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Epigenetic deregulation of gene function has been strongly implicated in carcinogenesis
and is one of the mechanisms contributing to the development of lung cancer. The inher-
ent reversibility of epigenetic alterations makes them viable therapeutic targets. Here,
we review the therapeutic implications of epigenetic changes in lung cancer, and recent
advances in therapeutic strategies targeting DNA methylation and histone acetylation.
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INTRODUCTION
Recent conceptual and technological advances have expanded our
collective understanding of epigenetics and its role in the develop-
ment and, potentially, the treatment of cancer. Epigenetics broadly
refers to the study of alterations in gene expression caused by
mechanisms other than direct changes in DNA sequence. Epige-
netic processes include DNA methylation, histone modifications,
chromatin organization, microRNAs (miRNAs), and other non-
coding RNAs, and the cellular complement of transcription factors
and other gene-regulatory DNA-binding proteins. Because epige-
netic properties are retained during cell division, they play a key
role in determining and maintaining cell phenotype. The most
developed areas of epigenetics are the study of DNA methylation,
histone modifications, and miRNA expression. Deregulation of
epigenetic processes has been strongly implicated in all types of
cancer including lung cancer, causing silencing of tumor suppres-
sor genes, and activation of tumor promoting genes (Baylin and
Jones, 2011). In addition, the interplay between epigenetic and
genetic deregulation can contribute to cancer development and
progression, for example, through the mutation of epigenetic reg-
ulator genes or the epigenetic deregulation of genes involved in
DNA repair (Shen and Laird, 2013). Epigenetic changes have also
been associated with resistance to traditional cytotoxic therapy
(Sharma et al., 2010).

Epigenetic modifications are potentially reversible, and are
therefore being aggressively pursued as therapeutic targets.
This strategy has proven successful in several types of malig-
nancy; decitabine, and 5-azacytidine are hypomethylating agents
approved for the treatment of myelodysplastic syndromes
(Daskalakis et al., 2002; Yang et al., 2010) and romidepsin is a his-
tone deacetylase (HDAC) inhibitor approved in peripheral T-cell
lymphoma (Coiffier et al., 2012). Currently, epigenetic therapies
are being investigated for the treatment of many solid tumor types.

Here, we review some of the recent advances in epigenetic ther-
apy for lung cancer. Due to space limitations, cited references on
general concepts will largely be restricted to review manuscripts.

DNA METHYLATION
DNA methylation consists of the covalent addition of a methyl
group to a cytosine residue in the context of a cytosine-phosphate-
guanine (CpG) dinucleotide (Jones, 2012). Regions of DNA with a
high frequency of CpG dinucleotides are termed CpG islands, and
are found in the promoters of about 40% of human genes. Methy-
lation of these CpG islands by DNA methyltransferases (DNMTs)
can lead to gene silencing. It has become clear that methylation of
specific promoters and the resulting impact on transcription play
a pivotal role in carcinogenesis (Laird, 2005; Kanai and Hirohashi,
2007). The association between promoter methylation and lung
cancer has been widely explored. A classic example is the silenc-
ing of cell cycle control gene p16/INK4a, first described in 1995
(Merlo et al., 1995). Methylation of p16 was also assayed in surgical
lung cancer specimens and detected at high rates in tumor tissue
compared to normal lung (Kim et al., 2001; Zöchbauer-Muller
et al., 2001). Interestingly, promoter methylation for p16 has been
associated with tobacco use (Belinsky et al., 1998; Belinsky et al.,
2002; Yanagawa et al., 2002), the greatest risk factor for developing
lung cancer. Methylation of p16 and many other genes in lung
cancer is now widely documented and genome-wide profiling has
revealed subgroups of tumors with specific patterns (Tsou et al.,
2007; Anglim et al., 2008; Carvalho et al., 2012; Kwon et al., 2012;
Lockwood et al., 2012; Selamat et al., 2012; Shinjo et al., 2012;
Walter et al., 2012; Wilkerson et al., 2012; Heller et al., 2013; Park
et al., 2013).

Such specific DNA methylation patterns can provide useful
information not only about the molecular basis of lung cancer
development, but also for patient prognosis. The investigation of
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this goldmine of epigenetic data has only just begun. Early candi-
date gene studies using a nested case-control analysis of patients
with stage I non-small cell lung cancer (NSCLC), showed that
the methylation status of four genes (p16, CDH13, RASSF1A, and
APC) correlated with recurrence (Brock et al., 2008). Importantly,
methylation profiles may be equally useful as predictive markers. It
was recently shown that the DNA methylation pattern in NSCLC
cell lines and tissue samples correlates with phenotypic subsets
associated with sensitivity to epidermal growth factor receptor
(EGFR) inhibitors (Walter et al., 2012). Similarly, the methylation
of IGFBP-3 has been correlated with cisplatin resistance in NSCLC
specimens (Ibanez de Caceres et al., 2010).

Besides its promise as a prognostic and predictive biomarker,
DNA methylation has also emerged as a promising therapeutic tar-
get in lung cancer, primarily through the use of DNMT inhibitors.
5-azacytidine is a DNMT inhibitor activated by phosphorylation
and incorporated into DNA and RNA. Because the enzyme is
unable to methylate the base, it becomes trapped on the DNA and
is targeted for proteasomal degradation, globally reducing DNA
methylation levels (Jones et al., 1983; Schermelleh et al., 2005). In
model systems, 5-azacytidine demonstrates intriguing antitumor
activity. For example, in the H1299 lung cancer cell line, sev-
eral genes are silenced by methylation, including p16, FHIT, and
WWOX. When these cells were then implanted into nude mice,
treatment with 5-azacytidine restored expression of these proteins
and suppressed tumor growth (Cantor et al., 2006). Decitabine,
the 2′deoxy version of 5-azacytidine, inhibits DNA methylation
in a manner similar to 5-azacytidine but is not incorporated into
RNA. In vitro, decitabine was shown to reverse the inactivation of
p16 in lung cancer cell lines by removing the transcriptional block
of p16 methylation (Merlo et al., 1995). Hypomethylating agents
thus have sound rationale for use in the treatment of lung cancer.

Unfortunately, clinical studies employing hypomethylating agents
alone have been somewhat disappointing (Table 1).

A phase I/II study of decitabine included 15 patients with
untreated NSCLC, nine of whom were assessable (Momparler
et al., 1997). Decitabine was administered as a continuous infu-
sion over 8 h, repeated every 5–7 weeks. None of the patients with
NSCLC had an objective response to therapy. Interestingly, four
NSCLC patients had disease stabilization for at least 6 months
and three patients had a survival of at least 15 months. Long-
term follow-up of this study described one patient who survived
for 81 months after treatment (Momparler and Ayoub, 2001). A
phase I study of decitabine given as a continuous 72 h infusion
every 34 days was later explored, seeking to maximize tumor sup-
pressor gene expression in patients with thoracic malignancies
(Schrump et al., 2006). While this study included a variety of
tumors, there were 22 patients with lung cancer (19 with NSCLC
and three with small cell lung cancer, SCLC), 16 of which were
evaluable. Tolerability varied with the number of prior treatment
regimens. Patients who had received two or fewer prior regi-
mens had a maximum tolerated dose of 75 mg/m2 while those
who had received three or more prior regimens had a maxi-
mum tolerated dose of 60 mg/m2. Again, there were no objective
responses. Three patients with lung cancer had disease stabiliza-
tion and for two patients, this control lasted for 10 months or
more. Among patients who underwent repeated biopsies, one
third displayed a molecular response with re-induction of NY-
ESO-1, MAGE-3, or p16 but again, none of these patients experi-
enced a radiographic response to therapy. One reason why DNA
methylation inhibitors alone may not be fully effective is that
epigenetic control is complex and is mediated by many other
molecular mechanisms, including the modification of histone
tails.

Table 1 | Summary of selected epigenetic clinical trials in lung cancer.

Treatment agents Reference Evaluable

patients

Responses

n (%)

SD, n (%) TTP, (mos.) OS, (mos.)

HYPOMETHYLATING AGENT

Decitabine Momparler et al. (1997) 9 0 (0) 4 (44) N/R 6.7

Decitabine Schrump et al. (2006) 16 0 (0) 3 (19) N/R N/R

HDAC INHIBITOR

Entinostat Ryan et al. (2005) 4 0 (0) 2 (50) N/R N/R

Vorinostat Vansteenkiste et al. (2008) 8 0 (0) 6 (75) 1.2 N/R

Vorinostat Traynor et al. (2009) 14 0 (0) 8 (57) 2.3 7.1

Romidepsin Otterson et al. (2010) 16 0 (0) 3 (19) 1.8 6.0

CHEMOTHERAPY COMBINATIONS

Vorinostat, carboplatin, paclitaxel Ramalingam et al. (2010) 62 21 (34) N/R 6.0 13.0

Entinostat, erlotinib Witta et al. (2012) 67 2 (3) N/R 1.97 8.9

EPIGENETIC COMBINATIONS

Decitabine, valproic acid Chu et al. (2013) 8 0 (0) N/R 1.6 N/R

5-aza, sodium phenylbutyrate Lin et al. (2009) 1 0 (0) 0 (0) N/R N/R

Hydralazine, magnesium valproate Candelaria et al. (2007) 1 0 (0) 1 (100) 2.5 8.3

Decitabine, vorinostat Stathis et al. (2011) 2 0 (0) N/R N/R N/R

5-aza, entinostat Juergens et al. (2011) 34 2 (6) 10 (29) 1.9 6.4

5-aza, 5-azacytidine; N/R, not reported; OS, overall survival; SD, stable disease; TTP, time to progression.
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HISTONE MODIFICATIONS
Two molecules each of histones 2A, 2B, 3, and 4 make up nucle-
osomes, around which much of the genome is wound. The N-
terminal tails of the histones protrude from nucleosomes and post-
translational modifications of these tails determine the accessibil-
ity of the DNA to transcription factors and other DNA-binding
proteins (Strahl and Allis, 2000). One of the best-studied modi-
fications, acetylation of lysine residues, reduces the tails’ positive
charge and thereby their interaction with the negatively charged
DNA backbone, relaxing the DNA (Clayton et al., 2006). This
increases the availability of DNA to transcription factors and
other regulatory proteins and generally increases expression. Con-
versely, deacetylation, mediated by HDACs generally leads to gene
silencing. HDACs are frequently overexpressed in cancer cells,
prompting deacetylation of histones and gene silencing. HDAC
inhibitors, which restore the open conformation and tend to
restore gene transcription, are highly promising anti-cancer ther-
apeutics (Dokmanovic et al., 2007; Barneda-Zahonero and Parra,
2012).

In preclinical models, HDAC inhibition demonstrates promis-
ing antitumor activity. Several HDAC inhibitors (including
LBH589, scriptaid, valproic acid, apicidin, OSU-HDAC-44, and
MS-275) induce cell death in NSCLC cell lines (Brazelle et al.,
2010; Tang et al., 2010). The phytochemical honokiol, an HDAC
inhibitor, reduced the viability of several NSCLC cell lines, induc-
ing a predictable G1 phase arrest, and inhibited the growth of
lung tumor xenografts (Singh et al., 2013). Clinical experience
(Table 1) includes a phase I study of the HDAC inhibitor entino-
stat in 31 patients with solid tumors that included four patients
with NSCLC (Ryan et al., 2005). While no responses were seen,
two of these patients had stabilization of their disease, one lasting
9 months. A multi-histology phase II study exploring three differ-
ent doses included 10 patients with relapsed or refractory NSCLC
(Vansteenkiste et al., 2008). Three patients received 200 mg twice
daily, three received 300 mg twice daily and four received 400 mg
twice daily. Two patients were not evaluable and in the remaining
eight patients, there were no objective responses. The best response
was stable disease for six patients and progressive disease for the
other two. Another phase II study was conducted by the Wisconsin
Oncology Network and included 16 patients with NSCLC (Traynor
et al., 2009). This study explored a 400 mg daily dose of vorinostat
given continuously in 21 day cycles. Two patients were inevaluable
due to progressive disease during the first cycle. In the 14 evaluable
patients, there were no objective responses. The best response was
stable disease for eight patients. Interestingly, one patient had an
uncharacteristically long duration of stable disease, with time to
progression noted at 19.4 months.

Many studies, however, feature an HDAC inhibitor in com-
bination with other treatments (Table 1). In preclinical mod-
els, HDAC inhibitors are synergistic with cytotoxic agents such
as taxanes and platinum agents (Luchenko et al., 2011; Zuco
et al., 2011). A phase II study in NSCLC of carboplatin and
paclitaxel with randomization to the HDAC inhibitor vorinostat
demonstrated a superior response rate (34.0 vs. 12.5%, p = 0.02)
in the vorinostat arm with a trend toward an improvement in
survival (Ramalingam et al., 2010). Combinations with targeted
agents have been explored. In lung cancer cell lines resistant to

EGFR tyrosine kinase inhibitors, treatment with trichostatin A,
an HDAC inhibitor, can sensitize cells to therapy (Sharma et al.,
2010). Clinically, however, the combination of entinostat and
erlotinib was not superior to erlotinib alone in an unselected
NSCLC population, though there were subsets of patients, includ-
ing those with high E-cadherin expression, who may have derived
greater benefit (Witta et al., 2012). Preclinical studies suggested
that in NSCLC cell lines, one mechanism of resistance to vorinos-
tat monotherapy is an increase in transcriptional activity of NF-kB
involving the Akt pathway (Mayo et al., 2003). Inhibition of NF-
kB in vitro sensitized NSCLC cells to apoptosis following exposure
to HDAC inhibitors. This strategy was explored in a neoadjuvant
phase I study combining vorinostat and bortezomib, a protea-
some inhibitor (Jones et al., 2012). The maximum tolerated dose
was established as bortezomib 1.3 mg/m2 weekly and vorinostat
300 mg twice daily. While no radiographic responses were noted
in this relatively brief window-of-opportunity study, encouraging
correlates were described including necrosis in 30% of tumors and
a decrease in serum 20S proteasome activity in 50% of patients.
In addition, comparison of gene expression arrays from samples
before and after treatment detected unique patterns of upregu-
lation and downregulation that may provide mechanistic insight
into response and potentially guide therapeutic use. Future studies
are under consideration.

COMBINATION EPIGENETIC THERAPY
Given their distinct roles in epigenetic control, there is ratio-
nale to combine inhibitors of DNA demethylation and histone
deacetylation to potentiate gene reactivation. This approach has
demonstrated promising synergy in preclinical models. Hyper-
methylation silences MLH1, TIMP3, and CDKN2A in colorectal
cancer cells. Treatment with either the HDAC inhibitor tricho-
statin A or the hypomethylating agent decitabine alone does not
restore transcription of these genes (Cameron et al., 1999) but
the combination of these two agents reversed silencing and led
to significant re-expression. In lung cancer cell lines, the HDAC
inhibitor depsipeptide acetylates histones H3 and H4 (Zhu et al.,
2001) but this effect is significantly magnified when cells are pre-
treated with decitabine. The combination of the DNMT inhibitor
5-azacytidine and the HDAC inhibitor entinostat inhibited growth
of K-ras/p53 mutant lung adenocarcinoma in an orthotopic lung
cancer mouse model (Belinsky et al., 2011). Epigenetic analy-
sis demonstrated demethylation across hundreds of genes and
re-expression of several critical genes including p16.

These preclinical data prompted several trials employing this
strategy (Table 1). A phase I study combined decitabine and
valproic acid in eight patients with NSCLC (Chu et al., 2013).
No responses were seen with this combination. However, dosing
and compliance were challenging due to neurotoxicity attrib-
uted to valproic acid. A phase I study of 5-azacytidine and the
HDAC inhibitor sodium phenylbutyrate was much better toler-
ated, though the sole patient with lung cancer did not respond
to therapy (Lin et al., 2009). A phase II study of the weak DNA
hypomethylating agent hydralazine and the HDAC inhibitor mag-
nesium valproate was also well tolerated (Candelaria et al., 2007).
While there were patients who experienced a response with this
combination, the sole patient with lung cancer only achieved

www.frontiersin.org May 2013 | Volume 3 | Article 135 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Thoracic_Oncology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Liu et al. Epigenetic therapy in lung cancer

transient stable disease lasting 2.5 months. A subsequent phase
I study assessed the combination of decitabine and vorinostat
(Stathis et al., 2011). Decitabine was given intravenously for five
consecutive days and vorinostat was administered orally in a
sequential manner starting on day 6 or in a concurrent manner
starting on day 3. Cycles were repeated every 28 days. The maxi-
mum tolerated dose of these agents was the same in both arms:
decitabine was 10 mg/m2 and vorinostat was 200 mg twice daily.
The sequential schedule was better tolerated and recommended
for further study; however, no patients responded to therapy,
including the two patients with NSCLC.

The combination of 5-azacytidine and entinostat has shown
more promise. A phase I/II study combined these two agents in
patients with progressive and metastatic NSCLC (Juergens et al.,
2011). There were no dose limiting toxicities at the planned dose
levels, which were well below the maximum tolerated doses for
each drug. Of the 34 evaluable patients who participated, 10 had
stable disease lasting at least 12 weeks. One patient had a partial
response lasting 8 months and another patient had a durable, com-
plete response lasting 14 months. There has been minimal toxicity
with this combination and an expansion cohort to further define
activity is being planned (NCT00387465). Interestingly, the clini-
cal responses persisted beyond cessation of epigenetic therapy and
many participating patients achieved notable responses to subse-
quent salvage therapy. In this study, 19 patients received subse-
quent systemic therapy within 6 months and four of these patients
(21%) achieved major objective responses. This has led to the
development of several trials incorporating sequential therapy that
starts with epigenetic “priming.” One planned trial randomizes
patients with pretreated NSCLC to standard cytotoxic chemother-
apy alone or following treatment with 5-azacytidine and entinos-
tat. A separate single arm phase II study in development for NSCLC
explores the efficacy of nivolumab (BMS-936558), a PD-1 mon-
oclonal antibody, after two cycles of 5-azacytidine and entinostat
epigenetic therapy.

The combination of 5-azacytidine and entinostat is also being
explored in the adjuvant setting. An ongoing trial is examining the
role of this combination in patients with resected stage I NSCLC
(NCT01207726). Standard of care is observation, after several
analyses demonstrated a lack of benefit to cytotoxic chemotherapy
in this population, despite a 5-year survival of only 60% (Pignon
et al., 2008). There is reason to implicate epigenetic deregulation
in recurrence of resected NSCLC. Methylation signatures are asso-
ciated with the development of lung cancer among patients at high
risk (Belinsky et al., 2006) and the risk of recurrence after resection
of stage I NSCLC (Brock et al., 2008). This provides the rationale
for the use of epigenetic therapy in this patient population. In this
trial, patients are randomized to observation or treatment with
5-azacytidine and entinostat for six cycles. The primary objective
is to assess the impact of this treatment on 3 year progression-free
survival.

The examples above illustrate the promise of epigenetic therapy
and its active investigation. Data to date suggest that it is the gene
reactivation properties that underlie the therapeutic efficacy of
these drugs. However, evidence for epigenetic activation of tumor
promoting genes has been reported (Selamat et al., 2012), pointing
to the need for a deeper understanding of epigenetic regulation

and the consequences of epigenetic therapies. This is very well
illustrated by the complexities of gene regulation by miRNAs.

MICRORNAs
MicroRNAs are small non-coding RNAs that regulate gene expres-
sion at the post-transcriptional level (Ambros, 2003; Chen et al.,
2012). A single miRNA can target many genes and depending on
whether it targets proto-oncogenes or tumor suppressor genes,
its expression may be up or down-regulated in cancer (Croce,
2009). MiRNA-encoding genes can undergo the same epigenetic
(de)regulation of any other protein-coding gene, such as promoter
methylation, histone modifications, and chromatin changes (Fab-
bri and Calin, 2010; Baer et al., 2013). In lung cancer, the let-7a-3
promoter was found to be hypomethylated in lung adenocarci-
noma primary tumors compared to normal tissue, suggesting an
oncogenic role for this miRNA in lung cancer (Brueckner et al.,
2007). In contrast, miR-9-3 and miR-193a are silenced by DNA
methylation in NSCLC and the presence of methylated miR-9-3
was a poor prognostic factor predicting shorter overall survival
(Heller et al., 2012). MiRNAs can also be silenced by histone
modifications. For instance, increased levels of repressive H3K27
trimethylation and H3K9 dimethylation marks were seen on the
miR-212 promoter in lung cancer cell line Calu-1, which expresses
low levels of miR-212, compared to a human fetal lung fibrob-
last cell line showing high miR-212 expression, and the effect of
epigenetic modifying drugs such as HDACs supported a role for
histone modifications in miR-212 regulation (Incoronato et al.,
2010; Incoronato et al., 2011).

While epigenetic effects can control miRNA expression, the
reverse is also true: DNMTs can be regulated by miRNAs in
lung cancer cells (Fabbri et al., 2007, 2013). Specifically, the miR-
29 family (composed of 29a, 29b, and 29c) was shown to bind
directly to the 3′UTR region of DNMT3A and 3B (de novo methyl-
transferases), two key enzymes involved in DNA methylation.
Members of the miR-29 family members are frequently down-
regulated in NSCLC compared to adjacent non-tumor lung, and
their expression is inversely correlated with the expression lev-
els of DNMT3A and 3B (Fabbri et al., 2007). Restoration of
miR-29 down-regulated DNMT3A and DNMT3B, inducing a
global hypomethylated state in cancer cells and concomitant re-
expression of tumor suppressor genes such as FHIT and WWOX,
whose expression is silenced in NSCLC by promoter hypermethy-
lation. More recently, it was shown that in addition to directly tar-
geting DNMT3A and 3B, miR-29b also indirectly targets DNMT1
by silencing its transactivator SP1, in acute myeloid leukemia (Gar-
zon et al., 2009). MiR-29s thus represents the prototype of an
“epi-miRNA”: a miRNA that targets effectors of the epigenetic
machinery.

In addition to targeting DNMTs, epi-miRNAs can also target
HDACs (Chen et al., 2006; Tuddenham et al., 2006) and Poly-
comb Group Proteins (PcG), which mediate gene silencing and
can promote the survival and metastasis of cancer cells (Varam-
bally et al., 2008). A constant flood of new studies reports the
existence of additional epi-miRNAs, the identification of new
roles for already identified epi-miRNAs and new layers of epi-
genetic regulation of miRNAs. These studies illustrate the com-
plex interplay between miRNAs and epigenetics, pointing to
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the importance of understanding these relationships to properly
design cancer therapies targeting miRNAs and epigenetics (Croce,
2011).

Based on the importance of miRNAs in cancer and their abil-
ity to influence gene expression, they are under investigation as
therapeutic tools that can potentially target any RNA of interest.
MiRNAs can either be delivered directly to cancer cells as synthet-
ically generated miRNA-mimic molecules or can be administered
as anti-miRNA molecules if the miRNA needs to be silenced.
Most commonly, anti-miRNAs are administered as antagomirs
(Krutzfeldt et al.,2005) or locked-nucleic acid (LNA) anti-miRNAs
(Castoldi et al., 2006), which are oligonucleotides complementary
to the sequence of the targeted mature miRNA, but biochemically
modified to reduce the risk of degradation by cellular RNAses
and conjugated with cholesterol to facilitate entry into cells. While
miRNA-mimics and anti-miRNAs affect miRNA expression and
therefore the expression of any mRNAs targeted by them, another
approach is to silence specific genes. To this end, both small-
interfering RNAs (siRNAs) and genetically encoded expression
vectors encoding small hairpin RNAs (shRNAs) that are processed
by the miRNA machinery have been used (Rao et al., 2009). This
approach involves post-transcriptional, sequence-specific silenc-
ing of genes critical to the survival and proliferation of lung cancer
cells and has shown encouraging in vitro activity in some cancer
models. Silencing specific genes with siRNA can impact relevant
signaling pathways, such as VEGF for angiogenesis (He et al.,
2008) or survivin for growth and invasion (Kunze et al., 2008).
This strategy has been associated with antitumor activity in vitro
(Odate et al., 2013), though the optimal target is unclear (Tong,
2006). RNA interference may be better suited to enhance cyto-
toxic agents. STAT3 targeted siRNA sensitized lung cancer cells
to cisplatin and doxorubicin (Kulesza et al., 2013) while PLK1
targeted shRNA provided an additive inhibition of lung adenocar-
cinoma cell survival when administered with gemcitabine (Zhou
et al., 2012). Many studies demonstrate similar effects with other
agents (Zhou et al., 2012; Zou et al., 2013). Among the challenges
of translating preclinical findings to clinical studies is the rela-
tively inefficient delivery of siRNA to target cells, in part due to
poor uptake and short half-life (Chen and Zhaori, 2010). This
can be alleviated somewhat by using lentiviral delivery of genes
encoding shRNAs which can then be stably expressed long-term
(Rao et al., 2009). However, infecting all cancer cells will remain
challenging. While these strategies have shown potential in the
treatment of lung cancer, clinical experience is quite limited to
date.

SMALL CELL LUNG CANCER
Most of the preclinical and clinical experience in lung cancer
with epigenetic therapy has been focused on NSCLC, perhaps
due to the fact that our understanding of epigenetic deregula-
tion in SCLC is in its infancy (Kalari et al., 2012). This is likely
due to the limited availability of clinical samples from SCLC
patients. Nevertheless, some studies in SCLC have been con-
ducted. A phase II study of the HDAC inhibitor romidepsin
in patients with relapsed chemosensitive SCLC did not demon-
strate significant clinical activity (Otterson et al., 2010). There
were no responses in 16 patients and the median progression-free

survival was only 1.8 months, though three patients (19%) did
achieve stable disease. Just as in NSCLC, combination ther-
apy is felt to have more promise than monotherapy in SCLC.
In vitro, combining DNMT inhibition with HDAC inhibition was
found to have a greater pro-apoptotic effect than monotherapy
(Kaminskyy et al., 2011). In similar in vitro models, decitabine
showed a synergistic induction of DNA damage in the con-
text of HDAC inhibition (Luszczek et al., 2010). The synergy
between HDAC inhibition and various cytotoxic agents has
also been demonstrated in preclinical SCLC models (Luchenko
et al., 2011). As our understanding of the epigenetic under-
pinnings of SCLC development and progression increases, the
development and application of epigenetic therapies are sure to
follow.

CONCLUDING REMARKS
The prevalence of epigenetic modifications in lung cancer and
their role in carcinogenesis underscore the great potential of epi-
genetic therapeutic strategies. Early clinical trials, however, have
yielded underwhelming responses to epigenetic agents. Studies
featuring monotherapy have failed to document a single response
and the most promising combination of epigenetic agents demon-
strated a response rate of only 6%. Yet it is clear that there
are patients deriving benefit from therapy, with some patients
achieving uncharacteristically long periods of disease control
and survival. The few responses seen with combination ther-
apy have been both extensive and durable. Perhaps radiographic
response as measured by standard RECIST criteria is not the
best means of establishing efficacy for epigenetic therapy. Epige-
netic agents can induce differentiation, potentially by inducing
re-expression of tumor suppressor genes, and these differenti-
ated cells are then prone to cell death. This process may be
much slower than apoptosis induced by traditional cytotoxic
agents and thus, less readily apparent on radiographic studies.
The interpretation and definition of response to epigenetic ther-
apy must evolve as we gain more experience. Clinically, time to
progression may be a more reflective endpoint to gage efficacy
in this class of agents. In addition, the optimal use of epige-
netic therapy may be in conjunction with cytotoxic agents, based
on the frequency of responses to subsequent therapies. Stud-
ies exploring this epigenetic “priming” strategy are already being
designed.

As new trials open to accrual, it will be important to iden-
tify predictive markers to guide the use of epigenetic therapy.
Our understanding of how and why these agents work remains
rudimentary and must be expanded. Pharmacodynamic changes
in gene expression (Jones et al., 2012) will offer insight into
the downstream effects of these agents and could provide use-
ful predictive markers for epigenetic therapies. The development
of novel molecular markers to monitor epigenetic responses, such
as assessment of DNA methylation in bodily fluids (Juergens et al.,
2011) may also provide a measure of molecular response to the
drugs, and will be a key element to incorporate in future stud-
ies. Further investigation of the epigenomic profiles of various
epigenetic effectors, including DNA methylation, histone marks,
chromatin conformation, and miRNAs will be of great impor-
tance for the development of new targeted therapies. In addition,
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a better appreciation of the interaction between epigenetic and
genetic alterations will be crucial moving forward. Such studies
will likely reveal additional subtypes of lung cancer that respond
to unique treatment strategies, allowing refinement of treatment
paradigms and tailoring to unique (epi)genetically distinct subsets
of lung cancer.
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