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The effect of different chemotherapeutic agents on the
enrichment of DNA mismatch repairmdeficient tumour
cells
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Summary Loss of DNA mismatch repair is a common finding in hereditary non-polyposis colon cancer as well as in many types of sporadic
human tumours. We compared the effect of loss of DNA mismatch repair on drug sensitivity as measured by a clonogenic assay with its effect
on the ability of the same drug to enrich for mismatch repair-deficient cells in a proliferating tumour cell population. Mixed populations
containing 50% DNA mismatch repair-deficient cells constitutively expressing green fluorescent protein and 50% mismatch repair-proficient
cells were exposed to different chemotherapeutic agents. 6-Thioguanine, to which DNA mismatch repair-deficient cells are known to be
resistant, was included as a control. The results in the cytotoxicity assays and in the enrichment experiments were concordant. Treatment with
either carboplatin, cisplatin, doxorubicin, etoposide or 6-thioguanine resulted in enrichment for mismatch repair-deficient cells, and clonogenic
assays demonstrated resistance to these agents, which varied from 1.3- to 4.8-fold. Treatment with melphalan, paclitaxel, perfosfamide or
tamoxifen failed to enrich for mismatch repair-deficient cells, and no change in sensitivity to these agents was detected in the clonogenic
assays. These results identify the topoisomerase 11 inhibitors etoposide and doxorubicin as additional agents for which loss of DNA mismatch
repair causes drug resistance. The concordance of the results from the two assay systems validates the enrichment assay as a rapid and
reliable method for screening for the effect of loss of DNA mismatch repair on sensitivity to additional drugs.
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The DNA mismatch repair system plays an important role in the
maintenance of genomic stability as it corrects replicative
mismatches that escape DNA polymerase proofreading.
Biochemical and genetic studies in eukaryotes have defined at
least five genes, MSH2, MSH3, MSH6 (also called GTBP), MLHI
and PMS2, whose protein products are required for eukaryotic
mismatch repair (reviewed by Kolodner, 1996). MSH2, dimerized
with either MSH6 (Palombo et al, 1995) or MSH3 (Acharya et al,
1996), binds to the mismatch and subsequently recruits the other
mismatch repair proteins. Loss of DNA mismatch repair is the
genetic basis for the hereditary non-polyposis colon cancer
syndrome and is a common finding in a variety of sporadic cancers
(reviewed by Fishel et al, 1995). In addition to being involved in
oncogenesis, loss of the DNA mismatch repair activity is of
concern with respect to the use of chemotherapeutic agents to treat
established tumours. Loss of mismatch repair has been reported to
cause high-level resistance to the antimetabolite 6-thioguanine
(Griffin et al, 1994), moderate levels of resistance to the methyl-
ating agents N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) (Kat
et al., 1993) and temozolomide (Liu et al, 1996), and low-level
resistance to cisplatin and carboplatin (Anthoney et al, 1996; Fink
et al, 1996) in human tumour cell lines in vitro. In addition to
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intrinsic resistance to these agents, DNA mismatch repair-
deficient cells have high mutation rates in both non-coding
microsatellite sequences and in coding sequences of a number of
genes including the HPRT (Bhattacharyya et al, 1994), TGF-f2
(Markowitz et al, 1995), and APC (Huang et al, 1996) genes.

If loss of DNA mismatch repair reduces tumour cell sensitivity,
then one would expect treatment with chemotherapeutic agents to
enrich tumour cell populations for mismatch repair-deficient cells.
However, no information is available on how these parameters are
linked quantitatively. To investigate this issue, we examined the
ability of chemotherapeutic agents to enrich for mismatch repair-
deficient cells during treatment and compared these results with
the effect of loss of DNA mismatch repair on sensitivity to the
same agents tested in clonogenic assays. In addition to cisplatin
and carboplatin, we identified the topoisomerase II inhibitors
etoposide and doxorubicin as chemotherapeutic agents that enrich
for mismatch repair-deficient cells. Furthermore, our results vali-
date the enrichment assay as a quick and reliable method for
screening for changes in drug sensitivity mediated by loss of DNA
mismatch repair.

MATERIALS AND METHODS

Cell lines

The hMLH1-deficient human colorectal adenocarcinoma cell line
HCT 1 16 was obtained from the American Type Culture Collection
(ATCC CCL 247); sublines complemented with chromosome 2
(clone HCT116/2-1, identified here as HCT116 + ch2) and
with chromosome 3 (clone HCT116/3-6, identified here as
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Figure 1 Clonogenic survival curves for the hMLH1-deficient (A, HCT1 16+ch2) and -proficient (A, HCT116 + ch3) colon carcinoma cell lines after treatment
with doxorubicin, etoposide, perfosfamide, tamoxifen, or 6-thioguanine

HCTl 16 + ch3) were obtained from Drs CR Boland and TA
Kunkel (Koi et al, 1994). Parental HCTl 16 cells are DNA
mismatch repair-deficient as a result of a hemizygous mutation in
hMLHI resulting in a truncated, non-functional protein (Boyer et
al, 1995). Complementation with chromosome 3 provides a wild-
type copy of hMLHJ that renders the HCT1 16 + ch3 cells
mismatch repair proficient. HCT1 16 and their sublines were main-
tained in a 5% carbon dioxide atmosphere at 37°C in Iscove's
modified Dulbecco's medium (Irvine Scientific, Irvine, CA, USA)
supplemented with L-glutamine and 10% heat-inactivated fetal
bovine serum. The chromosome-complemented sublines were

maintained in medium supplemented with geneticin (400 gg ml-')
(Life Technologies, Gaithersburg, MD, USA). The absence and
presence of expression of hMLH1 in HCT1 16, HCT1 16 + ch2 and
HCT1 16 + ch3 cells were verified by immunoblot analysis (data
not shown). All cell lines tested negative for contamination with
Mycoplasma spp. The cell lines used in these experiments form

well-defined individual colonies when seeded sparsely on standard
tissue culture plates.

Materials

Carboplatin, cisplatin and paclitaxel were kindly provided by
Bristol-Myers Squibb (Princeton, NJ, USA). Doxorubicin, etopo-

side, melphalan, tamoxifen and 6-thioguanine were purchased
from Sigma Chemical (St Louis, MO, USA) and perfosfamide (4-
hydroperoxycyclophosphamide) from Omicron Biochemicals
(San Antonio, TX, USA).

Cytotoxicity assays

Carboplatin, cisplatin, perfosfamide and 6-thioguanine were

dissolved immediately before use in a 0.9% sodium chloride
solution. Doxorubicin, etoposide, paclitaxel and tamoxifen were
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Enrichment of DNA mismatch repair-deficient cells 705

Table 1 IC50 values for the drugs used in DNA mismatch repair-deficient
(HCH1 16 + ch2) and -proficient cells (HCT1 16 + ch3)a

Drug HCT116 + ch2 HCT116 + ch3 pb

Carboplatinc (gM) 125.2 ± 12.0 97.9 ± 7.4 0.029
Cisplatin (gM) 23.2 ± 3.7 11.2 ± 3.5 0.002
Doxorubicin (nM) 16.1 ± 2.0 9.3 ± 1.1 0.006
Etoposidec (gM) 0.73 ± 0.27 0.36 ± 0.17 0.017
Melphalanc (gM) 7.6 ± 2.7 6.8 ± 2.0 0.71
Paclitaxelc (nM) 5.6 ± 1.8 3.7 ± 0.7 0.15
Perfosfamidec (gM) 1.83 ± 0.14 1.74 ± 0.38 0.71
Tamoxifen (gM) 8.1 ± 2.0 7.5 ± 1.7 0.74
6-Thioguanine (gM) 10.1 ± 1.7 2.1 ± 1.1 0.002

aValues are the mean ± s.d. of at least three independent experiments in
triplicate. bTwo-sided ttest. cAebi et al (1997).

Table 2 Percentage of GFP-expressing DNA mismatch repair-deficient
HCT1 16 cells 5 days after drug exposurea

Drug Per cent mismatch repair-deficient Pb
cells after 5 days

Control 53.1 ± 3.7
Carboplatin 73.2 ± 3.2 0.001
Cisplatin 77.6 ± 3.3 < 0.0001
Doxorubicin 72.1 ± 3.9 0.002
Etoposide 76.4 ± 3.3 0.0001
Melphalan 55.4 ± 2.1 > 0.9
Paclitaxel 55.2 ± 6.0 > 0.9
Perfosfamide 54.4 ± 3.4 > 0.9
Tamoxifen 54.9 ± 3.7 > 0.9
6-Thioguanine 84.7 ± 2.3 < 0.0001

aValues are the mean ± s.d. of three independent experiments. 5Factorial
ANOVA; P-values were calculated using the Scheffd procedure.

prepared in dimethyl sulphoxide (DMSO). Stock solutions were
aliquoted and stored at - 20°C. A fresh tube was used for each
experiment. The final concentration of DMSO in the cultures was
< 0.1% (v/v) at all drug concentrations and in controls. Previous
experiments have established that 0.1% DMSO does not affect the
viability or growth of these cell lines (data not shown). Melphalan
was prepared fresh for each experiment by dissolving it first in
0.1 M hydrochloric acid in ethanol and then diluting it into tissue
culture medium. Clonogenic assays were performed by seeding
250 cells from a single-cell suspension into 60-mm plastic dishes.
After 24 h, appropriate concentrations of drugs were added to the
dishes, and the cells were exposed for 1 h (cisplatin, carboplatin),
for 24 h (etoposide, melphalan, paclitaxel, perfosfamide, 6-
thioguanine) or continuously (doxorubicin, tamoxifen). The
differing durations of drug exposure were chosen to accommodate
the schedule dependency of the agent and permit the generation of
exponential survival curves. Thereafter, the cells were washed
with phosphate-buffered saline (PBS), and new drug-free medium
was added. Colonies of at least 50 cells were scored visually after
8-10 days. Each experiment was performed three times using
triplicate cultures for each drug concentration. IC50 values were
estimated using logarithmic interpolation at a relative plating
efficiency of 0.5.

Preparation of DNA mismatch repair-deficient cells
expressing the green fluorescent protein (GFP)

The GFP gene, cloned from the bioluminescent jellyfish Aequorea
victoria (Morin and Hastings, 1972), was used as a tool to mark
cells. The retroviral vector pCLNCGFP was constructed by
removing the GFP cycle 3-mutant cDNA from the Alpha + GFP
vector (Maxygen, Palo Alto, CA, USA) with XbaI and ClaI and
filling in the XbaI cut ends with Klenow DNA polymerase. The
resulting 746-bp fragment was cloned into the ClaI and Klenow-
filled HindlIl sites downstream of the CMV promoter in pCLNCX
(Crameri et al, 1996; Naviaux et al, 1996). Amphotropic retrovirus
was produced by co-transfecting 2 x 106 late-passage 293 cells
with 20 ,ug of vector, either pCLNCX or pCLNCGFP, and the
pCL-Ampho packaging-vector as described by Naviaux et al
(1996). Viral supermatant was harvested 24 and 48 h after trans-
fection. Viral titres were determined on BALB/c 3T3 cells by
geneticin-resistant colony formation. HCT1 16 cells were infected
with viral supematant three times over a 12-h period in the pres-
ence of polybrene (8 ,ug ml-'). Infected cells were selected for 9
days with geneticin (400 jg ml-') and the resulting population was
identified as HCT1 16-GFP; GFP was expressed in high levels in
90-95% of these cells. Cells were subjected to flow cytometric
analysis on a Becton Dickinson FACScan using an argon ion laser
tuned to 488 nm to identify GFP-positive cells. Fluorescence was
observed with a 515/545 bandpass filter.

Enrichment assays

HCT1 16 + ch3 and HCT116-GFP cells were mixed in a 50:50 ratio
and analysed by flow cytometry to document that the population
contained 50% GFP-expressing cells. Enrichment assays were
performed by plating 200 000 cells into 100-mm tissue culture
dishes. After 24 h, an IC50 concentration of each drug was added to
the dishes, and the cells were exposed for 1 h (cisplatin, carbo-
platin), for 24 h (etoposide, melphalan, paclitaxel, perfosfamide,
6-thioguanine) or continuously (doxorubicin, tamoxifen). Flow
cytometric analysis was performed 5 days later. Each experiment
was performed three separate times for each drug. The HCT1 16
and HCT1 16-GFP cells, as well as the HCT1 16 cells infected with
an empty pCL vector, were tested by clonogenic assay, and no
difference in sensitivity to cisplatin or paclitaxel was found (data
not shown).

Data analyses

Mean ± s.d. values are indicated for all data sets. Two-sided t tests
were performed to compare the effect of hMLH1 loss on drug
sensitivity. Factorial ANOVA was used to analyse the extent of
enrichment during treatment; P-values were calculated using the
Scheffe procedure.

RESULTS

Cytotoxicity assays
The DNA mismatch repair-deficient HCT1 16 + ch2 cell line is
known to be resistant to 6-thioguanine (Griffin et al, 1994), MNNG
(Kat et al, 1993) and cisplatin and carboplatin (Anthoney et al,
1996; Fink et al, 1996). Figure 1 shows the survival curves for the
mismatch repair-deficient HCT116 + ch2 cell line as well as the
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repair-proficient HCT1 16 + ch3 cell line as a function of drug
concentration for doxorubicin, etoposide, perfosfamide, tamoxifen
and 6-thioguanine. In comparison with the HCT1 16 + ch3 cell line,
the DNA mismatch repair-deficient cells were also resistant with
the topoisomerase II inhibitors etoposide and doxorubicin. The
IC50 values for all the drugs tested are presented in Table 1. The
hMLH I -deficient HCT1 16 + ch2 cells were 2.0-fold more resistant
to etoposide than the mismatch repair-proficient HCT 116 + ch3
cells (IC50, 0.73 ± 0.27 vs 0.36 ± 0.17 gM s.d.; n = 3; P <0.05 in a
two-sided t-test). Likewise, the mismatch repair-deficient cells
were 1.7-fold more resistant to doxorubicin (IC50, 16.1 ± 2.0 vs
9.3 + 1.1 nm s.d.; n = 3; P < 0.05 in a two-sided t-test). The cyto-
toxicity of melphalan, paclitaxel, perfosfamide and tamoxifen was
not affected by the mismatch repair status of the cells.

Enrichment assays

Parental DNA mismatch repair-deficient HCT116 cells were
infected with a retrovirus encoding the GFP gene driven by a
CMV promoter, and a population that stably expressed GFP was
selected. A population containing 50% DNA mismatch repair-
deficient GFP-expressing cells and 50% repair-proficient HCT1 16
+ ch3 cells was prepared by mixing and subjected to drug expo-
sure. Five days later, the population was analysed by flow cytom-
etry to document the proportion of GFP-expressing mismatch
repair-deficient cells. Table 2 demonstrates the effect of loss of
DNA mismatch repair on enrichment after a 1-h drug exposure
(cisplatin, carboplatin), a 24-h drug exposure (etoposide,
melphalan, paclitaxel, perfosfamide, 6-thioguanine), or a contin-
uous drug exposure (doxorubicin, tamoxifen). Five days after a
single exposure to an IC 50 concentration of etoposide, the treated
population contained 44% more GFP-expressing mismatch repair-
deficient cells than the untreated population. Likewise, the tumour
cell population contained 36% more mismatch repair-deficient
cells after a single exposure to doxorubicin. Thus, treatment with
doxorubicin or etoposide, to which the DNA mismatch repair-
deficient cells were twofold resistant, resulted in rapid enrichment
of the population for the resistant cells.

DISCUSSION

Loss of DNA mismatch repair can impact on the responsiveness of
a tumour to chemotherapy in several different ways. First, loss of
mismatch repair produces high-level resistance to the antimetabo-
lite 6-thioguanine (Griffin et al, 1994), moderate levels of resis-
tance to the methylating agent MNNG (Kat et al, 1993) and
low-level resistance to cisplatin and carboplatin (Anthoney et al,
1996; Fink et al, 1996). It has recently been reported that loss of
mismatch repair also causes resistance to temozolomide, a methyl-
ating agent that forms adducts similar to those of MNNG (Liu et al,
1996). Second, the genomic instability that accompanies loss of
DNA mismatch repair can increase the rate of mutation in the
coding or regulatory sequences of other genes whose products may
play central roles in determining tumour cell sensitivity to drugs.

It has been suggested that the DNA mismatch repair system
serves as a detector for the presence of DNA damage (Kat et al,
1993; Hawn et al, 1995). Resistance to 6-thioguanine, MNNG,
temozolomide, cisplatin and carboplatin is thought to result from
failure of the cell to recognize the DNA adducts formed by these
drugs and to activate signalling pathways that trigger apoptosis.
Indeed, pure hMSH2 has been reported to bind to platinated DNA

in mobility shift assays (Mello et al, 1996), and human MutSa
(Duckett et al, 1996), a heterodimer of hMSH2 and hMSH6
(Palombo et al, 1994; Acharya et al, 1996), has been shown to bind
to DNA containing adducts produced by MNNG, 6-thioguanine
and cisplatin. The molecular basis for the concept that- loss of
DNA mismatch repair causes resistance rather than hypersensi-
tivity because the mismatch repair proteins serve as a detector of
damage has been further substantiated by the recent observation
that loss of mismatch repair results in failure to activate several
cisplatin damage-responsive signal transduction pathways
(Nehme et al, 1997). In contrast, loss of mismatch repair does not
result in resistance to oxaliplatin, and although little is known
about the oxaliplatin adduct (Woynarowski et al, 1997), we have
recently demonstrated that DNA adducts formed by oxaliplatin are
not recognized by the mismatch repair system (Fink et al, 1996).
The results of both the cytotoxicity assays and enrichment

assays reported here provide additional confirmation that loss of
mismatch repair results in resistance to 6-thioguanine, cisplatin
and carboplatin. As loss of DNA mismatch repair is not accompa-
nied by resistance to the classical alkylating agents melphalan and
perfosfamide, it is likely that the adducts produced by these agents
are not recognized by the mismatch repair detector. Similarly, it
has been reported that the adducts formed by the chloroethylating
agent 1,3-bis(2-chloroethyl)-nitrosourea are not recognized by the
mismatch repair complex (Liu et al, 1996). The lack of differential
cytotoxicity of paclitaxel and tamoxifen is consistent with the fact
that neither agent is known to interact with DNA at achievable
clinical concentrations.

The results presented here extend the panel of drugs for which
loss of mismatch repair causes resistance to the topoisomerase II
inhibitors etoposide and doxorubicin. However, how loss of DNA
mismatch repair produces low-level resistance to these agents is
less clear than for those agents that react directly with DNA to
produce adducts that distort its structure in a manner similar to that
of true DNA mismatches. It may be that the mismatch repair
proteins serve as a detector of the 'cleavable complex' (Chen et al,
1994) produced by the binding of etoposide or doxorubicin to
topoisomerase I1, or that the mismatch repair proteins normally act
to stabilize the drug-induced 'cleavable complex' on the DNA,
and thus serve to augment the DNA damage. Additional studies
will be required to document interaction between the DNA
mismatch repair proteins and topoisomerase II.

Several lines of evidence suggest that although loss of mismatch
repair results in only relatively small degrees of resistance, this
resistance is nevertheless of biological and clinical significance.
First, even a twofold difference in sensitivity to cisplatin, carbo-
platin, doxorubicin and etoposide detected by clonogenic assays
was sufficient to result in a clear enrichment for mismatch repair-
deficient cells after only a single exposure of a proliferating
tumour cell population to these drugs. Second, loss of DNA
mismatch repair has been reported in tumour cell lines selected
for resistance to cisplatin (Aebi et al, 1996) or doxorubicin
(Drummond et al, 1996). Third, this laboratory has previously
documented that only small degrees of resistance (< twofold) are
required to account for clinical failure of cisplatin treatment
(Andrews et al, 1990). MSH2+'+ embryonic stem cells (de Wind et
al, 1995) grown as xenografts were responsive to treatment with a
single LD1O dose of cisplatin, whereas isogenic MSH2-'- tumours
were not, suggesting that the degree of cisplatin resistance
conferred by loss of DNA mismatch repair is sufficient to produce
a large difference in clinical responsiveness in vivo (Fink et al,
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1997). Because of the fact that embryonic stem cells require a
drug-sensitive fibroblast feeder layer for prolonged propagation,
studies of the extent to which low-level resistance can mediate
enrichment for mismatch repair-deficient cells during treatment in
vitro could not be addressed in this isogenic system, and we were
limited to using the less truly isogenic HCTI 16 and HCT1 16 + ch3
pair of cells. Nevertheless, our results argue cogently that treat-
ment with any of these five agents (carboplatin, cisplatin, doxo-
rubicin, etoposide, 6-thioguanine) does select for repair-deficient
cells, thus enriching the population. Additional studies are
required to further document the kinetics of this process and the
extent of enrichment that occurs in vivo with repeated cycles of
drug exposure. However, it is likely that clinical resistance will
become manifest at relatively low levels of enrichment. In mixing
experiments performed with L1210 leukaemia cells sensitive and
resistant to cyclophosphamide, Skipper et al (1978) demonstrated
that the presence of only 1% resistant cells was sufficient to cause
clinical failure of treatment.
The issue of when loss of mismatch repair occurs during onco-

genesis remains controversial, even for hereditary non-polyposis
colon cancer, which represents the best defined clinical situation
(Tomlinson et al, 1996). However, once such cells are present in
the tumour, their genomic instability may result in the accumula-
tion of additional mutations that contribute to the phenomenon of
tumour progression. Enrichment of these cells as a result of
chemotherapy would be expected to accelerate this process.
Indeed, Ben-Yehuda et al (1996) recently reported that microsatel-
lite instability, a hallmark of the genomic instability due to the loss
of mismatch repair (Loeb et al, 1994), was present in up to 94% of
the patients with therapy-related leukaemia or myelodysplastic
syndromes, consistent with drug-induced enrichment for geneti-
cally unstable cells.
The perfect concordance between the ability of a drug to enrich

for GFP-expressing mismatch repair-deficient cells and loss of
sensitivity to the same drug as assessed by clonogenic assay
suggests that the former can be used as a way of rapidly screening
for DNA mismatch repair-mediated changes in sensitivity to addi-
tional agents. The assay can be readily automated for high
throughput screening, and the same principle can be used to
examine the impact of the loss of other genes when isogenic pairs
of cell lines are available.
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