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Abstract

Spermidine is a natural polyamine involved in many important cellular functions, whose supplementation in food or water
increases life span and stress resistance in several model organisms. In this work, we expand spermidine’s range of age-
related beneficial effects by demonstrating that it is also able to improve locomotor performance in aged flies. Spermidine’s
mechanism of action on aging has been primarily related to general protein hypoacetylation that subsequently induces
autophagy. Here, we suggest that the molecular targets of spermidine also include lipid metabolism: Spermidine-fed flies
contain more triglycerides and show altered fatty acid and phospholipid profiles. We further determine that most of these
metabolic changes are regulated through autophagy. Collectively, our data suggests an additional and novel lipid-mediated
mechanism of action for spermidine-induced autophagy.
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Introduction

The understanding of the mechanisms underlying the aging

process is of general interest; not least because it opens doors to

modulate it and eventually postpone or prevent age-related

pathologies and thus improve our health span. Aging research in

the last three decades has elucidated a series of mutations in single

genes that increase life span in many organisms [1]. In addition,

dietary restriction (DR) has advanced to be the most reliable

means to increase life span and reduce age-related diseases in

many organisms [2], although the latest results from studies in

non-human primates are not as promising as expected, at least in

regard to life span [3]. Despite these findings, the most convenient

method to counteract the detrimental effects of aging would be the

simple ingestion of compounds with the ability to do so. In fact,

several pharmacological interventions have been shown to hamper

age-related diseases and to be beneficial for health and life span.

For instance, resveratrol, a naturally occurring phenol, increases

the life span of mice kept on a high-fat diet [4]. However,

resveratrol does not exert any beneficial effect in healthy

organisms [5]. The immunosuppressant drug rapamycin also

increases the life span of rodents [5,6], but shows inconclusive

effects in the fruit fly Drosophila melanogaster and – being an

immunosuppressant - its actual use for humans remains doubtful

[7,8].

Spermidine is a natural polyamine involved in many important

molecular processes such as DNA stability, transcription, transla-

tion, apoptosis, cell proliferation, differentiation, and survival [9].

Intriguingly, its intracellular level decreases with age [10,11].

Indeed, a recent study shows that spermidine levels decrease in

60–80 year-old people compared to 31–56 year-olds [12].

However, in that same study levels in 90–106 year-old people

were similar to those found in the youngest age group [12],

suggesting that maintenance of high spermidine concentration

during aging may contribute to longevity. In accordance with this

concept, our previous work [13] established that food supplemen-

tation with spermidine increases the life span of the yeast

Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans,

the fruit fly Drosophila melanogaster, and that of cultured human

immune cells. A high-polyamine diet has also been reported to

increase the life span and reduce the age-related pathology of a

short-lived mouse strain [14]. Spermidine also increases stress

resistance in yeast (heat and hydrogen peroxide) [13] and flies

(paraquat and hydrogen peroxide) [15], while it decreases markers

of age-related oxidative damage in mice [13]. Conversely, the

intracellular depletion of spermidine by genetic mutations in the

polyamine pathway decreases the life span of yeast [13] and mice

[16].

In yeast, worms, flies and Hela cells, spermidine directly induces

autophagy [13,17], the major cellular recycling mechanism, which

is induced upon many interventions that increase life span [18,19].

In fact, we could previously show that spermidine’s beneficial

effects on aging are mainly due to the induction of autophagy [13].

Consistently, spermidine does not increase life span in autophagy-

mutant yeast, worms and flies [13]. However, we found more

recently that autophagy induction is not responsible for all the

beneficial effects exerted by spermidine: For instance, the anti-

necrotic function of the propeptide of yeast cathepsin D is

spermidine-dependent but autophagy-independent [20]. Also,

spermidine can still increase resistance to hydrogen peroxide in

autophagy-deficient flies [15]. Thus, under certain circumstances

additional mechanisms other than autophagy must be responsible

for spermidine-mediated cytoprotection.
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Metabolic regulation has long been connected to life span

modulation: many mutations known to increase life span also alter

metabolism and nutrient sensing, for instance mutations in the IIS

(Insulin-Like Signalling) pathway [21], the TOR (target of

rapamycin) pathway [22], or in sensory systems [23]. Mounting

evidence also places lipid metabolism as an important player

during aging [24–26]. Many interventions that enhance life span,

for example, also increase the abundance of triglycerides (TAG),

which represents the major lipid store [27,28]. In fact, the

metabolic targets associated to spermidine’s beneficial effects

might be multiple. Its molecular structure allows a plethora of

different interactions that might go even beyond multiple ones

already described [9,29].

In this work, we expand spermidine’s scope of potential

beneficial effects during aging by showing that it improves age-

dependent locomotor activity in D. melanogaster. Importantly, we

additionally uncover an impact of spermidine on lipid composi-

tion, which involves an increase in weight and TAG levels as well

as alterations in fatty acid and lipid profiles, most of which seem to

be autophagy-dependent. These results are the first showing

spermidine’s potential to modulate lipid metabolism and suggest a

possible involvement of this capability in the substance’s mecha-

nisms to exert beneficial effects during aging.

Results

Spermidine improves locomotor performance in aged
flies
We have previously demonstrated that spermidine-fed flies show

an improved survival during aging [13]. We therefore decided to

first assess if such improvement might correlate with a decreased

incidence of an age-related phenomenon, the progressive decline

of locomotor activity. For this purpose, we followed the ability of

flies to climb the vertical wall of the vial, in which they were kept.

The measurement was done weekly until none of the flies could

reach the threshold (8 cm in 10 s). Expectedly, the climbing

activity of wild type cells diminished with ongoing age (Fig. 1A)

[30,31]. Spermidine feeding (1 mM) could, indeed, partly rescue

this age-dependent decline in both female and male wild type

animals (Fig. 1A, B). Importantly, spermidine did not have such

effect in loss-of-function mutants for atg7 (atg72/2), a gene

essential for autophagy. These animals showed a much faster

decline in activity compared with wild type flies and no

improvement with spermidine (Fig. 1A, B). Thus, spermidine

alleviates age-dependent locomotor impairment in flies in an

autophagy-dependent manner.

Spermidine increases stored lipid content and alters lipid
profiles
Age-related decline in motor performance is one of the

phenotypes arising from neuronal aging, for which recent evidence

suggests an important contribution of changes in the lipid

membrane composition [32]. In fact, lipid metabolism seems to

be a prominent player during aging [24–26] and many life span-

enhancing interventions also increase the levels of TAG [27,28].

We thus decided to analyze the impact of spermidine feeding on

fly lipid profiles. Even though treatment of wild type flies with

1 mM spermidine for one week did not affect food intake,

glycogen or protein levels (Fig. 2A–C), it increased the animals’

TAG-content as measured both by thin layer chromatography

(Fig. 3A) and a colorimetric assay (Fig. 3B). Interestingly, total and

TAG-derived fatty acids displayed specific changes in male and

female flies, respectively (Fig. S1, S2, Table S1). Of note, the ratio

of saturated over unsaturated TAG-derived fatty acids declined

upon spermidine treatment (Fig. 3C). Moreover, lipidomic

electrospray-mass spectrometry analysis revealed a significant

impact of spermidine on the levels of a multitude of lipid species.

All lipid species were fully characterized (Table S2). While the

phospholipids profile in the negative ion mode survey scans did

not show any significant differences between spermidine-treated

and untreated animals in both sexes (Fig. S3, S4), the positive

survey revealed changes upon spermidine feeding: males displayed

increased levels of EPCd38:1, PC32:2 and PE38 as well as

enhanced saturation of EPCd34 (Fig. 4). In females, spermidine

induced an increase in PE34:2 and PC34:4 (Fig. 5). Collectively,

these findings show that spermidine affects lipid metabolism by

virtue of increased TAG levels, altered fatty acids and phospho-

lipids composition.

Autophagy regulates spermidine-mediated lipidomic
changes
Lipid metabolism has recently been described to act at the

crossroads of longevity and autophagy [33]. In order to test

whether autophagy is connected to spermidine-mediated lipid

changes, we analyzed this aspect in autophagy-deficient mutants

(atg72/2). It should be noted that these mutant flies showed no

significant differences on overall lipid levels (Fig. 3A, B), even

though they did present some changes in their fatty acid profiles

(Table S1). Interestingly, spermidine maintained and even

exacerbated its enhancing effect on TAG levels (Fig. 3A, B) as

well as on sex-specific changes in total and TAG-derived fatty

acids (Fig. S1, S2, Table S1), with female flies showing a higher

and male flies a lower overlapping changing TAG-derived fatty

acids compared with those observed in wild type flies (Table S1).

The decline observed in the ratio of saturated over unsaturated

TAG-derived fatty acids was also maintained (Fig. 3C). Thus, the

general TAG-increase observed with spermidine is autophagy-

independent, although the level of TAG itself may be autophagy-

dependent. In contrast, the profile of TAG-derived fatty acids

triggered by spermidine seems to depend on functional autophagy.

Intriguingly, spermidine failed to induce the effects on phospho-

lipid profiles observed in wild type animals: In atg72/2 females, no

differences whatsoever were observed (Fig. 5) while in atg72/2

males spermidine decreased the saturation of EPCd34 as opposed

to wild type animals (Fig. 4). Altogether, this shows that spermidine

exerts its effects on TAG-derived fatty acid and lipid profiles in an

autophagy-dependent fashion.

Discussion

Our previous work has demonstrated the beneficial potential of

spermidine in terms of age-related stress resistance and survival

during aging [13,15]. In this study, we expand these findings by

reporting a correlation of these benefits with a decreased incidence

of the age-related decline in locomotor activity. Interestingly, a

putative effect of polyamines on enhanced activity during aging

has been previously anecdotally reported for mice fed a high-

polyamine diet, which were described to be more active and to

keep a thicker coat with age, but these variables were not

measured [14]. Furthermore, we had already reported that

spermidine rescues the decline in activity of flies under paraquat

exposure [15]. In contrast to our results, a recent report showed no

protective effects of spermidine on the age-dependent decline of

climbing activity in flies [34]. While both studies use a similar

protocol to assess climbing activity, we do find a positive effect in

both sexes. Two main reasons may account for this discrepancy.

Firstly, Gupta et al. used a much smaller sample size: one group of

ten flies [34] compared with five groups of ten flies in the present

Spermidine and Lipid Metabolism
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study. Secondly, the percentage of old flies (30 days of age in that

study) reaching the threshold is much lower than the percentage

we report here at similar ages (between 4 and 5 weeks): around

45% in that report [34] versus approximately 80% in our study.

Given the higher sample size and the seemingly more optimal

physiological state of the flies used in this study, we rely on the

herein reported data in anticipation of further studies that may

resolve these varying results.

Age-dependent decline in motor performance has been

suggested to be linked to lipid metabolism [32], which in general

seems to be connected to the aging process [24–26,35,36].

Intriguingly, spermidine has been recently identified and charac-

terized as a key factor in the differentiation of preadipocytes into

mature adipocytes, and thus in the process of adipogenesis [37,38].

However, our results cannot answer whether changes in lipid level

and composition are the causes for spermidine-mediated locomo-

tor improvement. Locomotion is controlled by two main organs/

tissues: brain/neurons and muscles. On the one hand, it is known

that spermidine interacts with brain cells: It has anti-inflammatory

effects on microglia cells subjected to lipopolyssacharides exposure

[39] and spermidine levels are linked to memory [34] as well as to

disorders like Alzheimer’s disease [40]. It would thus be no

surprise that spermidine improves age-related locomotion by

altering neuronal cells or communication between neurons and

muscles. On the other hand, the effects of polyamines on muscle

function have been much less studied and have focused mainly on

smooth muscles, especially heart muscle cells. Anabolic agents

have been shown to increase both skeletal muscle mass and

Figure 1. Climbing activity. A) Percentage of flies able to climb 8 cm in 10 seconds in wild type and atg72/2 male flies fed 1 mM spermidine or
not. 3 independent replicates were monitored (50 flies in each group and replicate). B) Percentage of flies able to climb 8 cm in 10 seconds in wild
type and atg72/2 female flies fed 1 mM spermidine or not. 3 independent replicates were monitored (50 flies in each group and replicate). *p,0.05;
***p,0.001.
doi:10.1371/journal.pone.0102435.g001
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Figure 2. Food intake, glycogen and protein contents. A) Mean +/2 SEM of food intake in wild type flies of both sexes fed 1 mM spermidine
or not as measured by colorimetry (flies fed blue dye and dye intensity measured). 2 independent replicates were monitored (5 or 6 independent
samples for each group in each replicate). B, C) Mean +/2 SEM of glycogen (B) and protein (C) content in wild type or atg72/2 flies of both sexes fed
1 mM spermidine or not as measured by colorimetry (anthrone reaction for B and Bradford reaction for C). 3 independent replicates were monitored
(4 or 5 independent samples for each group in each replicate). **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0102435.g002
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polyamines levels, but a causal link between polyamines and

muscle growth has not been investigated [41]. Of note, the

initiation factor eIF5A, whose synthesis requires spermidine,

increases skeletal muscle stem cell differentiation [42]. Since

skeletal muscle is one of the tissues most prone to aging

(sarcopenia, [43]), it is also equally plausible that spermidine acts

directly or indirectly on muscles to improve locomotion in old age.

Our herein presented results suggest that at least some

spermidine-mediated beneficial effects might be, indeed, related

to lipid changes. For instance, we report that spermidine-fed flies

show increased TAG levels, which has often been associated with

increased life span [27,28,44,45]. In a similar manner, long-lived

Drosophila (upon overexpression of dSir2) show an up-regulation

in the expression of genes involved in fat metabolism [46] and, in

turn, increased expression of genes related to fatty acid b-oxidation
extends life span in flies [47]. In mice, the ability to maintain fat

content under dietary restriction (DR) correlates with life span

extension upon DR [26]. In light of our findings, we reanalysed

our previously published microarray data on the effect of

spermidine on gene expression in yeast, focusing on genes related

to lipid metabolism (data available at https://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-912/[48], previously pub-

lished in 13). In support of the present results, spermidine alters

the expression of many genes involved in lipid metabolism, some

being up-regulated (e,g., FAA1 and FAA4, long-chain fatty acyl-

CoA synthetases or SKN1, involved in sphingolipid biosynthesis)

and some being down-regulated (e.g., PIS1, a phosphatidylinositol

synthase or ISC1, inositol phosphosphingolipid phospholipase C),

showing that spermidine profoundly regulates the expression of

lipid-associated genes.

Whether spermidine-mediated TAG increase can be associated

to spermidine-induced life span extension is not clear, since

autophagy mutants, in which spermidine fails to trigger longevity

[13], display an even higher TAG-content. Thus, the observed

TAG increase could be the result of spermidine’s autophagy-

independent survival effects [15,20], or other molecular or

organismal consequences of spermidine treatment. Among the

diverse lipid species that play a role in metabolism, fatty acids

(FFAs), diacylglycerol (DAG), ceramide and cholesterol are

considered the ones bearing lipotoxic potential, whereas TAG is

generally thought as being a rather inert fat store. Of course,

massive TAG deposition in various tissues other than adipose

tissue (e.g. muscle, heart, liver) is considered lipotoxic [49], but

TAG primarily serves at detoxifying FFAs and DAG than being

toxic itself. Consequently, FFAs and DAG steady state levels are

very low and they only serve as metabolic intermediates. An

increase in TAG as a response to spermidine feeding could thus

mean that this detoxification capacity is enhanced. Possibly,

autophagy is directly involved in the process of lipid remodeling. A

connection of autophagy to lipid turnover has been previously

identified [50], but the extent of its interconnection might still be

underestimated. Thus, the actual relevance of the herein described

TAG-increase upon spermidine supplementation, i.e., an optimal

amount for improved fitness, will have to be clarified in future

studies.

Besides a higher TAG content, spermidine also altered TAG-

derived fatty acids towards a decreased ratio of saturation to

unsaturation. Moreover, spermidine triggered profound changes

in phospholipid profiles. Among these alterations, the increased

saturation of ceramide phosphoethanolamine (CPE - or ethanol-

amine phosphate-ceramide species) EPCd34 in male flies appears

most interesting. CPE is the main sphingolipid in invertebrates

[51] and involved in signalling as well as an essential membrane

component that provides scaffolding for organisation and stability.

In this light, the effects of spermidine on EPCd34 saturation in

males may affect signalling and membrane fluidity, which would

have important consequences for aging. For instance, mitochon-

drial membrane fluidity is a critical factor during aging and

neurodegeneration [52] and may modulate the response to high

oxidative stress deriving from molecular damage. Further exper-

iments will have to address whether there exists a causal

Figure 3. Triglyceride (TAG) content and ratio of saturated
over unsaturated fatty acids from TAG. A, B) Mean +/2 SEM of
triglyceride (TAG) content in wild type or atg72/2 flies of both sexes fed
1 mM spermidine or not, measured by thin layer chromatography (A)
with 3 independent replicates (4 independent samples for each group
in each replicate) or a colorimetric assay kit (B) with 3 independent
replicates monitored. *p,0.05; **p,0.01; ***p,0.001. C) Ratio (+/2
SEM) of saturated over unsaturated fatty acids from TAG in wild type
and atg72/2 flies fed 1 mM spermidine or not. 3 independent replicates
were monitored for each group.
doi:10.1371/journal.pone.0102435.g003
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relationship between changes in membrane fluidity and the

beneficial effects of spermidine. It must be noted that we could

not measure any changes in EPCd34 saturation of female flies.

However, this particular lipid species is much less abundant in

females and here a more fine-tuned modulation might occur that

could not be detected in this study. We found that spermidine has

qualitatively or quantitatively different effects on lipid levels and

composition in males and females. Indeed, male and female flies

exhibit different lipid profiles, especially differences in saturation

levels in various lipid species [53]. Given the different nature of

lipids, it is not surprising that spermidine may affect them

differently. This may partly explain the differences of sexes we

have observed on other variables upon spermidine treatment, e.g.,

life span [13], resistance to stress [15] or locomotor activity (this

study).

According to our results, the above delineated qualitative and

quantitative impact of spermidine on lipid levels and composition

partly seems to depend on autophagy. Autophagy deficiency

eliminates most of the effects of spermidine on lipid profiles or

even reverses them as with the saturation ratio of EPCd34. On the

other hand, lack of autophagy exacerbates spermidine-mediated

TAG-accumulation, which as discussed above rather suggests that

this effect is not associated to spermidine-mediated longevity,

which is mainly autophagy-dependent [13]. Nevertheless, some of

the other lipidomic changes (saturation ratio and fatty acid and

phospholipid profiles) observed in spermidine-treated wild type

flies and abrogated in autophagy-mutant animals might be linked

to spermidine-induced longevity since the modulation of lipid

metabolism has been recently connected to autophagy and

longevity [25,33]. Still, the general role of autophagy on lipid

metabolism remains a matter of debate as studies report

contrasting effects [50,54–56] and thus needs further investigation.

Besides these considerations, it should be noted that spermidine

seems to trigger metabolic effects beyond the lipid realm: for

instance, while spermidine-treatment did not lead to any changes

in protein or glycogen levels in wild type flies, autophagy-mutant

females showed a higher glycogen (Fig. 2B) and males a higher

protein level (Fig. 2C). This may point towards further metabolic

aspects, in which regulatory processes connecting autophagy and

spermidine are involved.

It will be interesting to see whether the herein described

modulation of lipid level and composition interacts with some of

the previously described mechanisms of spermidine-mediated

beneficial effects, including general hypoacetylation and phos-

pho-regulatory pathways [13,57,58] or PKB/Akt [59,60] and the

MAPK pathway [60–63]. In fact, flies knocked-down for Loco,

which regulates inhibitory G proteins that in turn regulate MAPK

[64,65], show increased life span and enhanced stress that is

associated with an increase in TAG levels compared with controls.

These phenotypes are similar to those observed in spermidine-

treated flies. Intriguingly, Loco knocked-down flies exhibit

decreased cAMP levels, which may represent a molecular link

connecting spermidine, MAPK and lipid metabolism and thus be

worthy of future studies.

In summary, we here uncover the far-reaching impact of

spermidine treatment on lipid levels and composition, which at

least in part seems to be autophagy-dependent. It is tempting to

theorize that these spermidine-induced changes might be involved

in the plethora of beneficial effects that spermidine exhibits during

stress and aging. Future studies will have to clarify the causality of

the herein described phenomenon in order to establish a further

branch of action in spermidine’s extensive impact on cellular

metabolism.

Materials and Methods

Flies Husbandry
The atg72/2 flies were kindly provided by T. Neufeld

(University of Minnesota) [66]. Flies were collected as virgins

and were kept unless otherwise stated on a standard cornmeal-

sugar-yeast diet at 25uC. Males and females were kept separately.

The food was changed twice a week and supplemented or not with

spermidine (Sigma, S4139) at a 1 mM final concentration.

Triglycerides content
The protocol for measurement of triglycerides content by thin

layer chromatography is as described in Al-Anzi et al. [67]. In

each vial, 20 flies were kept and given spermidine or not for one

week, after which the flies were then frozen in liquid nitrogen. Ten

flies were homogenized in 250 ml of a 2:1 chloroform (VWR,

100777C):methanol (Sigma, 34860) solution, and 2 ml were

spotted onto a TLC plate (VWR, 1.16835.0001). Each plate was

run in 4:1 hexane (Sigma, 270504):ethyl ether (Fisher Scientific,

D/2506/15) until the solvent reached almost the top of the plate.

The plate was then dipped in ceric ammonium molybdate (2.5 g

ammonium heptamolydbate tetrahydrate (Sigma, 431346), 1 g

cerium (IV) sulphate hydrate complex with sulfuric acid (Sigma,

423351), 90 ml water, 10 ml concentrated sulfuric acid (Sigma,

258105). The plates were then dried with a hair dryer and a

picture taken with an UVIdoc HD2 system (Uvitec). The area and

mean grey value of the triglycerides spots were measured with

ImageJ (http://rsbweb.nih.gov/ij/). Lard was run on each plate as

a control. Three independent replicates were performed, each

with four independent samples for each group. Triglycerides

content was also measured using a commercial colorimetric kit

(Cambridge Biosciences, Caymen triglyceride colorimetric assay

kit 10010303). In each vial, 20 flies were kept and given

spermidine or not for one week. Three independent samples were

prepared for each group consisting of 10 flies (fresh tissue), which

were put in a Eppendorf tube with 200 ml PBS and 750 ml of a 1:2
chloroform:methanol solution. The flies were homogenized and

then transferred into glass vials. The samples were then mixed for

15 minutes on a vortex. A further 250 ml of chloroform was added

and the samples vortexed, followed by 250 ml of water and

vortexed again. The mixture was made biphasic by centrifugation

for 5 min at room temperature at 2000 g. The lower phase was

transferred into new vials, dried under nitrogen and re-suspended

into 600 ml of a 1:2 chloroform:methanol solution. A portion

(200 ml) was transferred into a new vial and all vials were dried

under nitrogen. The lipids in the vials in which 200 ml were

transferred were re-suspended in 250 ml of the standard diluent

assay reagent and triglycerides measured following the manufac-

turer’s instructions. Three independent replicates were performed.

Electrospray-mass spectrometry analysis
Lipid extracts from the vials in which 400 ml were transferred,

were dissolved in 15 ml of choloroform:methanol (1:2) and 15 ml of
acetonitrile:iso-propanol:water (6:7:2) and analyzed with a Absceix

Figure 4. Phospholipid profile of males positive survey. A–D) Positive ion ES-MS survey scans (600–850 m/z) of total lipid extracts from male
wild type (A, atg7+/+) and atg72/2 (B) flies as well as from spermidine-fed male wild type (C, atg7+/+) and atg72/2 (D) flies. Arrows indicate significant
changes compared to normal flies untreated.
doi:10.1371/journal.pone.0102435.g004
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4000 QTrap, a triple quadrupole mass spectrometer equipped

with a nanoelectrospray source.

Samples were delivered using either thin-wall nanoflow

capillary tips or a Nanomate interface in direct infusion mode

(,125 nl/min). The lipid extracts were analyzed in both positive

and negative ion modes using a capillary voltage of 1.25 kV. MS/

MS scanning (daughter, precursor and neutral loss scans) were

performed using nitrogen as the collision gas with collision

energies between 35–90 V. Each spectrum encompasses at least

50 repetitive scans. Tandem mass spectra (MS/MS) were obtained

with collision energies as follows: 35–45 V, PC/SM in positive ion

mode, parent-ion scanning of m/z 184; 35–55 V, PI/IPC in

negative ion mode, parent-ion scanning of m/z 241; 35–65 V, PE

in negative ion mode, parent-ion scanning of m/z 196; 20–35 V,

PS in negative ion mode, neutral loss scanning of m/z 87; and 40–

90 V, for all glycerophospholipids (including PA, PG and

cardiolipin) detected by precursor scanning for m/z 153 in

negative ion mode. MS/MS daughter ion scanning was performed

with collision energies between 35–90 V.

Assignment of phospholipid species is based upon a combina-

tion of survey, daughter, precursor and neutral loss scans, as well

previous assignments [68]. The identity of phospholipid peaks was

verified using the LIPID MAPS: Nature Lipidomics Gateway

(www.lipidmaps.org).

Identification and Quantification of Fatty acids
Full characterization and quantification of the fatty acids was

conducted by conversion to the corresponding fatty acid methyl

esters (FAME) followed by GC-MS analysis. Triplicate lipid

extract aliquots were transferred to 2 ml glass vessels and spiked

with an internal standard fatty acid C17:0 (20 ml of 1 mM) and

dried under nitrogen. Fatty acids were released by base hydrolysis

using 500 ml of concentrated ammonia and 50% propan-1-ol (1:1),

followed by incubation for 5 h at 50uC.
After cooling the samples were evaporated to dryness with

nitrogen and dried twice more from 200 ml of methanol:water (1:1)

to remove all traces of ammonia. The protonated fatty acids were

now extracted by partitioning between 500 ml of 20 mM HCl and

500 ml of ether, the aqueous phase was re-extracted with fresh

ether (500 ml) and the combined ether phases dried under nitrogen

in a glass tube. The fatty acids were converted to methyl esters

(FAME), by adding diazomethane (3620 ml aliquots) to the dried

residue, while on ice. After 30 min the samples were allowed to

warm to RT and left to evaporate to dryness in a fume hood. The

FAME products were dissolved in 10–20 ml dichloromethane and

1–2 ml analyzed by GC-MS on a Agilent Technologies (GC-

6890N, MS detector-5973) with a ZB-5 column

(30 M625 mm625 mm, Phenomenex), with a temperature pro-

gram of at 70uC for 10 min followed by a gradient to 220uC at

5uC/min and held at 220uC for a further 15 min. Mass spectra

were acquired from 50–500 amu. The identity of FAMEs was

carried out by comparison of the retention time and fragmentation

pattern with a FAME standards (Larodan) and bacterial FAME

standards (Supelco).

Glycogen and Protein Contents
Glycogen content was measured as described in Van Handel

[69]. In each vial, 20 flies were kept and given spermidine or not

for one week after which flies were then frozen in liquid nitrogen.

Three flies were homogenized in 100 ml methanol and 50 ml of a
saturated sodium sulphate (Sigma, 238597) solution. Samples were

then centrifuged at 13000 g for 3 min and the supernatant

removed. The pellet was then gently dissolved in 1 ml ultra pure

water. Standards (10–50 mg glycogen, Sigma, G0885) were also

prepared in 1 ml water. One hundred ml of the samples, standards

or blank was then mixed gently with 3 ml of anthrone reagent

(dilute 760 ml sulfuric acid into 300 ml water, add 150 mg

anthrone (Sigma, 10740) to 100 ml of diluted sulfuric acid just

before use), heated at 90uC for 20 min then cooled on ice. A

portion of each sample (250 ml), standard and blank was

transferred into a 96-well plate and the absorbance read at

630 nm. Three independent replicates were performed, each with

4 or 5 independent samples for each group.

For protein content, in each vial 20 flies were kept and given

spermidine or not for one week after which flies were then frozen

in liquid nitrogen. Twenty five flies were homogenized in 100 ml
PBS and incubate at 70uC for 5 min. The samples were then

diluted 1:10 in PBS ad centrifuge at maximum speed for 3 min.

Standards (0.5–2 mg/ml) were prepared with albumin (VWR,

A16951). Five ml of homogenates, standards or blank were added

to 250 ml of Bradford reagent (Sigma, B6916) into a 96-well plate

and mix for 30 s. The absorbance was read at 570 nm after

leaving the plates 30 min at room temperature. Three indepen-

dent replicates were performed, each with 4 or 5 independent

samples for each group.

Food Intake
Food intake was measured as described in Libert et al. [23] in

normal flies. Twenty flies were kept in each vial and given

spermidine or not for one week. Then the flies were fed for 24 hrs

a 5% sugar/yeast diet mixed with 0.1% of blue dye (food colorant,

Dr Oetker). Flies were then frozen in liquid nitrogen. Five females

or 8 males were homogenized in 200 ml PBS and centrifuged at

8000 g for 10 minutes. A portion of 150 ml was transferred into a

96-well plate and absorbance was measured at 630 nm. Standards

were prepared from aliquots of dyed food to estimate the mass of

food consumed. Two independent replicates were performed, each

with 5 or 6 independent samples for each group.

Climbing Activity
Flies were kept in individual vials in groups of ten. Once a week,

the percentage of flies in each vial able to reach 8 cm in 10 s was

measured until no fly could reach the threshold. Three indepen-

dent replicates were performed. The experiment was performed in

both normal and autophagy-deficient flies.

Statistical Analyses
Data from glycogen and protein contents were expressed as

content per mg of fly. Triglycerides content by colorimetric assay

was expressed in microgram per fly. Data from triglycerides

content by thin layer chromatography were weighted according to

the weight of the flies in each sample. Data from food intake were

expressed as intake per fly. The intensity data from the

triglycerides content by thin layer chromatography were trans-

formed into the inverse of the mean grey value to obtain a higher

value for darker chromatography spots (the software ImageJ is set

up so the darker the spot, the lower the mean grey value). For all

Figure 5. Phospholipid profile of females positive survey. A–D) Positive ion ES-MS survey scans (600–1000 m/z) of total lipid extracts from
female wild type (A, atg7+/+) and atg72/2 (B) flies as well as from spermidine-fed female wild type (C, atg7+/+) and atg72/2 (D) flies. Arrows indicate
significant changes compared to normal flies untreated.
doi:10.1371/journal.pone.0102435.g005
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experiments, the effect of spermidine was tested using non-

parametric t-tests. Sex and genotype were analysed separately.

Supporting Information

Figure S1 Total fatty acid profile of males. A–D)
Identification and quantification of total fatty acid content from

wild-type and atg72/2 male flies. Fatty acids from male wild type

flies left untreated (A) or fed 1 mM spermidine (C) and male

atg72/2 mutant flies left untreated (B) or fed 1 mM spermidine

(D) were derivatised with diazomethane to the corresponding fatty

acid methyl esters (FAMEs), together with an internal standard

(C17:0). The samples were analyzed by GC-MS and the retention

times and fragmentation patterns, compared with FAME

standards. 3 independent replicates were monitored for each

group.

(TIF)

Figure S2 Total fatty acid profile of females. A–D)
Identification and quantification of total fatty acid content from

wild-type and atg72/2 female flies. Fatty acids from female wild

type flies left untreated (A) or fed 1 mM spermidine (C) and female

atg72/2 mutant flies left untreated (B) or fed 1 mM spermidine

(D) were derivatised with diazomethane to the corresponding fatty

acid methyl esters (FAMEs), together with an internal standard

(C17:0). The samples were analysed by GC-MS and the retention

times and fragmentation patterns, compared with FAME

standards. 3 independent replicates were monitored for each

group.

(TIF)

Figure S3 Phospholipid profile of males negative sur-
vey. A–D) Negative ion ES-MS survey scans (600–1000 m/z) of

total lipid extracts from male wild type (A, atg7+/+) and atg72/2

(B) flies as well as from spermidine-fed male wild type (C, atg7+/+)

and atg72/2 (D) flies.

(TIF)

Figure S4 Phospholipid profile of females negative
survey. A–D) Negative ion ES-MS survey scans (600–1000 m/

z) of total lipid extracts from female wild type (A, atg7+/+) and

atg72/2 (B) flies as well as from spermidine-fed female wild type

(C, atg7+/+) and atg72/2 (D) flies.

(TIF)

Table S1 Total fatty acids. Fatty acids levels in males and

females normal or autophagy-deficient, fed or not 1 mM

spermidine for one week. We observe for normal males a decline

in C14:1, C16:0, C18:0, C20:4 and C20:3 and an increase in

C18:2, C20:2 and C20:1 upon spermidine treatment. In normal

spermidine-fed females, we see a decline in C14:1, C14:0, C20:3

and C20:2 and an increase in C18:2. Lack of autophagy triggers a

decrease in the levels of fatty acids C16:0 and C18:0 in males. We

observe in atg72/2 males fed spermidine a decline in C18:2 and

C18:0 and an increase in C14:0, C18:3, C20:4, C20:3 and C20:2.

In spermidine-fed at72/2 females, we see a decline in C14:1,

C20:4, C20:3 and C20:2 and an increase in C18:2.

(DOCX)

Table S2 Lipid species identified by mass spectrome-
try.

(DOC)
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