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Abstract 

Goal-directed motor performance relies on the brain’s ability to distinguish between actions 

that lead to successful and unsuccessful outcomes. The basal ganglia (BG) and cerebellum (CBL) 

are integral to processing performance outcomes, yet their functional interactions remain 

underexplored. This study scanned participants' brains with functional magnetic imaging (fMRI) 

while they performed a skilled motor task for monetary rewards, where outcomes depended on 

their motor performance and also probabilistic events that were not contingent on their 

performance. We found successful motor outcomes increased activity in the ventral striatum (VS), 

a functional sub-region of the BG, whereas unsuccessful motor outcomes engaged the CBL. In 

contrast, for probabilistic outcomes unrelated to motor performance, the BG and CBL exhibited 

no differences in activity between successful and unsuccessful outcomes. Dynamic causal 

modeling revealed that VS-to-CBL connectivity was inhibitory following successful motor 

outcomes, suggesting that the VS may suppress CBL error processing for correct actions. 

Conversely, CBL-to-VS connectivity was inhibitory after unsuccessful motor outcomes, potentially 

preventing reinforcement of erroneous actions. Additionally, interindividual differences in task 

preference, assessed by having participants choose between performing the motor task or flipping 

a coin for monetary rewards, were related to inhibitory VS-CBL connectivity. These findings 

highlight a performance-mediated functional network between the VS and CBL, modulated by 

motivation and subjective preferences, supporting goal-directed behavior. 
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Introduction 

When performing a goal-directed action, it is critical to distinguish between successful and 

unsuccessful outcomes that lead to reward. Previous work has implicated the basal ganglia (BG) 

and the cerebellum (CBL) as two subcortical systems integral for dissociating between rewarded 

and unrewarded motor outcomes (1, 2). Despite extensive evidence showing direct anatomical 

projections between BG and CBL (2–4), there is a limited understanding of their functional 

connections and how they dissociate between rewarded and unrewarded motor outcomes.   

The basal ganglia are a group of subcortical nuclei that process motor commands and reward 

information. A major functional sub-region of the basal ganglia is the ventral striatum (VS), which 

encompasses the nucleus accumbens and ventral parts of the putamen and is thought to be a 

limbic-motor interface that integrates motor and motivational signals to drive performance (5–13). 

Experimental findings point to the role of the BG in reward-based reinforcement learning (14–16), 

where actions that lead to reward are reinforced to increase the chances of future reward. In 

contrast, the CBL has been associated with error-based learning, adjusting motor commands 

following erroneous actions (1, 17–19).   

While it has been suggested that the VS and CBL engage independent processes for encoding 

rewarding and erroneous movement outcomes (1, 14, 17–21), recent experiments have shown 

potential communication between these regions. Anatomical tracing studies in nonhuman 

primates have identified direct bilateral connections between the basal ganglia and the CBL (2–

4). It has also been found that the CBL encodes reward signals (22–25) tied to motor and non-

motor outcomes and sends direct projections to the ventral tegmental area (26), a key input region 

for the VS. Human neuroimaging studies have also illustrated functional co-activation between 

the striatum and the CBL during motor and reinforcement learning (27–29). Despite converging 

evidence suggesting anatomical and functional links between the striatum and CBL, how they 

communicate when processing rewarded versus unrewarded outcomes is unclear.   

Given these previous findings (3, 4, 25–28, 30), and theoretical accounts of the links between 

VS and CBL (1, 2, 20), we hypothesized that these regions exhibit distinct roles in processing 

motor outcomes and shared roles in evaluating probabilistic, non-motor outcomes. Specifically, 

the VS may reinforce rewarded motor actions for motor outcomes, while the CBL processes 

erroneous, unrewarded motor actions, with connectivity between these regions moderated by 

motor performance. This interaction may facilitate the integration of reward- and error-based 

information to optimize motor control. For non-motor outcomes in which an individual does not 

have direct agency over an outcome, we hypothesized that both the VS and CBL encode reward 
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signals in the absence of action-related errors, reflecting their broader roles in evaluating 

environmental outcomes that do not involve motor correction.   

To test our hypothesis, we designed a skilled motor task where outcomes both depended on 

participants’ motor performance and events in an external probabilistic environment. Participants 

performed this task while their brain activity was scanned using functional magnetic resonance 

imaging (fMRI). In the task, participants controlled a cursor to jump through a target visualized as 

a variable-sized passage in a wall (Figure 1A). A successful motor outcome occurred when the 

cursor passed through the passage, while an unsuccessful motor outcome occurred if the cursor 

hit the wall during the jump (Figure 1B). An unsuccessful motor outcome resulted in immediate 

trial failure. Following a successful motor outcome, the task introduced an additional probabilistic 

event: the floor beneath the cursor’s landing point could break with varying probabilities. 

Importantly, this probabilistic outcome was independent of the participant’s motor performance 

(i.e., participants had no control over whether the floor broke). A successful probabilistic outcome 

occurred if the floor remained stable, whereas an unsuccessful one occurred if the floor broke. 

Thus, a successful trial required that two conditions were met: (1) the participant successfully 

controlled the cursor through the target (i.e., successful motor outcome), and (2) the floor 

remained stable after landing (i.e., successful probabilistic outcome) (Figure 1B). This task 

design allowed us to investigate how the ventral striatum VS and CBL respond to motor outcomes 

(Motor Outcome, Figure 1A) and how they encode probabilistic, non-motor outcomes 

(Probabilistic Outcome, Figure 1A).  
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Figure 1: Task Design

(A) Reward-based motor task. At the beginning of a trial, participants were presented with the target size 
(Task Presentation) and the probability of the floor remaining unbroken (Floor Presentation). Participants 
then performed the motor task by guiding the red cursor through the target (passage in the wall) and landing 
on the other side (Motor Performance). If the cursor hit any part of the wall, the trial failed (Unsucessful 
Motor Outcome, upper panel). The probabilistic outcome was revealed after the successful completion of 
the motor task (Successful Motor Outcome, lower panel). If the floor broke, the trial resulted in a failure, and 
the cursor fell off the environment (Unsuccessful Probabilistic Outcome, upper panel). If the floor remained 
unbroken, the trial resulted in a success (Successful Probabilistic Outcome, lower panel). 

(B) Trajectory data for an exemplary participant across the three target sizes. Blue lines indicate successful 
trials, and red lines indicate failed trials.  

(C) Group performance (n = 28) for the three difficulty levels in the motor task. Error bars represent SEM.
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Results  

We first examined differences in ventral striatum (VS) and cerebellum (CBL) activity during 

motor and probabilistic outcomes. Significant effects were observed in VS and CBL activity 

following successful and unsuccessful motor outcomes (Figure 2), as detailed in the following 

paragraphs. However, no significant differences were detected in VS or CBL activity between 

successful and unsuccessful probabilistic outcomes. Given this null result for probabilistic 

outcomes, we focused subsequent analyses on the effects observed in VS and CBL activity 

during motor outcomes. We present the findings from our motor outcome analyses, followed by 

a brief description of the probabilistic outcome results for completeness. 

The VS and Cerebellum encode successful and unsuccessful motor outcomes  

We examined individuals' performance at different difficulty levels during the incentivized 

skilled motor task. Participants’ mean success rate for the easy, medium, and hard difficulties was 

approximately 30%, 60%, and 80%, respectively (Figure 1B, C), which matched the thresholded 

target probabilities (i.e., 30%, 60%, and 90%). Participants’ motor performance was significantly 

modulated by target size (mixed-effects linear model, t(1202) = 31.2, p < 0.001) (Supplementary 
Figure 2). While session number was a significant predictor of motor performance (mixed-effects 

linear model, t(1202) = 4.632, p < 0.001), these effects were small (~2% increase per session) 

(Supplementary Figure 2). The probabilistic floor outcome was not a significant predictor of 

performance (t(1202) = 0.6273, p = 0.53), indicating that participants’ performance in the motor task 

was not influenced by the probability of the floor remaining unbroken following successful motor 

execution (Supplementary Figure 2B). These results illustrate that participants’ performance 

remained relatively stable throughout the incentivized phase of the experiment and that the 

thresholded target size matched the intended performance probabilities. This allowed us to 

independently investigate activity in the VS and CBL relative to motor and probabilistic outcomes, 

controlling for potential learning effects and cross-talk between participants’ motor performance 

and probabilistic, non-motor outcomes.  

We compared conditions following successful and unsuccessful motor outcomes (Motor 

Outcome, Figure 1A) to determine how the ventral striatum (VS) and cerebellum (CBL) 

respond.  Activity in the bilateral VS was more active following successful compared to 

unsuccessful motor outcomes (MNI Coordinate Peak = [-10, 6, -12], p < 0.05 FWE corrected; Figure 
2A, C), and activity in both the anterior (MNI Coordinate Peak = [24, -36, -22], p < 0.05 FWE corrected) 

and posterior (MNI Coordinate Peak = [-40, -70, -22], p < 0.05 FWE corrected) regions of the CBL was 
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more active following unsuccessful compared to successful motor outcomes (Figure 2B, C). At 

an uncorrected threshold of p < 0.001, activity in the anterior CBL spanned lobules V-VI, and 

activity in the posterior CBL spanned Crus I and II (Supplementary Table 5). These results align 

with our initial hypothesis and previous studies suggesting that the VS encodes successful motor 

outcomes (1, 14, 27), whereas the cerebellum is sensitive to motor errors in unsuccessful motor 

outcomes (1, 17–19).   

Next, we examined differences in activity in VS and CBL during successful and unsuccessful 

probabilistic outcomes (Probabilistic Outcome, Figure 1A). Based on our initial hypothesis, we 

expected both the VS and CBL to encode reward signals, exhibiting greater activity during 

successful probabilistic outcomes than unsuccessful ones. However, at the specified statistical 

threshold of p < 0.05 FWE corrected, we did not observe any significant differences in activity between 

successful and unsuccessful probabilistic outcomes in either the VS or the CBL. With this in mind, 

we focused our subsequent analyses on the time of motor outcome. 

While the VS and CBL have been considered distinct subcortical systems with separate roles 

in encoding reward and error-based outcomes, recent studies have revealed direct anatomical 

connections between these regions (2–4, 30). To investigate how signals in VS and CBL at the 

time of motor outcome are functionally related, we examined how the relationship between activity 

in these regions was influenced by expectations of motor performance (i.e., difficulty level) 

(Figure 2D). We observed significant positive correlations between the VS and CBL parameter 

estimates, comparing successful and unsuccessful motor outcomes for the hard (30%, Kendall’s 

τ = 0.33, p = 0.014) and medium (60%, Kendall’s τ = 0.42, p = 0.0015) target sizes. A non-

significant but positive trend was observed for the easy target size (90%, Kendall’s τ = 0.13, p = 

0.36), which could be attributed to the high success rate and reduced sampling of unsuccessful 

motor outcomes. Together, these results indicate that individuals with greater VS activity following 

successful motor outcomes had reduced CBL activity following unsuccessful motor outcomes. 

This supports the idea that activity in the VS and cerebellum have complementary roles in 

representing motor outcomes.    
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Figure 2: The VS and Cerebellum encode motor performance
 
(A) Activity in the ventral striatum was significantly increased in successful compared to unsuccessful trials 
at the time of motor outcome (MNI Coordinate Peak = [-10, 6, -12], p < 0.05 FWE corrected). Contrast is 
displayed at p < 0.001 uncorrected.
(B) Activity in the cerebellum (CBL) was significantly increased in unsuccessful compared to successful 
trials at the time of motor outcome in both anterior (MNI Coordinate Peak = [24, -36, -22], p < 0.05 FWE 
corrected) and posterior (MNI Coordinate Peak = [-40, -70, -22], p < 0.05 FWE corrected) regions.  Contrast 
is displayed on a cerebellar flat map (74) at p < 0.001 uncorrected. 
(C) Parameter estimates for contrasts of successful versus unsuccessful motor outcomes for the VS and 
CBL. Each point represents a single participant. The solid vertical lines represent the mean parameter
estimate for the group.  
(D) VS and CBL activity at the time of motor outcome, for the three difficulty levels, across participants. We 
correlated the VS, and CBL parameter estimates for the Success – Failure contrast. There was a significant 
positive correlation between the VS and CBL activity for the hard (30%, Kendall’s τ = 0.33, p = 0.014) and 
medium (60%, Kendall’s τ = 0.42, p = 0.0015) target sizes. There was a non-significant positive trend 
observed for the easy target size (90%, Kendall’s τ = 0.13, p < 0.36). These results indicate that for individu-
als with greater VS activity following successful motor performance, the CBL exhibited reduced activity 
following failed motor performance. 
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Successful and unsuccessful motor outcomes modulate VS-CBL connectivity 

To further test our hypothesis that the VS and CBL communicate to encode motor outcomes, 

we constructed a dynamic causal model (DCM) to assess specific connectivity profiles between 

these two regions. We specified a deterministic, bilinear DCM to infer directed influences between 

the VS and CBL (i.e., effective connectivity) and the modulation of this connectivity by successful 

or unsuccessful motor outcomes (Figure 3A). Importantly, the sign of the connections indicates 

whether a region’s activity is enhanced (positive/excitatory) or suppressed (negative/inhibitory) 

due to hypothesized direct experimental inputs or inputs from other brain regions (31–33). We 

constructed a fully connected DCM for each participant that enabled all motor outcomes (Motor 

Success & Motor Failure) to drive activity in VS and CBL and modulate connections between the 

VS and CBL. We then used parametric empirical Bayes (PEB) analyses to formally test how 

successful or unsuccessful motor outcomes could influence the connectivity between and within 

the VS and CBL. This process involves comparing the full model to reduced candidate models 

with certain combinations of connections (see methods).  

We first investigated whether successful and unsuccessful motor outcomes directly influenced 

activity in the VS and CBL by defining four candidate models (Supplementary Figure 3A). Model 

1 (full model) enabled all motor outcomes to drive VS and CBL activity, whereas Model 2 (null 

model) did not allow any driving inputs. Model 3 was designed based on previous studies showing 

structural and functional connections between VS and CBL and our GLM results, where the VS 

would receive direct inputs following successful motor outcomes (representative of reward 

receipt), and the CBL would receive direct inputs following unsuccessful motor outcomes 

(representative of motor error). Finally, Model 4 was specified as the inverse of Model 3. A 

Bayesian model comparison revealed that Model 1 best explained the influence of motor 

outcomes on activity in VS and CBL (90%, Supplementary Figure 3B). To further examine the 

connections of each parameter, we computed the Bayesian Model Average (BMA), which 

averaged parameters from different models weighted by each model’s posterior probabilities (34, 

35). We observed positive evidence for each direct input (Supplementary Figure 3C), suggesting 

that successful and unsuccessful motor outcomes directly modulate the VS and CBL. Based on 

the model comparison and BMA results, we decided to enable motor outcomes to modulate both 

the VS and CBL when investigating the modulatory connections between the regions.   

To test how successful and unsuccessful motor outcomes modulate VS-CBL connectivity, we 

constructed four candidate models (Figure 3B) that varied in their modulatory connections. Model 

1 (full model) enabled all modulatory connections, whereas Model 2 (null model) disabled all 
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modulatory connections.  Model 3 specified that successful motor outcomes modulate the 

connectivity from the VS to the CBL, and unsuccessful motor outcomes modulate the connectivity 

from the CBL to the VS. Finally, Model 4 was created as the inverse of Model 3. A Bayesian model 

comparison revealed that Model 3 (88%) best explained how motor outcomes modulated the VS-

CBL connectivity (Figure 3C). By performing BMA, we observed very strong evidence of inhibition 

from the VS to the CBL (-0.026, p > 0.99) following successful motor outcomes and from the CBL 

to the VS (-1.336, p > 0.99) following unsuccessful motor outcomes (Figure 3D). These results 

are consistent with the idea that CBL encodes motor errors, which may inhibit reinforcing VS 

activity during unsuccessful motor outcomes. In the case of successful performance, VS may 

inhibit CB activity since motor error signals are not necessary to update actions that lead to a 

successful motor outcome.  
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Figure 3: Performance outcomes modulate VS-CBL connectivity

(A) Regions of interest and modulating conditions for the DCM analysis. Regions were the VS 
(red) and CBL (blue), and the modulating conditions were successful (MS, green) and unsuccessful 
(MF, orange) motor outcomes. VS activity was extracted using an a priori mask and the CBL activity was 
extracted using a leave-one-subject-out (LOSO) ROI based on the contrast in Figure 2C. 
(B) DCM model specification. We specified four potential models that varied according to how successful 
(MS) and unsuccessful (MF) motor outcomes modulated VS-CBL effective connectivity (black arrows).
(C) A Bayesian model comparison showed that Model 3 was the winning model (88%) for describing the 
commonalities (average connectivity) across participants’ VS-CBL connectivity. 
(D) Bayesian Model Average (BMA) of Parametric Empirical Bayes (PEB) parameters highlighting the 
impact of successful and failed motor outcomes on VS-CBL connectivity. The VS inhibits CBL following 
successful motor outcomes, whereas the CBL inhibits VS following unsuccessful motor outcomes. 
**indicates that PEB parameters have very strong positive Bayesian evidence (posterior probability > 0.99).  
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VS-CBL connectivity predicts participants’ subjective preferences for motor 
performance 

Recent studies have indicated that prospective incentives influence motor performance, and 

differences in connectivity within the motor system capture the degree to which individuals 

respond to such incentives (9, 12, 36, 37). In particular, the VS is considered a limbic-motor 

interface that integrates motoric signals with various factors, such as motivation or subjective 

preferences for potential rewards (5–13). As the CBL is another key region for updating and 

processing motor signals, we investigated whether differences in motor performance and 

subjective preferences for the motor task influenced VS-CBL connectivity. We measured 

participants’ motor performance by calculating their mean success rate in the motor task, and 

inferred participants’ subjective preferences for performing the motor task by asking them to 

choose between performing the motor task or accepting a probabilistic outcome (i.e., coin flip) for 

potential rewards (Figure 4A, see methods). We defined participants’ subjective preference for 

the motor task as the mean acceptance rate for choosing the motor task over the probabilistic 

outcome.   

We first investigated which of the four candidate models (Figure 3B) captured the modulation 

of VS-CBL by motor outcomes best explained interindividual differences in mean motor 

performance. We found that no model explained interindividual differences in mean motor 

performance better than chance, with model 2 (null model) showing the highest probability (44%) 

(Supplementary Figure 4A). In addition, there was no positive evidence of mean motor 

performance modulating the effect of motor outcomes on VS-CBL connectivity (Supplementary 
Figure 4B). Thus, there was insufficient evidence to suggest that participants’ performance in the 

motor task was influenced by interindividual differences in VS-CBL connectivity.    

Next, we investigated which of the four candidate models best explained interindividual 

differences in subjective preference for the motor task. Model 3 (85%) best explained 

interindividual differences in subjective preferences. By performing BMA, we observed very strong 

evidence that individuals with greater subjective preferences for performing the motor task 

showed greater inhibitory connections from the VS to CBL (-11.66, p > 0.99) following successful 

motor outcomes and greater inhibitory connections from the CBL to VS (-1.963, p > 0.99) following 

unsuccessful motor outcomes (Figure 4C). Overall, our results indicate that the VS and CBL 

inhibit one another following successful and unsuccessful performance. In addition, these 

inhibitory connections are strengthened for individuals who display a greater preference for 

performing the motor task for potential reward. These results suggest that the dissociable roles 
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of VS and CBL in processing incentivized performance, and motor errors are further amplified in 

individuals with greater preferences for performing motor tasks.   

To verify and validate the associations between the VS-CBL connectivity and subjective 

preferences, we performed a series of leave-one-out (LOO) cross-validation analyses. In these 

analyses, a PEB model was fitted to all but one participant, and the covariate (i.e., subjective 

preference for performing the motor task) for that left-out participant was predicted. Importantly, 

we repeated this procedure twice where the PEB parameter used to predict the covariate was 1) 

the modulation from VS to CBL following successful motor outcomes (Figure 4D, left) and 2), the 

modulation from CBL to VS following unsuccessful motor outcomes (Figure 4E, left). We 

observed significant correlations between participants’ predicted and actual subjective 

preferences when the predicted values were estimated using the modulation from VS to CBL 

following successful motor outcomes (r(26) = 0.47, p = 0.006, Figure 4D, right), but not when using 

the modulation from CBL to VS following unsuccessful motor outcomes (r(26) = 0.18, p = 0.18, 

Figure 4E, right). From these results, the effect size associated with the inhibitory modulation 

from VS to CBL following successful motor outcomes predicted individuals’ subjective 

preferences for the motor task.  
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Figure 4: VS-CBL connectivity predicts participants’ preference for 
performing the motor task

(A) Prior to performing the reward-based motor task in the scanner, participants made a series of choices 
to either perform motor tasks of varying difficulty or accept potential probabilistic outcomes (weighted coin 
flip) for a potential monetary reward of $25. The target size associated with the motor task was sampled 
from the three target sizes used in the reward-based motor task (Figure 1 B, C). The coin flip had a proba-
bility  of success varying from 0.10 to 0.90. Participants’ subjective preference was computed as the mean
acceptance rate of the motor task over the coin flip.  
(B) A Bayesian model comparison showed that Model 3 was the winning model (85% for describing the 
effect of participants’ subjective preference for performing the motor task on their VS-CBL connectivity.
(C) Bayesian Model Average of Parametric Empirical Bayes (PEB) parameters illustrating the impact of 
participants’ subjective preference for performing the motor task on VS-CBL connectivity. Individuals with a 
greater preference to perform the task exhibited increased inhibitory connections from the VS to the CBL 
following successful motor outcomes and from the CBL to the VS following failed motor outcomes. ** 
indicates that PEB parameters have very strong positive Bayesian evidence (posterior probability > 0.99).  
(D) Out-of-sample estimation of participants’ subjective preferences for performing the task using the 
degree of inhibition of the CBL by the VS following successful motor outcomes (PEB parameter, Left). 
(E) Out-of-sample estimation of participants’ subjective preference using the degree of inhibition of the VS
 by the CBL following failed motor outcomes (PEB parameter, Left). 
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Motor outcomes modulate VS-CBL connectivity for both the sensorimotor and 
cognitive CBL. 

The CBL activations we see in our GLM analysis (Figure 2C), and the CBL ROI we specified 

for the first DCM analysis spanned both the anterior and posterior regions of the CBL. The anterior 

CBL (lobules I-V) and lobule VI are thought to process sensorimotor information (38–40), while 

the posterior CBL (predominantly Crus I & II) is involved in more cognitive processes (39–41) 

such as working memory (42), social cognition (43), and reward encoding (22–25). Thus, we 

investigated whether the VS-CBL connectivity during motor outcomes differed between the 

sensorimotor (Mtr. CBL) and cognitive (Cog. CBL) cerebellar regions. We first specified ROIs 

corresponding to the Mtr. and Cog. CBL using the leave-one-subject-out (LOSO) approach (see 
methods). Based on our GLM results (Figure 2B), the Mtr. CBL ROI included activations from 

lobules IV-VI while the Cog. CBL ROI included activations from Crus I and II (Figure 5A). We 

then specified a deterministic, bilinear DCM that resembled the initial DCM analysis (Figure 3), 

with the key difference that the model allowed for directed influences between the VS-Mtr. CBL 

and VS-Cog. CBL connections (Figure 5). In addition, we switched off the connections between 

the Mtr. and Cog. CBL as we were primarily interested in connections between the VS and CBL.  

Next, we defined a set of candidate models to identify the best explanation for connectivity 

between the VS and the Mtr./Cog. CBL following motor outcomes. The first factor varied how 

successful or unsuccessful motor outcomes modulated VS-CBL connectivity (Figure 5B, up). The 

second factor varied in terms of whether motor outcomes modulated the VS-Mtr. CBL connectivity 

or VS-Cog. CBL connectivity (Figure 5B, down). Each factor consisted of three levels, and with 

the addition of a null model (no modulations), we specified a total of 3 x 3 + 1 = 10 candidate 

models (Supplementary Figure 5). 

We found that no model explained the VS-Mtr./Cog. CBL connectivity with greater than 50% 

of the model evidence, with Model 1 (full model with all connections, 44%) and Model 9 (38%) 

having the two greatest probabilities (Figure 5C). Model 9 allowed VS to modulate both the Mtr. 

and Cog. CBL following successful motor outcomes and for the Mtr./Cog. CBL to modulate the 

VS following unsuccessful motor outcomes (Figure 5D). As there was no definitive winning model, 

we performed BMA to obtain averaged estimates of each connection. We found very strong 

evidence of the VS inhibiting the Mtr. CBL (-0.66, p > 0.99) following successful motor outcomes 

and the Mtr. CBL inhibiting the VS (-0.83, p > 0.99) following unsuccessful motor outcomes 

(Figure 5D, Supplementary Table 2). Interestingly, we found positive evidence of the VS exciting 

the Cog. CBL (0.26, p > 0.73) following successful motor outcomes and the Cog. CBL inhibiting 
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the VS (-0.43, p > 0.73) following unsuccessful motor outcomes (Figure 5D, Supplementary 
Table 2). These results suggest that the VS-Mtr. CBL primarily drives the inhibitory connections 

between the VS and CBL following motor outcomes. In addition, our results indicate that the VS 

could differentially communicate with the Mtr. and Cog. CBL.   

Finally, we investigated whether interindividual differences in subjective preferences for the 

motor task can be explained by VS-Mtr. CBL or VS-Cog. CBL connectivity. By repeating the 

analysis in Figure 4 with this second DCM (see methods), we found evidence suggesting that 

individuals with greater subjective preference for the motor task showed greater inhibitory 

connections from the VS to Cog. CBL (-4.86, p > 0.73) following successful motor outcomes and 

greater inhibitory connections from the Cog. CBL to VS (-5.091, p > 0.73) following unsuccessful 

motor outcomes (Supplementary Table 2). Importantly, we failed to find a significant relationship 

between subjective preferences and modulation of VS-Mtr. CBL connectivity following motor 

outcomes (p < 0.73, Supplementary Table 2). By performing the LOO cross-validation analysis, 

we found that predicted subjective preferences for the motor task estimated using the modulation 

from VS to Cog. CBL (following successful motor outcomes) were significantly correlated with 

individuals’ actual subjective preferences (r(26) = 0.32, p = 0.047, Supplementary Figure 6B). 

Thus, modulation from VS to Cog. CBL following successful motor outcomes significantly 

predicted individuals’ subjective preferences for the motor task. These findings suggest that there 

is a transition from excitation of the Cog. CBL by the VS to inhibition following successful motor 

outcomes with increased subjective preferences. Thus, subjective preferences could modulate 

the VS-Cog. CBL connectivity, which aligns with recent studies suggesting that the Cog. CBL 

plays a role in reward processing (22–26).   
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Figure 5: Motor outcomes modulates VS-CBL connectivity for both the 
sensorimotor and cognitive CBL.

(A) Regions of interest and modulating conditions for the DCM analysis were specified in a similar fashion 
as the original DCM analysis (Figure 3A), with the exception that the CBL was divided into the sensorimotor 
(Mtr. CBL) and cognitive (Cog. CBL) subregions. The Mtr. CBL consisted of activations in lobules IV, V and 
VI, whereas the Cog. CBL consisted of Crus I and II. 
(B) Candidate PEB models were specified according to the two factors. The open blue-yellow circles 
indicate that factor 1 (modulation by motor success/failure) did not consider the specificity of the Mtr. 
(yellow) or Cog. CBL (blue). The filled green-orange circle indicates Factor 2 (modulation of Mtr. or Cog. 
CBL) did not consider the modulation of regions due to task success (green) or failure (orange). 
(C) A Bayesian model comparison showed that models 1 (44%) and 9 (38%) best described the 
commonalities (average connectivity) across participants’ VS-Mtr. CBL and VS-Cog. CBL connectivity.
(D) The VS inhibits Mtr. CBL and excites Cog. CBL following successful motor outcomes. The Mtr. and Cog. 
CBL inhibits VS following failed motor outcomes. ** PEB parameters showing very strong positive Bayesian 
evidence (posterior probability > 0.99).  * indicates that PEB parameters show positive Bayesian evidence 
(posterior probability > 0.73).  
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Discussion 

Although many studies have shown anatomical and functional coupling between the VS and 

CBL (2–4, 28, 29, 44, 45), and both regions play integral roles in motor learning and reward 

processing (1, 5, 9, 14, 24, 25, 46, 47), the functional mechanisms underlying how the VS and 

CBL interact when tying motor actions with rewarded and unrewarded outcomes are unclear. 

Here, we demonstrate that the VS and CBL dissociate between successful and unsuccessful 

motor outcomes and play complementary roles in reward-based error encoding. Importantly, we 

find that the VS inhibits the CBL following successful motor outcomes, whereas the CBL inhibits 

the VS following unsuccessful motor outcomes. These modulatory connections are stronger for 

individuals with a stronger preference for performing the motor task. Our findings go beyond 

previous studies that have primarily focused on anatomical connections or isolated roles of CBL 

or VS in reward and motor performance - we show that the VS forms different modulatory 

connections with the sensorimotor and cognitive CBL when integrating motor outcomes with 

reward information. 

Our findings support the idea that the VS and CBL underly the roles of reward-based 

reinforcement and error-driven processes, respectively (1, 20). We observe stronger activity in 

the VS following successful versus unsuccessful motor outcomes, which aligns with several 

studies showing that the striatum encodes rewarding outcomes (5, 14, 16, 27, 48, 49). On the 

other hand, the CBL was more active for unsuccessful versus successful motor outcomes, 

consistent with the role of CBL in error processing (1, 17, 18). Prior studies have found neural 

correlates of error processing in the CBL in reaching movement tasks (50–52). However, these 

studies mainly showed activations in the anterior, sensorimotor CBL regions and did not find 

significant activations in the posterior regions such as Crus I & II. Unlike these previous studies, 

our motor task was tied to prospective monetary rewards, which may explain why we observe 

activations in Crus I & II as recent studies have suggested the involvement of these regions in 

reward processing (22–25).  

Our data provides new insight into the role of the connectivity between the VS and CBL 

following motor outcomes. Across individuals, we observe that those with more ventral striatal 

sensitivity to reward (successful motor outcomes) exhibit reduced error-related (unsuccessful 

motor outcomes) signals in the CBL and vice versa, suggesting inhibitory VS-CBL connections. 

This hypothesis was supported in our DCM analysis, where the VS inhibited the CBL following 

successful motor outcomes, and the CBL inhibited the VS following unsuccessful motor outcomes. 

These findings suggest that following successful motor outcomes, the VS could inform the CBL 
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not to process error signals; while following unsuccessful motor outcomes, the CBL could inform 

the VS not to reinforce erroneous motor actions. Our model comparison focusing on direct inputs 

revealed that the best model enabled successful and unsuccessful motor outcomes to modulate 

both VS and CBL. Thus, while the VS and CBL could potentially process all motor outcomes, 

communication between both regions may enable them to distinguish between rewarding and 

erroneous performance outcomes. Prior studies have shown co-activation of the VS and CBL 

during various motor learning paradigms (28, 29, 45, 53, 54). Specifically, Tzvi et al., 2015 

observed increased inhibition between the cerebellum and putamen in a motor learning task 

during pre- and post-sleep phases. Our work builds on these previous findings by proposing a 

potential mechanism by which the VS and CBL could communicate to integrate motor 

consequences with rewarding or non-rewarding outcomes.  

Recent animal studies have identified functional and anatomical connections between the VS 

and CBL. Various studies have illustrated that the deep cerebellar nuclei, the output nuclei of the 

CBL, project to the VS through the ventral tegmental area (VTA) (26, 55, 56) or the intralaminar 

thalamus (2, 44, 56). Notably, electrical micro-stimulation of the deep cerebellar nuclei (DCN) 

elicited both excitatory and inhibitory modulation in the VS (56). In addition, food consumption in 

mice increases excitatory drive from the DCN to the VTA, suppressing VS activity through 

prolonged increases in basal dopamine concentrations, leading to decreased valuation of food 

and feelings of satiety (55). Thus, the CBL can flexibly modulate neuronal firing in the VS as a 

function of the motivational state. Our results advance this view by providing an additional 

functional basis by which the CBL could inhibit the VS following erroneous motor outcomes. While 

it is currently unclear whether there are direct anatomical projections from the VS to the CBL, 

anatomical tracing studies have found excitatory projections from the subthalamic nucleus (STN), 

a major output region of the basal ganglia, to the CBL (3, 44). The STN is part of the indirect 

pathway in the BG and is thought to suppress movements (57). Following rewarding outcomes, 

the indirect pathway is suppressed to enable the reinforcement of the movement/action that led 

to the reward, which would result in the inhibition of the STN and, subsequently, the CBL (58). 

Thus, the STN could serve as a potential mediator that enables the VS to inform the CBL not to 

update the action that led to a rewarding outcome. Future studies could be designed to extend 

our causal models to include other subregions in the basal ganglia, such as the STN, to explore 

these connections further. 

We observed that the VS-CBL connectivity following motor outcomes was amplified for 

individuals more willing to perform a motor task. Greater preferences for performing the motor 
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task resulted in stronger inhibition from the VS to CBL following successful motor outcomes and 

from the CBL to VS following unsuccessful motor outcomes. Individuals with greater preferences 

for performing motor tasks could place more emphasis on processing the outcomes of their motor 

actions, which may be explained by a stronger need to dissociate between successful and 

unsuccessful motor outcomes. Our findings are consistent with previous work showing that 

subjective preferences and motivation can influence connectivity within the brain’s motor system. 

Previous work from our group has shown alterations in functional coupling between VS and motor 

cortical regions when individuals perform motor tasks for large prospective gains or losses (12). 

In addition, individuals with greater sensitivity to monetary losses over gains (i.e., loss aversion) 

exhibited increased motor cortical excitability for prospective gains in an incentive-based motor 

task (36). Furthermore, the CBL has been shown to encode movement parameters that are 

modulated by changes in motivation (45). In this context, our current results provide direct 

evidence that VS-CBL connectivity involves more than sensorimotor processing and is a potential 

means for the brain to integrate motoric outputs with motivational reward information. 

We propose that the VS communicates differently with the sensorimotor and cognitive CBL. 

We found that the connection between the VS and the sensorimotor CBL primarily drove the 

inhibitory VS-CBL connectivity following motor outcomes. The sensorimotor cerebellum, 

consisting of the anterior cerebellar lobule (lobules I-V) and lobule VI, processes movement 

information and has shown functional connections with the sensorimotor network (39, 40). 

Following an erroneous movement, the DCN, the output of the CBL, sends projections to the 

sensorimotor network to adjust motor commands (17–19). In addition to these projections, the 

sensorimotor CBL could also update the VS, ensuring that it does not reinforce erroneous motor 

actions. We observe a transition from excitation of the cognitive CBL by the VS to inhibition 

following successful motor outcomes for individuals with greater subjective preferences. Recent 

studies have shown that separate populations within granule and Purkinje cells of the posterior 

cerebellar regions (Lobule VI, Crus I & II) encode rewarding or unrewarding outcomes following 

a motor action (23, 46, 59). Wagner et al., 2017 have shown in rodents that throughout learning, 

there is an increase in the proportion of granule cells that respond to unrewarded outcomes while 

there is a decrease in the proportion of granule cells that respond to rewarded outcomes (59). As 

the granule cells comprise the input layer of the CBL, the VS may target distinct populations of 

granule cells, thereby enabling them to encode reward information. Purkinje cells, which receive 

input from granule cells have also shown similar dissociation between encoding rewarding and 

unrewarding outcomes (23, 46), suggesting that a hierarchical organization could exist within the 

CBL that could be influenced by inputs from the VS. Importantly, how the VS interacts with these 
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distinct populations within the cognitive cerebellum could explain interindividual differences in 

subjective preferences that we observe in our participants.  

Our results implicate VS-CBL connectivity as a critical interface that ties motoric outputs with 

reward information and begins to shed light on potential mechanisms by which motoric and 

motivational deficits may be impacted in various patient groups. Patients with Parkinson’s disease 

(PD) have degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), 

and the resulting depletion of dopamine in the striatum leads to changes in basal ganglia activity 

and various motor deficits (60). It has been suggested that changes in basal ganglia activity lead 

to cerebellar hyperactivity in PD (61–64). Moreover, deep brain stimulation (DBS) and inhibiting 

STN output (STN-DBS) reduce cerebellar hyperactivity and relieve motor symptoms in PD 

patients (61, 65, 66). However, STN-DBS has also been shown to increase impulsivity, anhedonia, 

apathy, and other motivation-related deficits (67, 68), consistent with the idea that BG/cerebellar 

connectivity is critical not just for sensorimotor control but also for motivational processes such 

as reward processing. In addition, impulsivity is observed in patients with obsessive-compulsive 

disorder (OCD) and has been associated with increased whole-brain connectivity between the 

striatum and cerebellar cortex (69). Our results further support these findings by suggesting that 

within healthy participants, the degree to which the VS interacts with cognitive cerebellar domains 

such as Crus I & II can be explained by an individual’s motivational state. Overall, the functional 

basis through which the BG and CBL take turns initiating communication with one another could 

prove crucial for understanding the motoric and motivational changes in neuropsychiatric and 

healthy populations. 
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Materials and Methods: 

Experimental setup 

The game environment and behavioral data were presented and recorded using custom 

MATLAB scripts (http://www.mathworks.com) with the PsychToolBox library (Brainard, 1997). A 

projector placed at the back of the room displayed visual stimuli onto a rear-projection screen, 

which participants viewed through a 45-degree inclined mirror positioned above their heads.  

For recording responses during the motor and behavioral choice tasks, participants used an 

MRI-compatible response box (Cedrus RB-830, Cedrus Corp., San Pedro, CA) with two 

horizontally aligned buttons, held in their right hand. 

Experimental Procedures 

Participants. All participants were right-handed and were prescreened to exclude those with 

any history of neurological or psychiatric illnesses. This study was approved by the Institutional 

Review Board at the Johns Hopkins School of Medicine, and all participants provided informed 

consent. 

Thirty participants initially participated in the experiment. Two subjects displayed significant 

motion inside the scanner (exceeding 3 mm a given axis) and were excluded from the group level 

analysis.  

The final analysis included N = 28 participants in total (mean age, 24.9 years; age range, 20-

37 years; 16 females) 

Motor Task.  Prior to the experiment, participants were informed that they would receive a 

fixed show-up fee of $50. It was made clear that this fee did not depend on performance or 

behavior over the course of the experiment. The entire experiment occurred inside the fMRI 

scanner. However, participants were only scanned during the testing phase. 

Visually, the task environment consisted of a horizontal line representing the floor and a vertical 

line with a middle gap representing a passage through the wall. The goal of the task was to control 

a cursor (red square) to jump through the target (i.e., passage in the wall). Hitting any part of the 

vertical wall during the jump resulted in failure. Each trial was initiated with a red square appearing 

to the left of wall and automatically moving horizontally to the right. Pressing the right button on 

the response box caused the cursor to jump, and letting go of the button caused the cursor to fall 

to the floor. As a result, the height of the jump was determined by the duration of the button press. 

To successfully complete the task, participants had to learn the precise timing and duration of the 
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button press. The vertical trajectory of the cursor during the button press was determined using a 

sigmoid function to simulate acceleration induced by gravity during the jump.  

The experiment began with participants completing 50 training trials under a fixed target size 

to become accustomed to the game environment and the button controls. The thresholding phase 

of the experiment was followed immediately after the training trials had been completed. The 

thresholding phase mirrored the training trials, except that every trial had varying target sizes on 

the wall, which affected the difficulty of completing the jump. There were 8 difficulty levels, with 

target sizes ranging from 26.5 to 52.4 mm (100 – 198 pixels). Each difficulty was presented ten 

times, which resulted in 80 trials in total for the thresholding phase.   

Immediately after the thresholding phase was completed, a Weibull cumulative distribution 

function was used to model each participant’s performance and generate three difficulties (Easy, 

Medium, Hard), which would be used as the target sizes for the testing phase. Specifically, the 

psychometric model consisted of the following equation:  

𝑃𝑃 =  1 − 𝑒𝑒−�
𝑥𝑥
𝜆𝜆�

𝑘𝑘

 (1) 

P is the mean success rate for trials with target size x, λ and k being the scale and shape 

parameters, respectively. The Levenberg-Marquardt nonlinear least squares algorithm was used 

to estimate the λ and k parameters. Based on the fitted model, the three target sizes for the main 

experiment were obtained by setting P equal to 0.9, 0.6 and 0.3, allowing difficulty levels to be 

controlled across participants.  

During the testing phase, participants were scanned with fMRI while controlling the cursor 

through the target for potential reward. The testing phase differed from the training and 

thresholding phases in that following a successful jump, there was a probability of the floor 

breaking, which resulted in the cursor falling off the game environment. The thickness of the floor 

line indicated the probability of the floor breaking. A trial was considered successful only when 

the floor did not break. In addition, participants were presented with information regarding the 

probability of the floor remaining unbroken, which was either 30%, 60% or 90%, and the target 

size, which would be one of the three target sizes obtained from the thresholding phase.  

At the start of each trial, information about the target size and floor thickness was presented 

sequentially in a pseudorandom order (Figure 1A) (e.g. medium difficulty presented, followed by 

floor presentation with 30% of not breaking, each with jittered duration of 2–4 s). Then, participants 

performed the motor task (~1 s duration) and were shown the outcome of their performance 

(jittered duration, 2-4 s). If the task was unsuccessful, the word “Failure” appeared below the floor 
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with a red color. On the other hand, successfully completing the motor task led to the outcome of 

the floor being revealed (jittered duration, 2-4 s). The green “Success” text appeared on the 

screen if the floor did not break. If the floor did break, the right side of the floor environment 

disappeared, the cursor fell off the game environment, and the red “Failure” text appeared on the 

screen. Accounting for the order of floor/task difficulty presentation, there were 18 different trial 

combinations. Each of the 5 sessions had 36 trials (~10 minutes), where each trial combination 

was shown twice in a randomized order, which resulted in a total of 180 trials. Participants were 

informed that at the end of the experiment, one of the trials would be chosen randomly and would 

be paid $25 if the trial was a success.  

Decision-Making Task. This task was performed after completing the thresholding phase and 

before starting the testing phase. Participants made choices (4 s limit) to either perform a motor 

task of varying difficulty (i.e., target size) or accept probabilistic outcomes that were not associated 

with task performance (i.e., monetary gamble) (Figure 4A). The target sizes were sampled from 

those generated in the thresholding phase (Easy – 30%, Medium – 60%, and Hard-90% difficulty) 

while the monetary gamble had success probability ranging from 0.10 to 0.90 (in increments of 

0.10). There were 135 trials where each of the 27 different pairs of decision trials were shown five 

times in randomized order. Participants were told that at the end of the experiment, one of the 

trials would be chosen randomly, and they would then have to play out the trial depending on their 

response. If the participant chose the task, they received $25 upon successfully completing the 

motor task. The success criteria were the same as the training and thresholding phases. If the 

participant accepted the probabilistic outcome, they received $25 when the monetary gamble was 

successful. The monetary gamble was simulated from a Bernoulli distribution with a probability of 

success, which was set according to the trial. 

MRI protocol. The MRI scanning sessions were conducted on a 3 Tesla Philips Achieva 

Quasar X-series MRI scanner equipped with a radio frequency coil. High-resolution structural 

images were acquired using a standard MPRAGE pulse sequence, covering the entire brain at a 

resolution of 1 mm × 1 mm × 1 mm. Functional images were collected at a 30° angle from the 

anterior commissure-posterior commissure (AC-PC) axis, with 48 slices acquired at a resolution 

of 1.87 mm × 1.87 mm × 2 mm to ensure full brain coverage. An echo-planar imaging (FE EPI) 

pulse sequence was applied (TR = 2800 ms, TE = 30 ms, FOV = 240, flip angle = 70°). 

As physiological variables have been shown to introduce confounds in fMRI data (50, 70–72), 

cardiac and respiration rates were obtained during the functional scans using a peripheral pulse 

unit and a respiratory belt with a sampling rate of 496 Hz (wireless). The physiological recordings 
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were then processed using model-based noise correction via the PhysIO Toolbox (72), which 

provided an output of multiple regressor matrix containing explanatory components of 

physiological noise. To account for significant head motion, scans with root mean square of 

translational or rotational head motion exceeding 0.5 mm/deg were included as nuisance 

regressors in subsequent analyses.  

Data Analysis 

Behavioral Performance Analysis. To measure changes in performance across the training 

session, the training trials (n = 50) for each participant were binned into 5 blocks where each block 

consisted of ten trials. The mean success rate for each block was then obtained for each 

participant. A one-way ANOVA was used to determine whether there was significant difference in 

success rate across the training blocks. To measure changes in performance across the testing 

session, the mean success rate in the motor task for each imaging session was obtained for each 

participant. A one-way ANOVA was used to determine whether there was significant difference in 

success rate across the sessions. Individual p-values for each comparison for both testing and 

training sessions were corrected for multiple comparisons using Tukey’s honestly significant 

difference procedure. To identify variables that influenced performance in the motor task, a 

generalized linear mixed-effects model was used to predict trial success (binary variable 

indicating 1 if success, 0 otherwise in the motor task) as a function of target size, the probability 

of floor remaining unbroken and session number. The distribution of trial success was specified 

as a binomial distribution and the model was estimated via maximum likelihood through Laplace 

approximation.  

Image Analysis. The SPM12 software package was used to analyze the fMRI Data (Wellcome 

Trust Centre for Neuroimaging, UCL, London, UK). A slice-timing correction was applied to the 

functional images to adjust for the fact that different slices within each image were acquired at 

slightly different time points. Images were corrected for participant motion by registering all 

images to the first image, spatially transformed to match a standard echo-planar imaging template 

brain, and smoothed using a 3D Gaussian kernel (5 mm FWHM) to account for anatomical 

differences between participants. The final resolution of the preprocessed images had voxel 

dimensions of 2.00 mm x 2.00mm x 2.00mm. This set of data was then analyzed statistically. 

General Linear Model. The general linear model (GLM) was used to generate voxel-wise 

statistical parametric maps from the fMRI data. We created GLMs that included conditions 

relevant to the skilled motor task shown in Figure 1A. The outline of the GLM that was constructed 

for each participant is shown below: 
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Model  

1. The presentation of the target size (Task Presentation, 2-4 seconds)  
  

2. The presentation of the floor probability (Floor Presentation, 2-4 seconds)  
 

3. Motor task (Task Performance, 1 second)  
 

4. Successful Motor Outcomes (Motor Success, 2-4 seconds) 
 

5. Unsuccessful Motor Outcomes (Motor Failure, 2-4 seconds) 
 

6. Successful Probabilistic Outcomes (2-4 seconds) 
 

7. Unsuccessful Probabilistic Outcomes (2-4 seconds) 
 

Separating conditions for successful and failed task performance outcomes allowed us to 

contrast the two conditions as shown in Figure 2. All conditions were modeled as blocks except 

for the motor task, which was modeled as event regressors. In addition to the main effects, each 

1st level GLM model shown above contained a multiple-regressor-matrix obtained from the 

PhysIO Toolbox, which contained regressors for the movement, cardiac, respiratory and motion 

outlier nuisance regressors.  

Region of Interest Analysis and Statistical Tests. To create a ROI for the VS, we identified 

peak coordinates from a meta-analysis (73) which identified brain regions involved with 

processing of monetary gains and losses (left VS MNI coordinates (x,y,z) = [12,10,-4]; right VS 

MNI coordinates (x,y,z) = [12,10,-4]). The bilateral VS mask was thus obtained by first creating 6 

mm spheres around the left and right VS coordinates and combining the spheres using MarsBaR 

(74). To generate an ROI for the CBL, we utilized the leave-one-subject-out (LOSO) approach 

(75). We defined CBL ROIs by taking a conjunction between an anatomical CBL mask and a 

group-level Motor Failure / Motor Success contrast (Figure 2C) from all but one participant set at 

p < 0.001. The overlap between these two masks would then be used as the CBL ROI for the left-

out participant for the correlation and the first DCM analysis.  

To obtain separate ROIs for the Mtr. and Cog. CBL, we repeated the same LOSO approach 

but specified an anatomical Mtr. CBL mask (including lobules I-VI) and Cog. CBL mask (Crus I & 

II) when taking the conjunction between the Motor Failure / Motor Success contrast.  

To display whole-brain contrasts and report CBL activations, we used a threshold of p < 0.001 

with a 20-voxel extent threshold. The Cerebellar activations are displayed on a cerebellar flat map 
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using the SUIT toolbox (76). Statistical inference was performed within the SPM framework using 

family-wise error correction for the whole brain. To report the correlations between the VS and 

CBL parameter estimates, we report Kendall’s rank correlation due to the non-normal distribution 

of VS and CBL parameter estimates.  

Dynamic Casual Modeling (DCM). To investigate the connectivity between the VS and CBL 

underlying task performance outcomes, we constructed deterministic bilinear DCMs. DCM utilizes 

forward modeling to represent how experimental manipulations lead to change in neural activity 

through a bilinear differential equation in the form of:  

𝑧̇𝑧 = �𝐴𝐴 +  �𝑢𝑢𝑘𝑘𝐵𝐵𝑘𝑘
𝐾𝐾

𝑘𝑘=1

� 𝑧𝑧 + 𝐶𝐶𝐶𝐶 (2) 

where 𝑧̇𝑧 represents the change in neural activity per unit time (i.e., derivative of neural activity 

for each region), u represents experimental conditions (i.e., successful or failed task performance 

outcomes), A is a matrix that defines the intrinsic coupling (average effective connectivity) 

between regions, B is a matrix specifying the modulation of effective connectivity due to 

experimental condition k = 1…K, and C is a matrix encoding the sensitivity of each region to 

driving input from experimental condition k = 1…K. Each connection thus represents a change in 

neural activity due to directed signals (A, C matrix), or the modulation of the directed connection 

(B matrix).   

We followed the procedures described in Zeidman et al. (32, 33) for specifying DCM across 

participants. For our first DCM analysis, we assigned input nodes as the VS and CBL, and both 

regions were set to be driven by experimental conditions including both successful and failed 

motor outcomes (i.e., C matrix). We enabled full bidirectional connections between the VS and 

CBL (i.e., A matrix). For the second DCM analysis, we assigned input nodes as the VS, Mtr. CBL, 

and the Cog. CBL. All three regions were set to be driven by successful and failed task 

performance outcomes (i.e., C matrix). We enabled full bidirectional connections (i.e., A matrix) 

between all regions except for connections between the Mtr. and Cog. CBL. For both DCM 

analyses, we were specifically interested in parameters modeling the modulation in the VS-CBL 

connectivity following successful and failed task performance (i.e., B matrix). 

Parametric Empirical Bayes (PEB). The PEB approach uses hierarchical Bayesian modeling 

where each parameter (i.e., the estimate of connection strength) is treated as a random effect. All 

participants are assumed to have the same model architecture but varying strengths of 

connections within the group (33). Thus, one full DCM is specified per participant, enabling all 
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connections, and a series of candidate models to be specified that test different connectivity 

hypotheses. The model evidence (Free energy) is then computed for each model, which is the 

trade-off between the accuracy (i.e., ability to predict observed BOLD activity) and complexity 

(KL-divergence between estimated parameter and the original priors) (32, 77). We can then 

perform a Bayesian model comparison where the model evidence is compared across all models. 

This process results in a posterior probability, corresponding to how much each model contributes 

to the overall model evidence and, thus, provides the best explanation of the observed data. To 

obtain PEB estimates of individual parameters (i.e., estimation of connection strength), we 

performed Bayesian Model Average (BMA) where the average of the parameters form different 

models are weighted by the models’ posterior probabilities (34, 35).  We present and interpret the 

results of PEB parameters with positive (p > 0.73) and very strong (p > 0.99) Bayesian evidence. 

We followed the procedures described in Zeidman et al. (40) for performing PEB estimation. 

For our first DCM analysis, the PEB design matrix included 1) a constant term, 2) mean-centered 

mean performance, and 3) mean-centered subjective preference. Due to the mean-centering, the 

estimated parameters represent the mean coupling strength between the VS and CBL following 

task performance and the additive effect of the covariates (mean performance & subjective 

preferences) on this common effect. For the second DCM analysis, our PEB design matrix 

included only the constant and mean-centered subjective preference as regressors, as we were 

interested in supplementing the findings observed in our first DCM analysis. Following PEB 

estimation, we utilized leave-one-out (LOO) cross-validation using the observed effects of interest 

(i.e., modulation from VS to CBL following successful task performance) to estimate the out-of-

sample subjective preference for each participant. The LOO approach provides a statistically 

robust approach to assess the validity of associations (33). We report the Pearson correlation 

coefficient (R) and the p-value for right-tailed correlation between the model estimated and 

observed subjective preferences.  
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