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Abstract: The chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins
regulate the expression of chloroplast or mitochondrial genes that influence plant growth and
development. Although 14 CRM domain proteins have previously been identified in rice, there are
few studies of these gene expression patterns in various tissues and under abiotic stress. In our study,
we found that 14 CRM domain-containing proteins have a conservative motif1. Under salt stress, the
expression levels of 14 CRM genes were downregulated. However, under drought and cold stress,
the expression level of some CRM genes was increased. The analysis of gene expression patterns
showed that 14 CRM genes were expressed in all tissues but especially highly expressed in leaves. In
addition, we analyzed the functions of OsCFM2 and found that this protein influences chloroplast
development by regulating the splicing of a group I and five group II introns. Our study provides
information for the function analysis of CRM domain-containing proteins in rice.
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1. Introduction

The chloroplast RNA splicing and ribosome maturation (CRM) domain proteins play an
important role in plant growth and development by influencing RNA-binding activity according
to the characteristics and structure of their CRM domains [1,2]. CRM domain proteins regulate
chloroplast- or mitochondria-related gene expression through post-transcriptional regulation [3,4]. It
is reported that CRM proteins participate in the process of intron splicing and affect rRNA processing
in chloroplasts [5–7]. In plants, mutations in CRM genes lead to an albino seedling phenotype,
developmental delay, or sensitivity to abiotic stress [8–11].

Based on their structure and the count of CRM domains they contain, the CRM family proteins
can be divided into four subfamilies: The CRS1 subfamily, CAF subfamily, subfamily 3, and subfamily
4 [1,5]. Among these, CRS1 subfamily, CAF subfamily, and subfamily 3 proteins have been reported
to regulate the splicing of group I and group II introns [5]. Meanwhile, subfamily 4 proteins are
associated with the assemblage of the large ribosomal subunit [10]. The functions of CRM domain
proteins in Arabidopsis thaliana and maize have been widely reported. The first CRM gene, ZmCRS1,
has been identified and cloned in maize; the ZmCRS1 protein contains three CRM domains that can
directly bind to, and regulate splicing of atpF intron in chloroplasts [11]. The CFM3 protein also has
three CRM domains, which are related to splicing of trnG, rps16, ndhB, rpl16, petB, and petD introns in
A. thaliana [12]. CFM2 contains four CRM domains and affects group I and group II introns’ splicing
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in A. thaliana and maize [8,13]. Previous studies have indicated that CAF1 and CAF2 belong to the
CAF subfamily, and can interact with CRS2 to form CAF1–CRS2 and CAF2–CRS2 complexes, which
regulate the splicing of nine group II introns in chloroplasts [14,15]. Additionally, CRM domain
proteins are involved in the splicing of mitochondrial gene introns. In A. thaliana, CFM9 belongs to
subfamily 3, contains one CRM domain, and influences nad1, nad2, nad4, nad5, nad7, rps3, and cox2
intron splicing in mitochondria [9]. Both AtmCSF1 and AtmCSF2 contain two CRM domains and
are localized in the mitochondria. The AtmCSF1 affects cox2, nad1, nad2, nad5, nad7, and rps3 intron
splicing in mitochondria [4]. AtCFM4, in subfamily 4, contains one CRM domain and localizes to the
chloroplast while it affects the assemblage of 16S and the 4.5S process. It has been reported that atcfm4
mutants show sensitivity to abiotic stress, including cold and salt stress [10].

Previous studies have identified 14 CRM domain-containing proteins in rice [1,3]. Some
of these CRM domain-containing proteins were found to be associated with intron splicing in
chloroplast. Phenotypic analysis has shown that al2, oscfm3, and oscaf1 mutants exhibit seedlings’
albino phenotype [12,16,17]. OsCRS1 has been reported to participate in the splicing of group I and
group II introns, including trnL, petD, ndhA, ndhB, and ycf3-1 [16]. Meanwhile, OsCFM3 participates
in the splicing of group II introns involving rps16, rpl16, ndhB, and petD [12]. Our previous studies
showed that OsCAF1 interacts with the C-terminal of OsCRS2 to form OsCAF1–OsCRS2 complex that
can influence introns’ splicing of atpF, rpl2, rps12, ndhA, ndhB, and ycf3 [17]. Until now, the functions of
most CRM domain proteins in rice have not been reported.

In the present study, we analyzed the genes and protein structures of 14 CRM domain proteins
and identified the expression patterns of these genes in various tissues and under abiotic stress. We
edited Os04g0464800 (OsCFM2) using a CRISPR/Cas9 gene editing system and obtained two allele
mutants, oscfm2-1 and oscfm2-2, which both exhibited an albino seedling phenotype. We found that
OsCFM2 influences group I and group II intron splicing in chloroplast and plays an important role in
chloroplast development in rice.

2. Materials and Methods

2.1. Sequence Analysis and Phylogenetic Tree Construction

We acquired 14 CRM protein sequences and gene sequences from the rice genome annotation
project database. The gene structures of 14 CRM genes’ family were analyzed by the online gene structure
display server (GSDS, http://gsds.cbi.pku.edu.cn/) [18]. The conserved motifs of 14 CRM domain
proteins were analyzed using online motif elicitation software (MEME, http://meme-suite.org/) [19].
The parameters were as follows: 10 motifs in maximum, motif width with 6–50 residues, and
E-values < 1.00 × 10−20. A phylogenetic tree was built using the neighbor-joining method by 1000
bootstrap in MEGA-X software [20].

2.2. Plant Materials and Abiotic Stress Treatments

To study the expression pattern of CRM genes in various tissues, we obtained roots (R), culm (C),
young leaves (YL), expansion leaves (EL), and young spikelet (YS) at the booting stage. Germinated
seeds (Nipponbare) were transferred to a nutrient solution in an incubator and kept at 30 ◦C under a
16 h light/8 h dark cycle. Accordance to previous studies, we treated rice seedlings at the three-leaf
stage with low temperature (15 ◦C), salt stress (100 mM NaCl), and drought stress (10% PEG) for
3 days [21–23]. After taking leaves, samples were stored at −80 ◦C for further analysis.

OsCFM2/oscfm2-1 and OsCFM2/oscfm2-2 heterozygous plants were obtained using a CRISPR/Cas9
gene editing system with the Nipponbare, which were used as wildtype (WT). The oscfm2-1 and
oscfm2-2 mutants were acquired from the T1 generation of OsCFM2/oscfm2-1 and OsCFM2/oscfm2-2
heterozygous plants, respectively. The WT and two allele mutants were grown in a greenhouse under
a 16 h light/8 h dark cycle at a constant temperature of 30 ◦C.

http://gsds.cbi.pku.edu.cn/
http://meme-suite.org/


Biomolecules 2020, 10, 327 3 of 13

2.3. OsCFM2 Knockout with a CRISPR/Cas9 System

The rice gene editing methods were dependent on the CRISPR/Cas9 system [24]. For the first exon
of OsCFM2, we designed one gRNA target sequence (GCTCCTCCTCTTCCTCCCCCA) to construct
an intermediate vector, SK-gRNA-gOsCFM2-g1. Using Kpn I and Bgl II, intermediate vectors were
digested, and then gRNA-gOsCFM2-g1 was assembled into the pC1300-Cas9 vector.

2.4. Measurement of Chlorophyll Content and Fv/Fm

Fromthe 18-day seedlings, we took 50-mg leaf samples, cut them into small pieces, and immersed
them in 20 mL of 95% ethanol for 48 h in darkness at 4 ◦C. We then used a UV-1800PC spectrophotometer
to measure the absorbance of the samples at 665, 649, and 470 nm. Then, we calculated the chlorophyll
a, chlorophyll b, and total chlorophyll content according to the method of Lichtenthaler [25].

For Fv/Fm measurement, the WT and two allele mutants in the18-day seedlings were kept in
darkness for 30 min. Then, we measured the Fv/Fm with a handheld fluorometer according to the
manufacturer’s instructions.

2.5. Transmission Electron Microscopy (TEM)

Transmission electron microscopy analysis was carried out as previously described [26]. In the
two-leaf stage, the leaves of WT plants and oscfm2-1 mutants were collected and cut into 0.1 cm ×
0.1 cm pieces. Leaf samples were fixed in 2.5% glutaraldehyde and 1% OsO4. Then, samples were
dehydrated via an ethanol series and embedded in resin. Samples were stained with uranyl acetate
and alkaline lead citrate and after observed using a HitachiH-7500 transmission electron microscope.

2.6. RNA Extraction and Quantitative Real-Time PCR

Total rice RNA was extracted from samples using an RNA Extraction Kit (TaKaRa) according to
the manufacturer’s instructions. First-strand cDNA was obtained using a ReverTra Ace qPCR RT Kit
(TOYOBO). The quantitative real-time PCR (qRT-PCR) experimental procedure was as described in
a previous study [27]. In the present study, the OsAction1 gene was used as an internal control, and
the relative expression levels of genes were calculated using the 2−∆∆CT method [28]. All qRT-PCR
primers used are listed in Table S1.

2.7. Chloroplast Gene Intron Splicing Analysis

To analyze intron splicing in chloroplast genes, chloroplast genes containing at least one intron
were selected, and amplified using the RT-PCR method. The RT-PCR procedure was as follows: 96 ◦C
for 5 min, followed by 30 cycles of 96 ◦C for 40 s, 60 ◦C for 30 s, 72 ◦C for 45 s, and a final elongation
step at 72 ◦C for 10 min. All RT-PCR primers used in the present study are listed in Table S1.

3. Results

3.1. Gene and Protein Structure Analysis of Rice CRM Domain Proteins

The 14 CRM genes of rice are distributed among eight chromosomes: 1, 4, 5, 6, 8, 9, 10, and 11
chromosomes. Gene structure analysis indicated that the CRM genes contained 2–11 exons and the
coding sequences of these genes ranged from 759 to 3039 base pairs (bp) in length (Figure 1). The
CRM domain proteins encoded by these genes contained 252–1012 amino acids and their molecular
weights were in the range of 27.75–111.29 kDa (Table S2). We obtained Arabidopsis CRM domain protein
sequences from the Arabidopsis information resource database to build a phylogenetic tree (Figure 2).
All proteins in the CRS1 subfamily except OsCFM2 have four CRM domains, and OsCRS1, OsCFM3,
Os05g0551900, and Os09g0363100 contained three CRM domains. In the CAF subfamily, all proteins
contained two CRM domains while in subfamily 3 and subfamily 4, all proteins contained only one
CRM domain (Table S2). Only one CRM domain protein was identified in subfamily 4. Through
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TargetP program prediction, it was determined that nine of these CRM domain proteins were located
in the chloroplast, and five CRM domain proteins located in the mitochondrion (Table S2). Those
proteins’ actual subcellular localization needed to be verified by an experiment.

Figure 1. Structural analysis of CRM genes’ family. Yellow and blue boxes indicate coding sequences
and upstream or downstream untranslated regions, respectively. Black lines indicate introns. The scale
bar at the bottom shows the length of the CRM genes in Kb.

Figure 2. Phylogenetic tree of CRM domain proteins in rice and A. thaliana. The full amino acid
sequences of the CRM domain proteins were aligned by MUSCLE and the neighbor-joining tree was
constructed in MEGA X.

In addition, to further understand the structures of these 14 CRM domain proteins, we predicted
their conserved putative motifs using the online program MEME. In total, 10 motifs were identified and
named motif 1 to motif 10 (Figure S1). We found that 14 CRM domain proteins contained conserved
putative motif 1. It is interesting to note that motif 1 was located in the C-terminal of the CRS1 subfamily
proteins. Motif 5 and motif 8 only existed in the CRS1 subfamily in rice. Only CAF subfamily proteins
contain motif10 (Figure 3).
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Figure 3. Conserved putative motif analysis of CRM domain proteins in rice. Ten putative motifs are
shown in different colored boxes.

3.2. Expression Analysis of CRM Genes in Various Tissues

In order to study the expression patterns of CRM family genes in various tissues, we sampled
roots (R), culm (C), young leaves (YL), expanded leaves (EL), and young spikelet (YS) in the booting
stage for qRT-PCR analysis. The results indicated that the CRM family genes were expressed in all
tissues, but particularly high expressed in green tissues, especially in YL and EL, suggesting that they
might function in leaf development in rice (Figure 4). Some of the genes have previously been reported
to be involved in chloroplast development, such as OsCAF1 and OsCRS1.

3.3. Expression Analysis of CRM Genes under Abiotic Stress

Research has shown that CRM domain proteins play an important role in plant development and
growth [9,10,17]. Additionally, the CRM genes could also be involved in response to abiotic stress [29].
In A. thaliana, AtCFM4 belongs to subfamily 4, shown to be sensitive to salt and cold stresses [10].
However, the effect of abiotic stress on CRM gene expression in rice has not yet been reported. Abiotic
stresses include cold temperatures, high salt, and drought, which affect rice growth. To investigate
whether the expression of CRM genes was affected by abiotic stress, the expression levels of 14 CRM
genes were evaluated by qRT-PCR analysis under abiotic stress. Under cold stress, the expression levels
of five and four CRM genes were dramatically downregulated and upregulated, respectively, while
five genes involving Os11g0592400, Os05g0551900, Os09g0363100, Os04g0492900, and Os05g0145500
expression levels showed no significant change (Figure 5A). Under salt stress, the expression levels of 14
CRM genes were significantly downregulated (Figure 5B). Under drought stress, the expression levels
of five and three CRM genes were significantly downregulated and upregulated, respectively, and the
expression levels of six genes, including Os04g0464800, Os11g0592400, Os01g0958400, Os08g0188000,
Os01g0323300, and Os01g0495900 expression levels, showed no significant change (Figure 5C).
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Figure 4. Analysis of CRM gene expression in various rice tissues by qRT-PCR. Tissues, including
root (R), culm (C), young leaf, expansion leaf (EL), and young spikelet (YS), at the booting stage. The
relative expression level in each tissue was controlled by the gene expression level in the root. Data are
the mean ± SD for three biological replicates. * p < 0.05, ** p < 0.01 by Student’s t-test.
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Figure 5. Analysis of CRM gene expression in the leaves of three-leaf stages under (A) cold stress (15
◦C), (B) salt stress (100mM NaCl), and (C) drought stress (10% PEG). Data are the mean ± SD for three
biological replicates. * p < 0.05, ** p < 0.01 by Student’s t-test.

3.4. OsCFM2 (Os04g0464800) Influences Chloroplast Development in Rice

The Os04g0464800 gene belongs to the CRS1 subfamily and was homologous with AtCFM2,
so we named this gene OsCFM2. The function of OsCFM2 has not been studied until now. To
study the function of OsCFM2, we constructed the pC1300-Ubi::Cas9-gOsCFM2-target1 vector and
transformed the vector into Nipponbare using an Agrobacterium-mediated method [30]. In the T0

generation, we obtained nine transgenic plants. The sequencing results showed that only two of these
plants, OsCFM2/oscfm2-1 and OsCFM2/oscfm2-2, were heterozygotes plants. In the T1 generation, we
obtained two allele mutants: oscfm2-1 and oscfm2-2, from OsCFM2/oscfm2-1 and OsCFM2/oscfm2-2
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plants, respectively. Phenotypic analysis indicated that the mutants showed albinism in the seedling
stage (Figure 6A). In oscfm2-1 and oscfm2-2, the deletion of 2 and 11 bp in the first exon of the OsCFM2
gene coding sequence region, respectively, led to frame-shift mutations that resulted in a premature
stop codon (Figure S2). These results suggest that the mutation of OsCFM2 leads to the albino
seedling phenotype.

Figure 6. Mutation of OsCFM2 causes an albino phenotype in rice leaves. (A) Phenotypes of the WT
(left) and oscfm2-1 (middle) and oscfm2-2 mutants (right) at the seedling stage. Scale bar = 0.5 cm. (B)
Chlorophyll contents of WT and oscfm2-1 and oscfm2-2 mutants at the seeding stage. (C) The Fv/Fm
value of the WT and oscfm2-1 and oscfm2-2 mutants at the seeding stage. (D) qRT-PCR analysis of
genes related to chloroplast synthesis and photosynthesis in the WT and oscfm2-1 and oscfm2-2 mutants.
Values represent the mean ± SD (n = 3). ** p < 0.01 by Student’s t-test.

The chlorophyll a, chlorophyll b, and total chlorophyll contents were markedly reduced in
oscfm2-1 and oscfm2-2 mutants compared to the WT (Figure 6B). Additionally, the Fv/Fm values were
significantly lower in the oscfm2-1 and oscfm2-2 mutants than in the WT (Figure 6C). We also analyzed
the expression of genes related to chloroplast development and photosynthesis in oscfm2-1 and oscfm2-2
mutants and the WT. The results showed that the relative expression levels of genes associated with
chloroplast development and photosynthesis were significantly changed in mutants compared to the
WT. For example, the expression levels of PsaA, PsbA, rbcL, petC, PetG, and CHLM were remarkably
reduced in oscfm2-1 and oscfm2-2 mutants (Figure 6D), whereas genes encoding NEP and PEP, such as
rpoA, rpoB, RpoC1, and RpoTp, were significantly increased (Figure 6D).

We observed the ultrastructure of chloroplasts in 18-day-old WT and oscfm2-1 mutant leaves
by TEM. Normal chloroplasts and grana stacks were found in the WT (Figure 7A,B). In contrast, in
oscfm2-1 mutant, the chloroplast was abnormal, and appeared to stop developing at the proplastid
stage (Figure 7C,D). These observations suggest that a mutation in OsCFM2 influences chloroplast
development. Taken together, our results suggest that OsCFM2’s lack of function leads to abnormal
chloroplast development in rice.
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Figure 7. Chloroplast ultrastructure of WT (A, B) and oscfm2-1 mutants (C, D). cp, chloroplast, gl, grana
lamella. Bars = 2.0 µm.

3.5. OsCFM2 Influences the Splicing of Group I and Group II Introns

To test whether OsCFM2 affected the splicing of chloroplast gene introns, group I and group II
introns were amplified from the two allele mutants and WT. The results indicated that the splicing of
five group II introns, including rpl2, rps12, ycf3-1, atpF, and ndhA, were affected in mutants compared
to the WT (Figure 7A). Unlike in the WT, the atpF and ndhA introns were not completely spliced in
oscfm2-1 and oscfm2-2 mutants. The trnL group I intron was also not spliced in mutants (Figure 7A).
The qRT-PCR analysis showed that rpl2, rps12, ycf3, atpF, ndhA, and trnL gene expression levels were
decreased in oscfm2-1 and oscfm2-2 mutants compared with the WT. These results suggest that OsCFM2
may affect chloroplast development by influencing the splicing of group I and five group II introns.
However, the other 10 group II introns had normal splicing in oscfm2-1 and oscfm2-2 mutants compared
with the WT (Figure S3).

4. Discussion

Genomic structural analysis indicated that 14 CRM genes in rice contain introns (Figure 1). In rice,
5, 4, 4, and 1 of the 14 CRM proteins are classified as CRS1, CAF, subfamily 3, and subfamily 4 proteins,
respectively (Figure 2). Protein motif analysis showed that the protein motifs in each subfamily were
highly conserved (Figure 3). Proteins in the CRS1 subfamily were found to contain more motifs than
those in other subfamilies. All proteins in the CRS1 subfamily except OsCRS1 contained eight motifs
while the other four proteins contained nine motifs. There were five and four motifs in the CAF
subfamily and subfamily 3, respectively (Figure 3). Our results indicated that the proteins in each
subfamily harbored different numbers of conserved motifs, suggesting that these proteins might have
different functions in rice. For example, in the CRS1 subfamily, OsCRS1 influences intron splicing
in trnL and multiple group II introns [16]. Meanwhile, in the CAF subfamily, OsCAF1 regulates the
splicing of some group II introns in chloroplasts [17]. The functions of the CRM domain proteins of
different subfamilies may therefore be differentiated.

Expression analysis showed that the 14 CRM genes were most highly expressed in rice leaves
(Figure 4); this result was consistent with previous studies. It is reported that OsCRS1 and OsCAF1
are highly expressed in rice leaves [16,17]. Phenotypic analysis showed that oscrs1 and oscaf1 mutants
exhibit an albino phenotype in the seedling stage [16,17]. This result suggested that the CRM
family genes might play a key role in chloroplast development in leaves. We noticed that the CRM
family genes were also highly expressed in young spikelets, suggesting that they might function in
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spikelet development (Figure 4). It iss reported that ZmmCSF1 and AtmCSF1 were essential for seed
development [4,31]. Therefore, Os08g0174900, which is homologous with AtmCSF1, may also play an
important role in seed development in rice.

It has been reported that in A. thaliana, AtCFM4 and AtCFM9 influence seedling growth under
cold and salt stress [9,10]. In the present study, we found that the expression levels of CRM genes
were changed under abiotic stress, especially under salt stress, which might affect intron splicing in
chloroplast or mitochondrial genes, leading to increased sensitivity to abiotic stress in rice (Figure 5).
Further study is required to elucidate the molecular mechanism of the CRM domain protein response
to abiotic stress.

The CRM domain proteins play key roles in plant growth and development [3,32]. Many intron
splicing factors have been identified in different plants, involving PPR family and CRM family
proteins [33,34]. For example, WSL4, SOT5, and THA8 affect chloroplast genes’ intron splicing in rice,
A. thaliana, and maize, respectively [35–37]. There is evidence to indicate that CRM proteins have a
high affinity for group II intron RNA in vitro [38]. In rice, some CRM proteins might have similar
functions, influencing the splicing of group II introns. It has been reported that OsCAF1, OsCFM3,
and OsCRS1 could influence the splicing of multiple group II introns in rice [12,16,17]. The molecular
mechanism underlying the regulation of chloroplast gene intron splicing by CRM proteins might be
different in various plants. In A. thaliana and maize, AtCRS1 and ZmCRS1 only influence atpF intron
splicing while OsCRS1 influences the splicing of many introns, including atpF, petD, ndhA, ndhB, ycf3-1,
and trnL [11,13,16]. In the present study, we found that OsCFM2 affected intron splicing in ycf3-1, rpl2,
rps12, atpF, ndhA, and trnL, which is unlike AtCFM2 in A. thaliana (Figure 8).

Figure 8. Intron splicing and gene expression analysis. (A) Splicing analysis of chloroplast genes
introns in WT and oscfm2-1 and oscfm2-2 mutants. S indicates spliced transcripts. U indicates unspliced
transcripts. (B) Expression analyzed of atpF, rpl2, rps12, ycf3, ndhA, and trnL in WT and mutants. Values
represent the mean ± SD (n = 3). ** p < 0.01 by Student’s t-test.

The oscfm2-1 and oscfm2-2 mutants exhibited an albino phenotype and survived for about three
weeks (Figure 6A). In mutants, chloroplast development is abnormal and chlorophyll content was
significantly decreased (Figure 6B). This result suggests that disruption of the function of OsCFM2
affected chloroplast development. In the rice genome, except for OsCFM2, the CRS1 subfamily contains
OsCRS1, OsCFM3, Os05g0551900, and Os09g0363100. We examined the expression levels of these four
genes among WT and mutants. The results showed that their expression levels were upregulated in
oscfm2-1 and oscfm2-2 mutants compared to the WT (Figure S3). This result suggests that on the one
hand, there might be negative regulation between OsCFM2 and other CRS1 subfamily genes at the
transcript level. On the other hand, this may be a feedback mechanism in which the cells try to increase
the expression of the four CRS1 family’s genes to improve the splicing efficiency of the chloroplast
genes’ intron but failed to compensate for the phenotype of the OsCFM2 mutation.
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The OsCAF1 influences intron splicing in atpF, rpl2, rps12, ndhB, ycf3, and ndhA [13]. OsCRS1 not
only affected the splicing of the trnL intron but also the atpF, rpl2, ndhA, ndhB, petB, and ycf3 introns in
rice [17]. Therefore, OsCFM2 may have functional overlap with OsCAF1 and OsCRS1, but it is not
redundant. These results indicate that OsCFM2 is functional and necessary for chloroplast development.

5. Conclusions

In the present study, we analyzed the expression patterns of 14 CRM genes’ family in different rice
tissues and under abiotic stress. Moreover, we characterized the function of OsCFM2, which plays a
key role in chloroplast development in rice. Our study provides information for the functional analysis
of CRM domain proteins in rice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/2/327/s1,
Figure S1: MEME analysis shows each motif of the 14 CRM protein in rice, Figure S2: Mutation types of oscfm2-1
and oscfm2-2 mutants, Figure S3: Splicing analysis of chloroplast gene introns, Figure S4: Expression analysis of
CRS1 subfamily genes in WT rice plants and oscfm2-1 and oscfm2-2 mutants, Table S1: Primers for this study, Table
S2 Characteristics of 14 CRM domain proteins in rice.
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