis [12–15]. DON can cause acute
physiological effects in humans and animals including vomiting, diarrhea, intestinal in-
flammation, and gastrointestinal hemorrhage [16]. In some cases, DON can be degraded into
masked forms by phase I metabolism or phase II metabolism [17]. Owing to the low toxicity,
deoxynivalenol-3-glucoside (D3G) is generally regarded as a detoxification product of DON
in plants, and its production is usually related to wheat resistance [18–21]. Biotransforma-
tion of DON in Fusarium-resistant and -susceptible wheat lines shows differences [18,22].
More importantly, it has been reported that D3G can be converted into DON in some
food-processing processes, such as dough extrusion, fermentation, and steaming [23,24].
Studies have also shown that some microbiotas in intestines of animals and even humans
can rapidly hydrolyze D3G into DON, which provides reasons for much more attention on
D3G [25–31].

In previous studies, the environmental effects on fungal growth and potential my-
cotoxin contamination were demonstrated by inoculating F. graminearum, F. verticillioides,
F. langsethiae, and F. meridionale in different cereal matrixes such as maize, oat, and soy-
bean [15,32–34]. It has been reported that biosynthesis of DON and D3G is usually affected
by environmental temperature, humidity, and hosts [22,34–37]. However, studies on the
effect of F. graminearum strains and abiotic factors on mycotoxin production and response
mechanisms in wheat-based matrixes are still not comprehensive.

In order to demonstrate that some plant functions and the expression of specific genes
are needed to promote FHB, an increasing list of effectors, genes, and mechanisms in the
development of FHB have been found using omics approach [20,38]. In particular, the in-
creasing application of transcriptomes has successfully helped researchers map the regulatory
responses, which provides an efficient tool for mechanism investigation [39–41]. In our study,
six cultivars of wheat spikes and three cultivars of post-harvest wheat grains were used for
two strains of F. graminearum infection to demonstrate differences between wheat cultivars.
Further, three different temperature conditions combined with five water activity (aw) condi-
tions were applied to investigate the interacting effect of wheat cultivars and environmental
factors on mycotoxin production. Furthermore, we analyzed the transcriptomic profiles
of wheat grains infected with F. graminearum F1. Using mycotoxin production analysis
combined with transcriptomic analysis, we revealed the differences in toxin concentration
and gene expression caused by different F. graminearum strains, environmental factors, and
wheat cultivars. The results of our study may provide a reference for wheat breeding and
wheat storage to reduce the FHB incidence and mycotoxin accumulation in wheat and
wheat products, preventing harm to humans. Furthermore, our transcriptome profiling
will lay the foundation for further research on mycotoxin biosynthesis and regulatory
mechanisms of wheat to F. graminearum.

2. Results
2.1. Evaluation of Toxin Accumulation of Six Wheat Cultivars under Field Conditions

Field experiments showed that there were significant differences in resistance to FHB
among the wheat cultivars. Both F. graminearum PH−1 and F. graminearum F1 produced
spikelets with blight symptoms on these wheat cultivars (Figure S1). The average symp-
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tomatic spikelet numbers of Sumai 3 and Wangshuibai were significantly lower than those
of other cultivars of wheat (Figure 1A and Figure S1). In these F. graminearum PH−1-infected
wheat groups, Sumai 3 was the most resistant, with the lowest symptomatic spikelet rate
of 5.21%, while the highest symptomatic spikelet rate was 98.00% of ZK001 (Figure 1A).
In the F. graminearum F1−infected groups, Wangshuibai was the most resistant cultivar
with the lowest symptomatic spikelet rate of 1.54%, while the highest symptomatic spikelet
rates were in Nanda 2419 and ZK001, which were up to 90.0% (Figure 1A). Then, wheat
spikelets were collected and subjected to mycotoxin determination. The results showed
that there were differences in the accumulation of DON between the six varieties of wheat
spikelets (Figure 1B). Among them, the concentration of DON produced by F. graminearum
PH−1 was highest in ZK001 and Aikang 58 followed by Zhongmai 66B (Figure 1B). When
inoculated with F. graminearum F1, the concentration of DON was highest in Zhongmai 66B
followed by ZK001, with values of 8211 µg/kg and 5218 µg/kg, respectively (Figure 1B).
The content of DON was lowest in Sumai 3 and Wangshuibai and had no significant differ-
ence between these two cultivars when they were infected by F. graminearum PH−1 and F1
(Figure 1B). However, compared with DON, the accumulation of D3G was significantly
lower (Figure 1C). Furthermore, D3G content was highest in ZK001 and lowest in Nanda
2491 when spikes were infected with F. graminearum PH−1 and was highest in Zhongmai
66B and lowest in Aikang 58 and Nanda 2491 when spikes were infected by F. graminearum
F1 (Figure 1C). By using Nonlinfit analysis, we found that there was a certain negative
correlation showing an exponential model change between the ratio of D3G and total
DON with symptomatic spikelet rate (Figure 1D). Obviously, the strength of the correlation
between D3G/total DON and the symptomatic spikelet rate varies among F. graminearum
strains (Figure 1D). The R2 value was as high as 0.9405 between D3G/total DON and the
symptomatic spikelet rate when they were infected by F. graminearum PH−1 and 0.8794
between D3G/total DON and the symptomatic spikelet rate when they were infected by F.
graminearum F1 (Figure 1D). The ratios of D3G/total DON of the FHB-resistant cultivars
Sumai 3 and Wangshuibai were higher than other cultivars (Figure 1D).

2.2. Accumulation of DON and D3G in F. graminearum PH−1-Infected Wheat Grains under
Different aw and Temperature Conditions

To explore the influence of abiotic factors (temperature and aw) on the accumulations
of toxins in wheat grains, we selected Sumai 3 (highly resistant), Annong 0711 (moderately
resistant), and Zhongmai 66B (susceptive) for F. graminearum PH−1 infection. When the
infection time reached one week, DON and D3G had significantly accumulated in the
matrixes (Figure 2A,B). Toxin accumulation was most significant at aw 0.99, but varied
with temperature (Figure 2A). The production trends of DON and D3G were consistent
at each temperature, which were higher in susceptive cultivars than resistant cultivars
(Figure 2A,B). The concentration of DON reached a maximum at 25 ◦C (Figure 2A). For
D3G, the maximum content was at 25 ◦C followed by 20 ◦C (Figure 2B). At 25 ◦C, the
accumulation of DON was approximately 10 times higher in Annong 0711 grains and
5 times higher in Zhongmai 66B grains than in Sumai 3 grains, and the content of D3G was
much lower in proportion, reflecting the difference in fungal resistance of wheat cultivars
(Figure 2A,B). However, when the aw was below 0.99, the accumulation of DON and D3G
was not obviously detected in any of the three cultivars, which indicated the importance
of aw to the accumulation of DONs. Furthermore, the production of DONs at different
temperatures did not show significant differences between the three cultivars of wheat
grains after infection with F. graminearum PH−1 for 7 days (Figure 2A,B). In Figure 2C, the
ratio of D3G and total DON did not show a significant difference between these groups.
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Figure 1. Differences in toxin production levels and symptomatic spikelet numbers between differ-
ent wheat cultivars. (A) Symptomatic spikelet rate of 6 different cultivars of wheat spikes after in-
oculation with Fusarium graminearum PH−1 and F. graminearum F1. (B) Deoxynivalenol (DON) con-
centration in 6 varieties of wheat spikes infected with F. graminearum PH−1 and F. graminearum F1. 
(C) Deoxynivalenol-3-glucoside (D3G) concentration in 6 varieties of wheat spikes infected with F. 
graminearum PH−1 and F. graminearum F1. (D) Correspondence between symptomatic spikelet rates 
and D3G/total DON of different wheat cultivars infected with F. graminearum PH−1 and F1. Bars 
with different letters represent significant differences (p < 0.05) according to two-way ANOVA; the 
correspondence was analyzed by Nonlin fit. 
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Figure 1. Differences in toxin production levels and symptomatic spikelet numbers between dif-
ferent wheat cultivars. (A) Symptomatic spikelet rate of 6 different cultivars of wheat spikes after
inoculation with Fusarium graminearum PH−1 and F. graminearum F1. (B) Deoxynivalenol (DON)
concentration in 6 varieties of wheat spikes infected with F. graminearum PH−1 and F. graminearum
F1. (C) Deoxynivalenol-3-glucoside (D3G) concentration in 6 varieties of wheat spikes infected with F.
graminearum PH−1 and F. graminearum F1. (D) Correspondence between symptomatic spikelet rates
and D3G/total DON of different wheat cultivars infected with F. graminearum PH−1 and F1. Bars
with different letters represent significant differences (p < 0.05) according to two-way ANOVA; the
correspondence was analyzed by Nonlin fit.
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Figure 2. DON (A) and D3G (B) produced by F. graminearum PH−1 and the ratios of D3G/total
DON (C) of Sumai 3, Zhongmai 66B, and Annong 0711 groups at 20, 25, and 30 ◦C with water
activity (aw) of 0.99. Bars with different letters represent significant differences (p < 0.05) according to
two-way ANOVA. The ratio of D3G/total DON was presented as the mean ± SD and analyzed by
two-way ANOVA.
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2.3. Accumulation of DON and D3G in F. graminearum F1-Infected Wheat Grains under Different
aw and Temperature Conditions

Since wheat contamination in nature is not limited to a single F. graminearum strain,
we also used F. graminearum F1 to infect these cultivars of wheat grains to better illustrate
the difference between different FHB-resistance wheat cultivars under different aw and
temperature conditions. After infection with F. graminearum F1 for 7 days, DON and D3G
were not obviously detected in Sumai 3 and Zhongmai 66B wheat grains. However, the
accumulation of toxins in Annong 0711 was very significant but was lower than that when
grains were infected by F. graminearum PH−1 (Figure S2).

To clearly measure DON and D3G content differences among the three wheat cultivars,
we extended infection time to 14 days. The accumulation of DON and D3G in all three
cultivars was much lower under aw below 0.99 than above; among these cultivars, DON
was highest in Annong 0711 wheat grains but not more than 1500 µg/kg (Table S1). Under
the condition of aw 0.99, DON in Sumai 3 was highest at 25 ◦C, followed by 20 ◦C, while in
Zhongmai 66B and Annong 0711, DON was highest at 25 ◦C, followed by 30 ◦C (Figure 3A).
For D3G, the accumulation in Sumai 3 and Zhongmai 66B reached the highest level at 20 ◦C,
followed by 25 ◦C. The content of D3G in Annong 0711 was highest at 30 ◦C, followed by
20 ◦C (Figure 3B).
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Figure 3. DON (A) and D3G (B) produced by F. graminearum F1 and the ratios of D3G/total DON
(C) of Sumai 3, Zhongmai 66B, and Annong 0711 groups at 20, 25, and 30 ◦C with an aw of 0.99. Bars
with different letters represent significant differences (p < 0.05) according to two-way ANOVA. The
ratio of D3G/total DON is presented as the mean ± SD and was analyzed by two-way ANOVA.
* p < 0.05, **** p < 0.0001: Zhongmai 66B group and Annong 0711 group, respectively, compared with
the Sumai 3 group at the three temperatures.

The concentration of DON in Zhongmai 66B showed significant differences between
20 ◦C and 25 ◦C, 25 ◦C and 30 ◦C, and the DON contents in Sumai 3 and Annong 0711
were significantly different under the three temperature conditions (Figure 3A). For D3G,
the contents in Sumai 3 showed no differences at the three temperature conditions, but in
Zhongmai 66B and Annong 0711 the contents showed a significant difference under the
three temperature conditions (Figure 3B).

At 20 ◦C, the DON and D3G contents showed significant differences between Sumai 3
and Zhongmai 66B, Sumai 3 and Annong 0711, and the D3G content significantly differed in
all three cultivars (Figure 3A,B). At 25 ◦C, the DON content showed a significant difference
between Sumai 3 and Annong 0711, Zhongmai 66B and Annong 0711, and the D3G content
showed a significant difference between the three cultivars (Figure 3A,B). At 30 ◦C, the
DON content showed a significant difference among the three groups, and the D3G content
showed a significant difference between Sumai 3 and Zhongmai 66B, Sumai 3 and Annong
0711(Figure 3A,B). Compared with F. graminearum F1-infected Sumai 3, the ratios of D3G
and total DON of F. graminearum F1-infected Zhongmai 66B and Annong 0711 groups were
significantly different at 20 ◦C and 30 ◦C (Figure 3C). At 25 ◦C, only the ratios of Zhongmai
66B and Sumai 3 were statistically different (Figure 3C).
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2.4. Overview of Differentially Expressed Genes (DEG) between F. graminearum F1-Infected Sumai
3 and Annong 0711 Wheat Grains

To understand the molecular mechanisms underlying the phenotypic differences
between different wheat cultivars, we sequenced the interaction transcriptome of wheat
grains and F. graminearum F1 under the infection condition of 20 ◦C and aw 0.99 (GEO:
GSE188959). Based on the sequencing data, the rates of total mapped clean reads of
Sumai 3 and Annong 0711 averaged 64.72% and 66.57%, respectively, which indicated
similar infection degrees of the two groups, while the low mapping rate of Zhongmai
66B wheat reads indicated that susceptible varieties were very weak in resistance to F.
graminearum infection (Figure 4A). Then, Venn analysis was performed for the indicated
two groups (Figure 4B). The transcriptome profile of wheat grains showed a significant
difference between the infected Sumai 3 and Annong 0711. The results obtained from a
differential expression analysis of F. graminearum F1-infected Annong 0711 compared with
F1-infected Sumai 3 wheat grains showed that 1583 out of 4131 genes were upregulated,
while 2548 genes were downregulated, and these genes were annotated based on the
clusters orthologous groups (COG) database (Figure 4C).
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2.5. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment
Analyses of DEGs in Wheat

The GO analysis placed the DEGs into three categories based on their functions: biolog-
ical process (BP), cellular component (CC), and molecular function (MF). Upregulated DEGs
were significantly enriched in eight GO terms; among these terms, functions associated
with CC followed by MF accounted for a large proportion (Table S2). KEGG pathway maps
included seven categories: metabolism, genetic information processing, environmental
information processing, cellular processes, organismal systems, human diseases, and drug
development. Upregulated genes were significantly enriched in “glutathione metabolism”
and “ribosome biogenesis in eukaryotes” (Table S3). For downregulated genes, the top 20
significantly enriched terms mainly belonged to BP and MF, among which the gene number
in “defense response to fungi” was the largest (Figure 5A). According to the KEGG analysis,
the top 20 maps of downregulated genes were distributed in metabolism, environmental
information processing, and organismal systems categories (Figure 5B).
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In these maps, “mitogen-activated protein kinases (MAPK) signaling pathway” and
“plant–pathogen interaction” accounted for the largest proportions (Figure 5B). Accord-
ingly, the GO function and KEGG pathway enrichment analyses revealed that compared
with the noninfected wheat grains, genes associated with plant defense in the infected
Sumai 3 and Annong 0711 grains were both upregulated, while the expression in Annong
0711 wheat grains was significantly lower than that in Sumai 3 (Figure 5 and Table S2).
In addition, the expression of genes related to “glutathione metabolism”, “phenylalanine
metabolism”, “glycolysis/gluconeogenesis”, “alpha-linolenic acid metabolism”, “galactose
metabolism”, “amino sugar and nucleotide sugar metabolism”, and “taurine and hypotau-
rine metabolism” was also upregulated in the two cultivars of infected wheat grains but
was significantly lower in Annong 0711 grains than in Sumai 3 grains, which may illustrate
the difference in toxin accumulation between these two wheat cultivars (Figure 5B and
Table S3).

Investigating the pathways related to plant defense against pathogen infection, we
found that the expression of genes related to MAPK and the hypersensitive response (HR)
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was lower in F. graminearum F1-infected Annong 0711 wheat grains than in Sumai 3 wheat
grains (Figure 6). The low-level expression of these genes directly or indirectly negatively
affected the fungal resistance response, including the defense response for pathogens, the
HR, and defense-related downstream gene induction of Annong 0711 wheat.
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3. Discussion

Fusarium graminearum is the major agent of FHB that causes wheat diseases and
reduces seed yield worldwide, and different F. graminearum strains show differences in
infection and toxin production ability [14,42–44]. Furthermore, the production of DON
and its derivatives was usually affected by environmental conditions such as temperature,
humidity and host species [15,22,34,36,37]. In previous studies, the circumstantial effects
from temperature and aw were demonstrated for potential contamination by inoculating
F. graminearum, F. verticillioides, F. langsethiae, and F. meridionale in a cereal matrix such
as maize, oat, or soybean [15,32–34]. However, studies on the effect of F. graminearum
strains and abiotic factors on mycotoxin production in wheat-based matrixes are still not
comprehensive. In our study, we compared the differences in the accumulation of DON
and D3G and rates of symptomatic spikelets between six cultivars of wheat spikes that
were infected by F. graminearum PH−1 and F. graminearum F1 under field conditions. We
found that there were significant differences in mycotoxin concentration and symptomatic
spikelet rates between these wheat cultivars and that the DON and D3G contents were
exponentially related to the rates of symptomatic spikelets (Figure 1).

To investigate the effect of abiotic factors on DON and D3G accumulation, we analyzed
the mycotoxin assay using three wheat cultivars of harvested wheat grains with known
resistance to FHB under indicated temperature and aw conditions in a laboratory. Then,
we found that the concentration of DON and D3G was significantly increased in Sumai 3,
Zhongmai 66B, and Annong 0711 wheat grains that were infected by F. graminearum PH−1
for 7 days, while the compounds did not show a significant difference under different
temperatures between these cultivars due to the high pathogenicity of PH−1 (Figure 2A,B).
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Additionally, when the wheat grains were infected by F. graminearum F1 for 7 days, the
accumulation of DON and D3G only occurred in Annong 0711 wheat (Figure S2). Ac-
cordingly, the accumulation of DON and D3G strongly related to the infectivity, genotype
and chemotype of F. graminearum strains. When the F. graminearum F1 infection time was
extended to 14 days, the accumulation of DON and D3G and the ratio of D3G to DON
showed significant differences between these wheat cultivars but had no relation with the
FHB resistance of cultivars (Figure 2C,D and Figure 3 and Table S1). We speculated that
under optimal inoculation conditions, the toxin concentration was more affected by the
nutrient content in wheat grains.

In order to explore the changes at the molecular level during interaction, we employed
RNA-Seq to perform a transcriptomic study and analyzed the changes in gene expression
in F. graminearum F1-Sumai 3, F. graminearum F1-Zhongmai 66B, and F. graminearum F1-
Annong 0711 wheat grains. Our results had demonstrated significantly DEGs between the F.
graminearum F1-Sumai 3 and F. graminearum F1-Annong 0711 libraries. In previous studies,
MAPK genes have been investigated in the plant response to fungal pathogens [45]. It has
been reported that DON exerts its effects at the cellular level by activating MAPK through a
process known as the ribotoxic stress response, and the outcome of DON-associated MAPK
activation is dose- and duration-dependent [16]. In the transcriptome assay, we found that
42 MAPK genes were upregulated in the infected wheat grains; however, compared with
infected Sumai 3, the expression of these genes was lower in infected Annong 0711 grains,
which is consistent with the DON concentration result (Figures 3 and 5 and Table S3). The
hypersensitivity response (HR) is found in all higher plants and is an extremely effective
component of the plant immune system [46]. In our study, the expression of genes related
to the defense response, especially HR, such as heat shock protein 90 (HSP90) and NADPH
oxidase, was also lower in Annong 0711 wheat grains (Figures 5A and 6). These results
indicated that the difference in FHB resistance between Sumai 3 and Annong 0711 wheat
cultivars was associated with the wheat HR to F. graminearum. However, the numbers of
DEGs between F. graminearum F1 on Sumai 3 and Annong 0711 and enriched pathways
were very small (Table S4).

In conclusion, our results illustrated the effect of wheat cultivars, temperature and
water activity on mycotoxin production by combining field and laboratory treatments,
which will be beneficial in determining the conditions of the relative level of risk of con-
tamination with mycotoxins and providing control strategies to reduce the risk of the
occurrence of mycotoxins in pre- and post-harvest wheat. Furthermore, our transcriptome
results demonstrated molecular changes in wheat with different FHB resistance and F.
graminearum, which will lay the foundation for further research on mycotoxin biosynthesis
of F. graminearum and the regulatory mechanisms of wheat to F. graminearum.

4. Materials and Methods
4.1. Wheat Sample and F. graminearum Strains

Wheat cultivars Sumai 3, Wangshuibai, Zhongmai 66B, ZK001, Aikang 58, and Nanda
2419 were provided by the Hefei Institute of Physical Science, Chinese Academy of Sciences
(Table 1). F. graminearum F1 and F. graminearum PH−1 species were donated by Huazhong
Agricultural University. All F. graminearum strains were stored as spore suspensions in 20%
glycerol at −80 ◦C.

4.2. Chemicals and Reagents

DON and D3G standard solution were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Ultrapure water (18.2 MΩ cm) used in our experiments was supplied by
Millipore (Bedford, MA, USA). Acetonitrile and methanol (HPLC-grade) were purchased
from Honeywell (Shanghai, China). Formic acid (HPLC-grade) was obtained from Anpel
(Shanghai, China). Potato dextrose agar medium (PDA) was purchased from BD Difco (San
Diego, CA, USA).
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Table 1. List of the F. graminearum strains, wheat cultivars, and experimental conditions used
for infection.

Strain Wheat Cultivar FHB Resistance Conditions Subject

F. graminearum PH−1
F. graminearum F1

Sumai 3 Resistant

Field conditions Wheat spikes * [9]

Wangshuibai Resistant
ZK001 Moderately Resistant

Nanda 2419 Moderately Resistant
Aikang 58 Susceptible

Zhongmai 66B Susceptible

F. graminearum PH−1
F. graminearum F1

Sumai 3 Resistant aw: 0.80, 0.85, 0.9, 0.95, 0.99
T (◦C): 20, 25, 30 [15]

Post-harvest wheat
grainsAnnong 0711 Moderately Resistant

Zhongmai 66B Susceptible

* F. graminearum spores were inoculated on wheat florets.

4.3. Inoculation and Incubation Conditions

Florets of 6 cultivars of wheat including Sumai 3, Wangshuibai, Zhongmai 66B, ZK001,
Aikang 58, and Nanda 2419 were used for F. graminearum PH−1 and F. graminearum
F1 infection. Then, 20 µL of F. graminearum spore suspension (5 × 105 per mL) was
inoculated on the florets (Table 1). Symptomatic spikelets on wheat spikes were measured
at 21 days post inoculation, and the rate of symptomatic spikelets was calculated based on
the following formula:

Symptomatic spikelets rate (%) = (number of symptomatic spikelets/total wheat spikes number) × 100 (1)

For laboratory conditions, one portion of every 25 g of post-harvest grains was irra-
diated at 8 kGy using a cobalt radiation source and then stored aseptically at 4 ◦C before
utilization. One portion for every 25 g of Sumai 3, Zhongmai 66B, and Annong 0711 wheat
grain was plated into a 100 mL sterile conical flask, and the initial aw of the wheat grain
was 0.572, which was confirmed by using a Novasina Labmaster-Neo water activity meter
(Novasina, Inc., WA, Swit). Then, sterile distilled water was added to rehydrate to the
required aw (aw: 0.80, 0.85, 0.9, 0.95, and 0.99). Flasks were subsequently refrigerated at
4 ◦C for 72 h with periodic shaking to ensure uniform absorption and equilibration of
water. After three days of equilibration, the wheat grains were inoculated centrally with
4 mm agar plugs taken from the margin of 7-day-old colonies of F. graminearum grown on
PDA at 25 ◦C. For all temperatures (20, 25, 30 ◦C) and aw treatments, three replicates per
strain were used. The total number of treatments was 3 wheat cultivars × 2 F. graminearum
strains × 3 temperatures conditions × 5 aw conditions × 3 replicates (Table 1). All treatment
groups were dried at 60 ◦C after 7 or 14 days post inoculation and stored at −20 ◦C until
mycotoxin extraction was carried out.

4.4. Mycotoxin Extraction

Mycotoxin extractions were determined according to a published method with minor
modifications [47]. All samples were ground into a homogenized powder, weighed into
50 mL centrifuge tubes, and then mixed with 10 mL of acetonitrile/water (84:16, v/v). The
tubes were shaken at 2500 rpm/min at 25 ◦C in an orbital shaker for 60 min and then
ultrasonicated for 40 min. Then, tubes were centrifuged at 4000 rpm/min for 30 min. Then,
2 mL of supernatant was transferred to a 15 mL centrifuge tube, 150 mg of anhydrous
magnesium sulphate was added, and the tube was vortexed. Then, the supernatant was
transferred to a new 15 mL centrifuge tube and 1 mL of n-hexane was added to a biosafety
cabinet for degreasing, shaken vigorously, centrifuged to remove n-hexane, and completely
dried in a stream of nitrogen. All dried extracts were dissolved in 1 mL of acetonitrile:water
(20:80 v/v). The purified supernatant was filtered through a 0.22 µm nylon filter and stored
in sampler vials at −20 ◦C until LC–MS/MS analysis.
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4.5. Mycotoxin Determination by LC–MS/MS

LC–MS/MS analysis was performed as described by Yu et al. [15]. Mycotoxins
were quantified by an Accela 1250 UPLC system (Thermo Fisher Scientific, San Jose, CA,
USA) coupled to a TSQ VantageTM (Thermo Fisher Scientific, San Jose, CA, USA) triple-
stage quadruple mass spectrometer. An Agilent Extend C18 chromatographic column
(100 mm × 4.6 mm, 3.5 µm) was used at a flow rate of 0.35 mL/min at 30 ◦C and with
a 10 µL injection volume. The mobile phase consisted of 5 mM ammonium acetate (A)
and 100% methanol (B). The gradient was as follows: 0 min 15% B, 1 min 15% B, 6.5 min
90% B, 8.5 min 90% B, 9 min 15% B, and 12 min 15% B. Mass spectrometry analysis was
carried out in both positive (ESI + 3.5 kV) and negative (ESI − 2.5 kV) ionization modes
using selected reaction monitoring (SRM). For the MS/MS analysis, both the vaporizer and
capillary temperatures were 300 ◦C, the sheath gas pressure was 50 psi, and the aux gas
pressure was 5 psi. Raw data were analyzed using Xcalibur™ software (Thermo Fisher
Scientific, San Jose, CA, USA, 2011).

The ratio of D3G and total DON was calculated based on the following formula:

D3G/total DON = mD3G/(mDON + nD3G ∗ MDON) (2)

4.6. Total RNA Extraction

The total RNA of the mixture samples of Sumai 3, Zhongmai 66B, and Annong 0711
wheat and F. graminearum F1 for 14 days was extracted using Plant RNA Purification
Reagent for plant tissue (Invitrogen, Carlsbad, CA, USA) according the manufacturer’s
instructions, respectively. Genomic DNA was removed by DNaseI (Takara, Beijing, China).
The RNA quality and concentration were determined using a NanoDrop 2000 (Agilent
Technologies, Santa Clara, CA, USA).

4.7. Library Preparation and Sequencing

The RNA-seq transcriptome library was prepared using a TruSeqTM RNA sample
preparation kit from Illumina (San Diego, CA, USA) and 1 µg of total RNA. Second, double-
stranded cDNA was synthesized using a SuperScript double-stranded cDNA synthesis
kit (Invitrogen, CA, USA), 300 bp fragmented mRNA, and random hexamer primers. The
synthesized cDNA was then subjected to end repair and adaptor ligation according to
Illumina’s library construction protocol. Then, cDNA target fragments of 300 bp were
amplified using Phusion DNA polymerase (NEB) for 15 PCR cycles. After quantification by
TBS380, the paired-end sequencing library was sequenced using the Illumina HiSeq Xten
sequencer (2 × 150 bp read length) [48].

4.8. Read Mapping and DEG Analysis

The raw paired-end reads were optimized by SeqPrep (https://github.com/jstjohn/
SeqPrep (accessed on 7 June 2022)) and Sickle (https://github.com/najoshi/sickle, ac-
cessed on 7 June 2022) using default parameters to obtain clean reads. Then, clean reads
were separately aligned to the reference genome with orientation mode using HISAT2
(http://ccb.jhu.edu/software/hisat2/index.shtml, accessed on 7 June 2022) software [49].
Gene abundances were quantified using RSEM (http://deweylab.biostat.wisc.edu/rsem/,
accessed on 7 June 2022) [50]. A DEG analysis was performed using DESeq2 with a
|log2FC| > 1 and BH-corrected p value ≤ 0.05 [51].

4.9. Functional Annotation and Enrichment

A Clusters of Orthologous Groups of proteins (COG) annotation analysis was per-
formed using HMMER [52]. Gene Ontology (GO) functional enrichment and Kyoto En-
cyclopedia of Genes and Genome (KEGG) pathway analysis were carried out by Goa-
tools (https://github.com/tanghaibao/Goatools, accessed on 7 June 2022) and KOBAS
(http://kobas.cbi.pku.edu.cn/home.do, accessed on 7 June 2022) at a p value ≤ 0.05 or
corrected p value ≤ 0.05 [53,54].

https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
http://ccb.jhu.edu/software/hisat2/index.shtml
http://deweylab.biostat.wisc.edu/rsem/
https://github.com/tanghaibao/Goatools
http://kobas.cbi.pku.edu.cn/home.do
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4.10. Quantitative Real-Time PCR Analysis

Total RNA of the mixed culture samples of Sumai 3, Zhongmai 66B, and Annong 0711
wheat and F. graminearum F1 for 14 days were prepared using TRIzol reagent (Invitrogen,
CA, USA). cDNA was synthesized using PrimeScript™ RT reagent Kit with gDNA Eraser
(Takara, Beijing, China). Each sample was quantified using TB Green Premix Ex Taq II
(Takara, Beijing, China) following the instructions of the manufacturer and applied to the
QuantStudio™ Real-Time PCR System (Applied Biosystems™). The primers employed
in this experiment were listed in Table S5. Actin was used as an internal control in this
experiment. The 2−∆∆Ct method was used to calculate the expression level and three
replicates were employed for every gene [55].

4.11. Statistical Analysis

The mycotoxin concentration analysis was constructed using GraphPad Prism 8
(GraphPad Software Inc., San Diego, CA, USA) by two-way ANOVA. Post hoc Tukey’s
testing was used to evaluate changes between groups. A p value < 0.05 was considered
statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins14070482/s1, Figure S1: Representative images of 6 different
cultivars of wheat spikelets at 21 days after inoculation with F. graminearum PH−1 and F. graminearum
F1; Figure S2: The accumulation of DON and D3G in Annong 0711 grains that were infected by F.
graminearum F1 at different temperatures and aw for 7 days; Table S1: DON and D3G accumulation in
Sumai 3, Zhongmai 66B, and Annong 0711 wheat grains infected by F. graminearum F1 under different
conditions; Table S2: GO and KEGG enrichment analysis of upregulated genes of infected Annong
0711 wheat grains; Table S3: Significantly enriched (corrected p value < 0.05) KEGG pathways of
upregulated genes in infected wheat grains; Table S4: GO and KEGG enrichment analysis of DEGs of
F. graminearum F1 in Sumai 3 and Annong 0711 wheat grains; Table S5: Primer sequences used for
RT-qPCR amplification of the differentially expressed genes selected for validation.
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DON deoxynivalenol
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LC-MS/MS liquid chromatography tandem mass spectrometry
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DEG differentially expressed gene
COG Clusters Orthologous Groups
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genome
BP biological process
CC cellular component
MF molecular function
MAPK mitogen activated protein kinases
HR hypersensitivity response
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