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Abstract: Osteoconduction is an important consideration for fabricating bio-active materials for bone
regeneration. For years, hydroxyapatite and β-calcium triphosphate (β-TCP) have been used to
develop bone grafts for treating bone defects. However, this material can be difficult to handle due
to filling material sagging. High molecular weight hyaluronic acid (H-HA) can be used as a carrier
to address this problem and improve operability. However, the effect of H-HA on bone formation
is still controversial. In this study, low molecular weight hyaluronic acid (L-HA) was fabricated
using gamma-ray irradiation. The viscoelastic properties and chemical structure of the fabricated
hybrids were evaluated by a rheological analysis nuclear magnetic resonance (NMR) spectrum. The
L-MH was mixed with H-HA to produce H-HA/L-HA hybrids at ratios of 80:20, 50:50 and 20:80
(w/w). These HA hybrids were then combined with hydroxyapatite and β-TCP to create a novel
bone graft composite. For animal study, artificial bone defects were prepared in rabbit femurs. After
12 weeks of healing, the rabbits were scarified, and the healing statuses were observed and evaluated
through micro-computer tomography (CT) and tissue histological images. Our viscoelastic analysis
showed that an HA hybrid consisting 20% H-HA is sufficient to maintain elasticity; however, the
addition of L-HA dramatically decreases the dynamic viscosity of the HA hybrid. Micro-CT images
showed that the new bone formations in the rabbit femur defect model treated with 50% and 80%
L-HA were 1.47 (p < 0.05) and 2.26 (p < 0.01) times higher than samples filled with HA free bone
graft. In addition, a similar tendency was observed in the results of HE staining. These results lead
us to suggest that the material with an H-HA/L-HA ratio of 50:50 exhibited acceptable viscosity and
significant new bone formation. Thus, it is reasonable to suggest that it may be a potential candidate
to serve as a supporting system for improving the operability of granular bone grafts and enhancing
new bone formations.
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1. Introduction

For years, bone tissue engineering has been faced with the challenge of reducing the
amount of bone graft material used without affecting treatment efficiency. Indeed, a matrix
carrier is necessary in some applications to maintain bone graft material without loss
during an operation; however, the carrier used for bone graft argumentation will reduce
the absolute amount of bone graft, which can result in a decrease in the effectiveness of
the artificial material [1]. Thus, improving material handling ability while preserving bone
graft effectiveness remains a challenge.

Hyaluronic acid (HA) is a polysaccharide consisting of alternating residues of D-
glucuronic acid and N-acetylglucosamine [2] and, as a basic component of extracellular
matrix, displays high biocompatibility [3]. Previous studies have reported that HA can
be used in mixture with bone graft material to modify the surface of artificial bone and
enhance bone cell migration and growth [4,5]. One animal study has shown that coating
HA on the surface of titanium implants can increase bone formation efficiency at the
implant/bone interface [2]. Several investigations have used HA as a carrier and when
combined with various bone grafts for bone augmentation. Nguyen and Lee (2014), for
example, fabricated a bone substitute consisting of HA-gelatin hydrogel and biphasic
calcium phosphate [6], and found that this composite provided excellent cellular response
and could enhance the mechanical strength of cancellous bones and increase their bearing
ability when subjected to load. A similar phenomenon was reported in tests of a mixture of
HA–based matrix and collagenated heterologous bone graft [7]. In previous studies, HA
has been reported to be an excellent carrier for sinus augmentation without reducing the
clinical effectiveness of the allograft [6,8].

However, the effect of HA on bone formation is controversial in the case of combining
hydroxyapatite/β-calcium triphosphate (β-TCP) with HA. For example, while Elkarargy
(2013) found the addition of HA increases osteoconduction efficiency compared to samples
without HA [9], Aguado et al.’s report (2014) indicated that using linear hyaluronic acid
did not result in healing of the grafted area, and the amount of formed bone was not
significantly higher in samples with HA than with β-TCP granules alone [10]. This may be
due to the major role of HA in the HA–hydroxyapatite/β-TCP system only being able to
act as a structural enforcement of the surrounding environment [11].

The above investigations made use of high molecular weight HA (H-HA), which
can act as a physical scaffold for cell migration but cannot act as a ligand to directly
bind to receptors on cell surfaces [12]. Unlike the controversial effects of H-HA on cell
proliferation and differentiation [13,14], low molecular weight HA (L-HA) is well known
to provide positive effects for cell proliferation and differentiation [14–16]. In the initial
stage of wound healing, HA with a molecular weight reaching 2000 kDa only accumulates
in the extracellular matrix and combines with fibrinogen to form a clot. However, L-HA
with molecular weight ranging from 80 to 800 kDa influences the inflammatory response
and activates macrophages [17], resulting in accelerated wound repair [18,19]. Although
previous in vitro cellular studies have reported that L-HA exhibits a positive effect on bone
healing, the effect of L-HA combined with hydroxyapatite/β-TCP bone graft on the healing
of bone defects is still unclear [15,20,21]. In addition, it has been reported that reducing
HA molecular weight results in lowered viscosity, which may cause a loss of intended
operational effect. Accordingly, we fabricated H-HA/L-HA hybrid composites at different
mixing ratios to be used as a carrier to release L-HA and maintain hydroxyapatite/β-TCP
bone grafts for this study, and evaluated their performances using an animal model.

2. Materials and Methods
2.1. Materials

Formaldehyde, xylazine, povidone iodine, hematoxylin, eosin regent and D2O were
purchased from Sigma-Aldrich (Sigma-Aldrich Inc. St. Louis, MO, USA). Tiletamine-
zolazepam (Zoletil 50) was obtained from Virbac (Virbac Co., Carros CEDEX, France).
Hyaluronic acid was purchased from Cheng-Yi Chemical Industry Co. Ltd. Taipei, Taiwan.
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Decalcifier was purchased from Thermo Fisher Scientific, Inc., Cheshire, UK. Hydroxyap-
atite and β-TCP were commercial products from Wiltrom Ltd., Taipei, Taiwan.

2.2. Preparation of H-HA/L-HA Hybrids

The molecular weight of H-HA used in this study was measured at 3000 kDa. The
L-HA was prepared according to a previous method [19]. Briefly, γ-rays from a cobalt
60 irradiator (Point Source, AECL, IR-79, Nordion, Ottawa, ON, Canada) were used to
destroy the H-HA structure using a continuous 1 kGy/h dose of radiation at 22 ◦C for 20 h.
After irradiation, the molecular weight of low-molecular-weight HA was 200 kDa [19]. HA
hybrids were fabricated by mixing H-HA and prepared L-HA at ratios of 80:20, 50:50 and
20:80 (w/w). Briefly, 1 g of H-LA and L-HA mixture was added to 3.5 mL phosphate buffer
solution (PBS). After gently stirring for 2 h, the hybrid was freeze-dried and stored in a
moisture-proof environment for further use.

2.3. Physicochemical Properties Tests of the H-HA/L-HA Hybrid

The chemical structure of the H-HA/L-HA hybrids was evaluated using 1H nu-
clear magnetic resonance (NMR) spectrums obtained from a 500 MHz NMR spectrometer
(DRX500 Avance, Bruker BioSpin GmbH, Rheinstetten, Germany). The measurements were
performed at 27 ◦C. D2O was used as the solvent in all NMR experiments. The viscoelastic
properties of the prepared HA hybrids were determined using a rheologic measurement
device (Anton Paar MCR 302 rheometer, Anton Paar, Graz, Austria). The rheometer was
equipped with a parallel plate with a plate diameter of 25 mm and gap of 1.0 mm at 25 ◦C.
This device was calibrated according to a previous experiment [22]. Briefly, samples to
be tested were prepared as a 10 mg/mL solution. At 30 min post-loading, the complex
moduli (G*) of the HA hybrid were measured using a frequency sweep from 10 to 100 Hz.
HA dynamic viscosity (η*) was recorded as a function of the shear rate range from 0.005 to
10 (1/s).

2.4. Animal Experiment

In this study, six New Zealand white rabbits (average weight 3.0–3.6 kg) were used
as test samples. These white rabbits were raised in a stable environment at a temperature
of 25 ◦C and a 50% humidity and provided with solid food and water. All animal proce-
dures were performed according to the National Research Council’s Guide for the Care
and Use of Laboratory Animals guidelines and protocols approved by the Institutional
Animal Care and Use Committee of the National Defense Medical Center, Taipei, Taiwan
(IACUC-17-236). Since the properties of 100% H-HA and L-HA were not the focus of this
study and, according to comments from the committee and in acceptance of the guiding
principles of Declaration of Helsinki, which supports a reduction in laboratory animal use,
only H-HA/L-HA hybrids with mixing ratios of 80:20, 50:50 and 20:80 were tested in the
following experiments.

Surgical procedures were performed under sterile conditions. Before surgery, general
anesthesia was achieved with an intramuscular injection of tiletamine–zolazepam (Zoletil
50) at a dosage rate of 15 mg/kg. After each rabbit was deeply anesthetized, the surgical
site was shaved and disinfected with povidone iodine, and the skin cut to expose the lateral
femoral condyle. According to previous studies, cylindrical defects 5 mm in diameter and
10 mm in length were drilled in each rabbit’s left and right leg (Figure 1a–c) under saline
cooling conditions [23,24]. The filling material was prepared by mixing 1.0 g prepared
HA hybrid containing various concentrations of L-HA and 1.0 g Hydroxyapatite/β-TCP
substitute (with a ratio of 60:40 w/w) (Figure 1d). For each artificial defect, 1.0 g of bone
graft-HA hybrid was grafted (Figure 1e,f). After grafting, the periosteum was closed with
absorbable inner and outer flap sutures (Figure 1g,h) (Vicryl® 4.0, Ethicon, Somerville,
NJ, USA). Postoperative antibiotics and analgesics were administered intramuscularly
for three days. After 12 weeks of healing, the rabbits were euthanized by carbon dioxide
asphyxiation under anesthesia (50 mg/mL Zoletil 50 at a dosage of 15 mg/kg). Bone tissues
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from the surgical site were collected and fixed in a 10% formaldehyde solution at pH 7.0.
Artificial bone defect grafted with HA-free Hydroxyapatite/β-TCP substitute was set as
the control. Three samples in each tested group were collected for further analysis.
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Figure 1. (a) Surgical incision and exposure of lateral femoral condyle. (b,c) Bony defects 5 mm in
diameter and 10 mm in length were created in both femurs using a surgical drill. (d) Bone substitute
mixed with hyaluronic acid hybrid. (e,f) Grafting material filled into the defect site. (g) Inner suture
to close periosteum. (h) Outer flap suture for primary wound closure.

2.5. Micro-CT Measurements

Femoral condyles containing the artificial defects were scanned using micro-computed
tomography (micro-CT) (Skyscan 1076, SkyScan, Aartselaar, Belgium) with a 0.5-mm
aluminum filter at an energy level of 75 kV and current of 200 µA, with a pixel resolution
of 18 µA. Data were analyzed using quantifying reconstructed three-dimensional images.
According to previous studies, the percentage of new bone formation in each defect was
quantitated by calculating the ratio of the bone volume (BV) to the total tissue volume (TV)
in the defect holes.

2.6. Histological and Histomorphometrical Evaluation

In order to observe changes in bone growth among the artificial defects treated with
different filling samples, bone samples were evaluated using histological analyses. To
decalcify the sample, bone blocks were immersed in decalcifier for 4 weeks. Samples were
then dehydrated in alcohol with an increasing gradient concentration (60–100%), embedded
in paraffin and cut into sections with a thickness of 5 µm. Finally, bone tissue specimens
were stained with hematoxylin and eosin. Histological images were acquired using a
microscope slide scanner (OPTIKA, Ponteranica, Italia). Areas of new bone formation,
residual bone substitute and non-mineralized tissue in the defect were quantitatively
analyzed using image analysis software (ImageJ, National Institutes of Health, Bethesda,
MD, USA).

2.7. Statistical Analysis

Mean values and standard deviations of the percentages of newly formed bone, resid-
ual bone substitute and non-mineralized tissue quantified using micro-CT, and histological
images were calculated and presented. Differences between samples with various amounts
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of L-HA were investigated using one-way analysis of variance (ANOVA) with Duncan’s
post hoc test (SPSS Inc., Chicago, IL, USA). For all tests, statistical significance was defined
as a p value less than 0.05.

3. Results and Discussions
Characterization Results for Fe3O4 NPs

HA synthesized using common methodologies is of high molecular weight. To obtain
L-HA of a specific molecular weight, both physical methods (ultrasound, ozone, electron
beam, gamma-ray radiation and heat treatment) and chemical methods (enzyme and
acid degradation) are used to destroy H-HA’s main structure [25–28]. However, when
the main bonding chain of H-HA is destroyed, its viscoelasticity and water retention
properties undergo significant changes. In this study, 1H NMR spectra were used to
examine the chemical structure of the fabricated H-HA/L-HA hybrids. We found no
observable changes in chemical structure among these hybrids at different H-HA/L-HA
mixing ratios (Figure 2). These results are supported by a previous report which indicated
that γ-ray irradiation preserves HA’s fundamental structure [19,29].
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Figure 2. 1H NMR spectra of H-HA/L-HA hybrids at mixing ratios of (a) 80:20, (b) 50:50 and (c) 20:80.

Viscoelasticity is an important property of HA that allows the use of HA in various
medical applications. Our rheological tests showed that H-HA/L-HA with different
mixing ratios has almost the same complex modulus value at frequencies higher than 10
Hz (Figure 3a), meaning that the H-HA/L-HA hybrids used in this study retained their
elasticity at this frequency. This result is supported by a previous study which also reported
that hybrid complexes created by mixing high and low molecular weight HA maintained
their moduli and were suitable for the treatment of osteoarthritis [30]. Xue and coauthors
(2020) also fabricated H-HA/L-HA hybrids to evaluate their potential applications in
regenerative medicine and tissue engineering [31]. Their results showed that, when the
mixing ratio of H-HA:L-HA reached 80:20, the moduli reduced dramatically. This may
have been due to cross-linking of the H-HA and L-HA used in their experiment. In the
present study, NMR spectra readings showed no observable chemical shift peaks at 1.5 and
1.8 (Figure 2), which provides evidence that the fabricated hybrids were non-cross-linked
HA [31]. Complex modulus (root mean square of storage modulus and lost modulus)
is a characteristic of the overall ability to resist deformation when a dynamic force is
applied [22,32]. Results shown in Figure 3a indicate that 20% H-HA is sufficient to maintain
the H-HA/L-HA hybrid’s elastic properties. Since bone tissues are subjected to a stress
environment during daily life, the excellent elastic property shown in Figure 3a suggests
that the H-HA/L-HA hybrid used in this study has good applicability in orthopedics.
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prepared in this study.

However, a high proportion of H-HA reduces the osteoconductivity of H-HA/L-HA
hybrids. CT analysis shows no difference in new bone formation (Figure 5a), amount
of connective tissue (Figure 5b) or remaining material (Figure 5c) when artificial bone
defects treated with bone graft containing the 80-20 HA hybrid were compared to the
bone graft only group. This result consistent with a previous report that indicated the
major role of H-HA in graft material is to maintain a stable shape rather than directly
affect bone regeneration [10]. However, quantitative results show that bone defects treated
with bone graft and L-HA/H-HA hybrids containing higher L-HA amounts exhibit better
bone reparative processes (Figure 4). The new bone formation of bone defects treated
with the bone graft-HA hybrid complex with 50% and 80% L-HA in L-HA/H-HA hybrids
significantly increased new bone formation (Figure 5a) and decreased non-mineralized
tissue (Figure 5c). New bone formation in bone defects treated with 50 H-HA/50 LHA and
80 H-HA/20 L-HA hybrid complexes were 1.47 (p < 0.05) and 2.26 (p < 0.05) times higher
than defects treated with HA-free bone graft (Figure 5a). In addition, non-mineralized
tissue of these filling materials was decreased 1.62 fold for 50 H-HA/50 L-HA and 1.21
fold for 80 H-HA/20 L-HA hybrids (p < 0.05) (Figure 5c). A similar conclusion can also be
reached from histological assessment (Figure 6).
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Figure 6. Histological images of tissue sections at artificial defects in rabbit femoral condyles.
Microscopy images of bone graft with HA free (a,b), bone graft with 80 H-HA/20 L-HA (c,d), bone
graft with 50 H-HA/50 L-HA (e,f) and bone graft with 20 H-HA/80 L-HA groups (g,h). The symbol *
denotes the residual bone graft. Black arrows indicate newly formed bone. (upper panel: 40×; lower
panel: 200×).

Quantification of histological images showed new bone formation in bone defects
treated with 50 H-HA/50 LHA and 80 H-HA/20 L-HA hybrid complexes at 31.21 ± 4.72%
and 42.00 ± 4.72%, respectively. These values are significantly higher (p < 0.05) than
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samples filled with HA-free bone graft (19.67 ± 5.21%) (Figure 7a). The residual bone
substitute (33.38 ± 3.31%) and non-mineralized tissue (25.38 ± 3.21%) of the bone graft
mixed with 80 H-HA/20 L-HA hybrids were also significantly decreased compared to
the HA-free bone graft group (p < 0.05) (Figure 7b,c). These histological analyses also
indicate that artificial bone defects filled with more L-HA results in a better bone healing
process. Combined with the CT results (Figures 4 and 5) and histomorphometric analysis
(Figures 6 and 7), it is r0easonable to conclude that the effect of HA on bone healing is
strongly affected by its molecular weight. These results confirm that L-HA provides an
osteo-regenerative effect on bone reparation. Aguado et al. (2014) also investigated the
use of HA as an aqueous binder of β-TCP granules [10]. After implanting an HA/β-TCP
composite mixture into artificial holes drilled in the femoral condyle of rabbit legs, they also
found that β-TCP granules mixed with HA induce an increase in bone apposition. They
concluded that HA’s role appears to be as a vehicle only as it does not interfere with bone
remodeling; however, this is because only H-HA was used in their study. The effects of high
molecular weight HA on cell proliferation and differentiation remain controversial [13,33].
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Figure 7. Statistical analysis of histological quantification of (a) new bone formation, (b) residual bone substitute and
(c) non-mineralized tissue. Data are expressed as mean ± standard deviation. Symbols *, + and # denote significant
differences (p < 0.05) from the bone graft with HA free, bone graft with 80 H-HA/20 L-HA and bone graft with 50 H-HA/50
L-HA groups, respectively. Significance was determined using the post hoc Duncan test after one-way ANOVA.

The prepared 80 H-HA/20 L-HA hybrid shows a typical viscosity curve (Figure 3b).
The dynamic viscosity of this HA hybrid depends on the shear rate as a non-Newtonian
liquid at 0.005–10 s−1 [34]. When the amount of L-HA was increased to 80%, a shear thin-
ning phenomenon occurred as seen in the dramatically decreased slope (Figure 3b). When
the strain rate reached 2.8 s−1, the viscosity of this 20 H-80 L HA hybrid increased with the
increasing strain rate and exhibited shear-thickening. This hardening phenomenon can
provide a shock-damping function and protective effect when a sudden high-load impact is
applied [19]. Although the bone graft with 20 H-HA/80 L-HA hybrid demonstrated almost
double the new bone formation compared to the HA-free sample (Figures 5a and 7a), the
sharp decrease in viscosity (Figure 3b) reduced its adhesive properties and may limit the
applications of this material. For example, guided bone regeneration (GBR) is an important
dental surgery that regenerates bone mass and increases bone width for healing after artifi-
cial dental implant procedures. For years, the most commonly used material for GBR has
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been a mixture of hydroxyapatite and β-calcium triphosphate (β-TCP) [35–37]. However,
bone grafts composed of these two particles only are difficult to handle at posterior maxilla
due to sagging of the filling material [38,39]. Therefore, maintaining adequate viscosity for
operability and retaining the osteo-regenerative efficiency of fabricated bone graft compos-
ites has become an issue for investigation. It has been reported that when H-HA and L-HA
are mixed at a ratio of 1:1, their viscosity and in vitro resistance to enzymatic hydrolysis
can be improved [31,40]. Interestingly, combined data seen in Figures 3b, 4c and 6c indicate
that the fabricated bone graft composite containing the 50/50 (w/w) H-HA/L-HA hybrid
exhibited acceptable viscosity and significant new bone formation. This material may be a
potential candidate for sinus lift augmentation of the posterior maxilla.

The most important finding of this study is a confirmation that L-HA can promote
new bone formation and decrease the percentage of non-mineralized tissue during the
healing process (Figures 4–7). The mechanism of this osteo-regenerative effect was not
assessed in this study but has been reported by several investigations which indicate
that the effect of smaller hyaluronan molecules (at molecular weights ranging from 5 to
20 kDa) on regeneration is due to inducing cytokine and inflammatory responses at an
early stage [17,41]. However, an inflammatory response was not observed when current
bone graft composites were implanted into the bone defect (Figure 6), which may be due
to the molecular weight of L-HA used in this study being about 200 kDa [19]. For HA
with molecular weights in the 50–200 kDa range, tissue regeneration effects due to stem
cell differentiation [21] and cell proliferation [16] were reported. Ariyoshi et al. (2005)
indicated that L-HA promotes bone tissue engineering through enhancing the interaction of
RANKL and RANK, which activates the signal transduction pathway involved in osteoclast
differentiation [20]. However, besides the biological effects mentioned above, physical
factors should also be taken into account. In this study, a new hypothesis was proposed
to explain the positive effect of H-HA/L-HA hybrids on bone healing based on physical
properties. The high elasticity (Figure 3a) of the current H-HA/L-HA hybrid allows it to
exhibit a high level of resistance to hyaluronidase [17,30,31,42]. Thus, bone graft composites
with an L-HA proportion above 50% provide a niche to prolong the viscosupplementation
and bioactive effects in tissue engineering. In addition, low viscosity allows bone graft
composites to exhibit two other benefits for bone regeneration. The first benefit is that
L-HA can easily be released from the hybrid and allow bone regeneration. As a high
viscosity environment may hamper cell movement, the second benefit is that reducing
viscosity while maintaining elasticity the H-HA/L-HA hybrid can change the cell-area
mechanical environment and allow cells increased mobility [17].

In conclusion, a novel composite mixed with H-HA/L-HA hybrid and
hydroxyapatite/β-TCP can improve the osteoconductive properties of bone grafts. The
results present in this study suggest that a 1:1 H-HA/L-HA hybrid mixture can serve
as a supporting system to improve the operability of bone grafts and enhance new
bone formation.
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