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Iridium-catalyzed reductive Ugi-type reactions
of tertiary amides
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Amides are ubiquitous in the fine chemical, agrochemical and pharmaceutical industries, but

are rarely exploited as substrates for homologous amine synthesis. By virtue of their high

chemical stability, they are essentially inert to all but the harshest of chemical reagents and

to the majority of chemical transformations routinely used in organic synthesis. Accordingly,

the development of chemoselective carbon−carbon bond-forming methodologies arising

from the functionalization of the amide functionality should find widespread use across

academia and industry. We herein present our findings on a series of Ugi-type reactions

of tertiary amides enabled by an initial chemoselective iridium-catalyzed partial reduction,

followed by reaction with isocyanide and (thio)acetic acid or trimethylsilyl azide, thus

providing a multicomponent synthesis of α-amino (thio)amide or α-amino tetrazole deriva-

tives. The reductive Ugi-type reactions are amenable to a broad range of amides and

isocyanides, and are applicable to late-stage functionalization of various bioactive molecules

and pharmaceutical compounds.
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Multicomponent reactions (MCRs) have long been
among the most attractive reactions in organic and
medicinal chemistry, given their power of rapidly

generating structural and chemical diversity1,2. Ugi reactions
(Fig. 1a–c), which command a privileged place in the develop-
ment of modern MCRs3–6, classically include three-component
(3-MCRs) and four-component (4-MCRs) types according to the
number of distinct reactant classes involved7. These reactions
require reactive aldehydes and amines (mainly primary)8,9 to
form the key imine/iminium intermediates, which are subse-
quently trapped by isocyanide nucleophiles, and afford either
α-amino thioamides or α-amino amides depending on the nature
of the carboxylic (thio)acid used to promote the reaction10,11.
In a related variant, the combination of aldehyde, amine, and
trimethylsilyl azide (TMSN3) can produce efficiently α-amino
tetrazole derivatives. This MCR—generally referred to as the
Ugi-azide reaction—has become established as one of the most
reliable and versatile strategies to access such compounds12.
Tetrazoles are an important class of compound commonly used
within drug discovery programs13,14, as bioisosteres for the
carboxylate group and, for example, as blockers for the Angio-
tensin II receptor15. Furthermore, various tetrazole-containing
molecules have found use in organocatalysis16 and organometallic
chemistry17, as well as in material science18.

Tertiary amides are an under-exploited class of nitrogen-
containing compound that is widespread throughout the chemi-
cal, pharmaceutical and agrochemical industries. They can be
readily prepared from commonly occurring and abundant
carboxylic acids and amines through well-defined, reliable cou-
pling methods19,20, and—due to their high chemical stability
and low inherent reactivity—they are essentially inert to all but
the harshest of reaction types. Accordingly, new strategies for
the chemoselective functionalization of amides, leading to new
carbon−carbon bond-forming methodologies, would find tre-
mendous application in synthesis, late-stage functionalization,
and rapid generation of molecular diversity21–42.

Our group43–45 has been working on developing new
methodologies for the synthesis of amine-containing products
from reactive hemiaminal intermediates, generated by the
highly chemoselective, catalytic reduction of tertiary amides
under mild conditions46–50. Looking to expand the diversity of
product types accessible we considered isocyanides51–53 as
potential nucleophiles. Based on the known interaction between

hemiaminals10 and isocyanides and our own prior experience
with both partners43–45,54–56, we hypothesized that isocyanides
might, in the presence of an acid promoter, intercept the
in situ formed iminium species, thus generating versatile nitri-
lium intermediates applicable for various Ugi-type reactions
(Fig. 1d). In related context, Zheng and Huang have reported
that secondary amides undergo Ugi-amide formation when
activated with triflic anhydride30.

Herein we report our findings leading to an iridium-catalyzed
reductive Ugi-type MCR of tertiary amides, isocyanide and (thio)
acetic acid or trimethylsilyl azide (TMSN3), affording α-amino
(thio)amide and α-amino tetrazole structures respectively.

Results
Optimization study. As a proof-of-concept study, 4-
methylbenzoxyl amide (1.0 eq) was subjected to standard amide
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Table 1 Discovery and optimization

Entry Solvent (M) Acid (eq) Yield (%)a

1 CH2Cl2 (0.1) HCOOH (1.0) 35
2 CH2Cl2 (0.1) CH3COOH (1.0) 75
3 CH2Cl2 (0.1) CH3COOH (0.2) 31
4 CH2Cl2 (0.1) CH3COOH (1.2) 82 (78b)
5 CH2Cl2 (0.1) CH3COOH (2.0) 78
6 CH2Cl2 (0.2) CH3COOH (1.2) 80
7 CH2Cl2 (0.05) CH3COOH (1.2) 20
8 DCE (0.1) CH3COOH (1.2) 76
9 toluene (0.1) CH3COOH (1.2) 78
10 CH2Cl2 (0.1) diphenyl phosphate (1.2) <10
11 CH2Cl2 (0.1) camphorsulphonic acid (1.2) trace
12 CH2Cl2 (0.1) 4-nitrophenol (1.2) N.O.
13 CH2Cl2 (0.1) ZnCl2 (1.2) N.O.

Reactions were performed on 0.3 mmol of amide
N.O. not observed
aNMR yields with 1-bromo-2-methoxylnaphthlene as internal standard
bIsolated yield. DCE: 1,2-dichloroethane
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partial reduction condition using IrCl(CO)(PPh3)2 (Vaska’s
complex, 1 mol%) and tetramethyldisiloxane (TMDS, 2.0 eq) in
dichloromethane at room temperature for 20 min, followed by the
addition of tert-butyl isocyanide (2.0 eq) and formic acid (1.0 eq).
We were pleased to detect the desired α-amino amide product 2
in significant amounts (Table 1, entry 1). The reaction was also
successful using acetic acid (1.0 eq) in place of formic acid; 1H
NMR analysis indicated a 75% yield of the product (Table 1,
entry 2). Further experiments demonstrated a slight excess
of acetic acid resulted in the formation of 2 in 78% isolated yield
(Table 1, entries 3−5). Reaction concentration (Table 1, entries
6, 7), solvents (Table 1, entries 8, 9) and acids (Table 1, entries
10−13) were also screened, but the optimal conditions were those
as described in entry 4.

Substrate scope. With optimal conditions in hand, we then
explored the scope of this reductive Ugi reaction by subjecting a
broad range of carboxylic amides to this protocol. As shown in
Fig. 2a, aryl amides with both electron-donating and electron-
withdrawing groups on the phenyl ring were good substrates
affording the corresponding amino amides (3−8) in good yields.
The toleration of aryl bromide and aryl iodide residues indicates
the possibility of combining this protocol with standard metal-
catalyzed cross-coupling chemistry. Naphthalene and furan-
derived amides underwent the transformation smoothly (9, 10).
Amides derived from dimethoxy-1,2,3,4-tetrahydroisoquinoline
and proline also proved amenable and allowed the synthesis of
amino amide (11, 12) albeit using a slightly increased tempera-
ture (50 °C). Linear alkyl, α-branched and fully substituted alkyl
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amides were all viable partners, delivering the corresponding
products (13−15). Diminished yields were observed when the
substrates were sterically hindered. Pendant phenyl and vinyl
groups in the carboxylic acid residue were also tolerated
and delivered products (16, 17). Moreover, the use of a formic
acid-derived amide led to the unsubstituted α-amino amide
in excellent yield (18). Unfortunately, attempts to apply lactam
substrates, such as 1-butylazepan-2-one and 1-benzylpiperidin-2-
one, to this reductive Ugi-amide formation were unsuccessful.

Subsequently, the scope of the reaction with respect to the
isocyanide component was examined under the standard
reaction conditions (Fig. 2b). Linear alkyl isocyanides bearing
morpholino, ester, and tetrahydrofuranyl functionality were
excellent partners allowing the ready assembly of amino amides
(19−22). Branched cyclohexyl and benzyl isocyanide afforded
good yields of the respective MCR products (23, 24). Good
reactivity, albeit with no diastereoselectivity, was found when
enantiopure α-methylbenzyl isocyanide was applied (25).
Furthermore, both aryl and vinyl amides were obtained in good
yields (26, 27) when the corresponding isocyanides were
submitted to the standard reaction conditions.

As is classically known for Ugi-type reactions, use of thioacetic
acid as a substitute for acetic acid should result in the generation
of thioamide functionality in the reaction product8. To
our delight, the corresponding thioamides were indeed isolated
with reasonable yields when a range of tertiary amide substrates
were submitted to the standard condition, but with 1.2 eq

CH3COSH as the acid to promote the Ugi reaction (28−31)
(Fig. 3a). These results indicate further synthetic applications
of this reductive Ugi protocol.

Regarding the reaction mechanism for the formation of
α-amino (thio)amides and the role of (thio)acetic acid throughout
the transformation, a plausible reaction pathway is proposed
in Fig. 3b. The silylated hemiaminal intermediate is initially
generated by the standard reductive condition from the amide
starting material. Then by adding the isocyanide and (thio)acetic
acid, the hemiaminal is transformed into the highly reactive
nitrilium intermediate10, either directly or via the corresponding
iminium ion. Nucleophilic addition by acetate or thioacetate
then affords the (thio)imidate intermediate, which after rearran-
gement, leads to the observed α-amino amide or thioamide
product8.

These exciting successes inspired us to hypothesize that the
formed reactive nitrilium intermediate might also be poised to
undergo the Ugi-azide reaction: trapping by an appropriate azide
source should facilitate a 1,3-dipolar cyclization, thus delivering
α-amino tetrazole as the product57–60. This reaction would
transform stable, readily available tertiary amides into homo-
logated high value α-amino tetrazole motifs in a single pot. The
idea was initially tested by mixing tert-butyl isocyanide, acetic
acid, and TMSN3 with the in situ generated hemiaminal from
amide 1 under the standard and mild reaction conditions.
Indeed the Ugi-azide reaction proceeded smoothly, leading
to the α-amino tetrazole product 32 in 90% yield. Further
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follow-up experiments demonstrated that without the addition
of acetic acid, the tetrazole product was obtained in quantitative
yield (98%).

Figure 4a depicts the full scope of tertiary amides compatible
with this α-amino tetrazole synthesis. Both electron-rich and
electron-deficient phenyl derived amides smoothly coupled with
azide and isocyanide under this protocol, delivering excellent
yields of the desired products (32−38). Steric hindrance, at the
ortho-position of benzoyl amide derivatives, led to a decline in
yield (39). N-Benzyl amine-derived amide proved to be a suitable
partner for the amide Ugi-azide reaction (40). It is worth noting
that N-benzoyl methylprolinate was also a good substrate, giving
proline-derived tetrazole product in 75% yield (dr 2:1) (41).
The tetrazole synthesis also tolerated linear and α-branched

alkyl amides (42−44). Tertiary alkyl amide, as exemplified by
adamantanyl dimethyl amide, was also amenable to the protocol
(45), although a lower yield of product was obtained. An excellent
yield of α-amino tetrazole product was obtained when a
formamide substrate was employed (46). Importantly, we found
a lactam substrate was also applicable to this reaction, although
only a moderate yield of product 47 was obtained. In addition,
91% of the tetrazole product 35 was isolated upon exposing 1.14 g
of the corresponding amide to the standard reaction condition,
proving that the reaction can be readily carried out on gram scale.

Further studies focused on the scope with respect to the
isocyanide component of this reductive Ugi-azide reaction of
tertiary amides (Fig. 4b). Primary isocyanides bearing functional
groups such as phenyl, tetrahydrofuran, and ester functionality
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were well-tolerated under the standard conditions (48−51).
Cyclohexyl isocyanide (an example of secondary alkyl system)
delivered the tetrazole product with 95% yield (52). Olefinic and
aryl isocyanides afforded the corresponding products in excellent
yields (53−55); even sterically demanding systems such as
the 2,6-dimethylphenyl isocyanide had no deleterious effect
on the efficiency of this reaction (55). This amide reductive
Ugi-azide reaction will likely find various applications for the
direct synthesis of pharmaceutical agents, and to this end here
we have demonstrated the one-pot preparation of tetrazole
compound 56, an MCH1 receptor antagonist61, in 75% yield
starting from a stable, readily available amide.

Synthetic utility. Given the prevalence of tertiary amides and
their precursors in bioactive molecules, and the surprisingly
broad scope tolerated in these amide reductive Ugi-type (thio)
amide and tetrazole syntheses, further synthetic potential of this
chemistry is demonstrated by the late-stage functionalization of
various bioactive molecules and derivatives (Fig. 5a). Fipexide62, a
psychoactive drug, could be readily coupled with tert-butyl iso-
cyanide in the presence of acetic acid (57). Linoleic carboxamide,
readily prepared from one of the essential fatty acids, linoleic
acid63, underwent the α-amino amide formation in 85% yield
(58). Lithocholic acid64 (LCA), known for its ability to selectively
kill neuroblastoma cells, could be transformed into the corre-
sponding Ugi amide product in a similar fashion (59). While

the carboxamide derivative of the amine drug nortriptyline65,
used for treatment of clinical depression, was successfully mod-
ified, delivering the desired product in 89% yield (60). Submission
of the selective systemic amide herbicide, napropamid66, to the
amide reductive Ugi-azide reaction resulted in 65% yield of
its tetrazole derivative 61, with 5:1 ratio of diastereoisomers.
The reductive coupling of CX-546, a drug candidate for schizo-
phrenia67, with tert-butyl isocyanide and TMSN3 led to the
corresponding product in excellent yield (62). The success of
dipeptide Boc-Gly-Sar-OMe modification under these conditions
(63) encouraged us to apply this procedure to the peptide drug
noopept (omberacetam, a nootropic)68. Thus, we were pleased
to obtain the tetrazole derivative of noopept in 45% yield (64).

Furthermore, by submitting amide 65 (Fig. 5b) to the standard
procedure of α-amino amide synthesis, the corresponding amide
product was obtained. Removal of pyrrolidine from compound
66 took place nearly quantitatively in the presence of palladium
on carbon under an atmosphere of hydrogen, enabling the
synthesis of 67 (patented name: IND116065), which exhibits
activity in cell viability inhibition69. Analogously, regioselective
synthesis of 1,5-disubstituted tetrazole compound 69, previously
made as an enzyme inhibitor70, could be achieved by carrying out
our reductive Ugi-azide reaction, in the presence of correspond-
ing isocyanide and TMSN3, followed by the hydrogenation.

In summary, a series of reductive Ugi-type reactions, leading to
homologated α-amino (thio)amide and tetrazole motifs, by
merging hemiaminal intermediates, isocyanides and (thio)acetic
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acid or TMSN3, has been developed. These reactions benefit from
the strategic use of stable and readily available tertiary amides
as abundant and under-exploited nitrogen-containing starting
materials. The broad scope of tertiary amides and isocyanides
that can be tolerated demonstrate the practicality of these
multicomponent reactions. Combining this with the illustrated
synthetic utility by late-stage functionalization of various
bioactive molecules and derivatives, as well as the synthesis of
bioactive compounds possessing amide and tetrazole function-
ality, this powerful α-amino amide and α-amino tetrazole
synthesis strategy will likely find numerous applications across
academia and industry.

Methods
General procedure for the synthesis of α-amino amides and tetrazoles from
tertiary amides. Vaska’s catalyst (2.4 mg, 1 mol%) and amide (0.3 mmol, 1.0 eq)
were charged into a dry 25 mL flask. Vacuum and N2 refilling were repeated for
three times. Dry CH2Cl2 (3 mL, 0.1 M) was injected by syringe, and then TMDS
(0.6 mmol, 2.0 eq), while stirring was maintained at room temperature. The
resulting mixture was stirred for 20 min, then isocyanide (0.6 mmol, 2.0 eq) and
acetic acid (0.36 mmol, 1.2 eq) or TMSN3 (0.6 mmol, 2.0 eq) were added
sequentially. The solution was stirred overnight at room temperature and was then
quenched with saturated aqueous NaHCO3 solution and extracted with CH2Cl2
(3 × 10 mL). The combined organic layers were dried over Na2SO4 and filtered. The
solvent was removed under vacuum. The residue was purified by flash column
chromatography.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and the Supplementary Information, as well as
from the authors upon reasonable request.
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