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a b s t r a c t

Several parasite species, particularly those having complex life-cycles, are known to induce phenotypic
alterations in their hosts. Most often, such alterations appear to increase the fitness of the parasites at the
expense of that of their hosts, a phenomenon known as “host manipulation”. Host manipulation can have
important consequences, ranging from host population dynamics to ecosystem engineering. So far, the
importance of environmental changes for host manipulation has received little attention. However,
because manipulative parasites are embedded in complex systems, with many interacting components,
changes in the environment are likely to affect those systems in various ways. Here, after reviewing the
ecological importance of manipulative parasites, we consider potential causes and consequences of
changes in host manipulation by parasites driven by environmental modifications. We show that such
consequences can extend to trophic networks and population dynamics within communities, and alter
the ecological role of manipulative parasites such as their ecosystem engineering. We suggest that taking
them into account could improve the accuracy of predictions regarding the effects of global change. We
also propose several directions for future studies.
© 2015 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an

open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Understanding the consequences of environmental changes has
become a major challenge in recent years in many fields of science.
Parasitology is among the most sensitive topics regarding the ef-
fects of global changes, since accurate predictions about the
expansion of parasites and their hosts might be essential to take
appropriate measures to prevent epidemic diseases. Moreover, an
increasing number of reviews have highlighted the potential
impact of climate change on parasitism (e.g. MacLeod and Poulin,
2012; Marcogliese, 2001; Morley and Lewis, 2014). As a result,
the number of theoretical models providing simulations about the
future geographical range of parasites and their vectors is
increasing too. However, most predictive parasitological studies
have been limited to vector-borne diseases affecting either humans,
livestock, or domestic animals (Genchi et al., 2009; Giles et al.,
2014; Moore et al., 2012; Mordecai et al., 2013; Paaijmans et al.,
2010; Stensgaard et al., 2013; Sternberg and Thomas, 2014; White
et al., 2003), with noticeable exceptions such as blood parasites in
wild birds (Fuller et al., 2012; Loiseau et al., 2013).
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Parasitic organisms altogether might represent close to half of
all biodiversity (Dobson et al., 2008; Poulin and Morand, 2000).
Apart from causing diseases, there is increasing evidence that they
can play pivotal roles in ecosystems (Thomas et al., 1997; Hatcher
et al., 2012). In particular, many parasites are able to alter their
hosts’ phenotypes, with far-reaching consequences for, for
instance, population dynamics or the persistence of species in
ecosystems (Lef�evre et al., 2009).

Parasites that are able tomanipulate their hosts are very diverse,
ranging from viruses (Ingwell et al., 2012) and bacteria (Werren
et al., 2008) to many eukaryote organisms, including animals
such as cestodes, trematodes, or acanthocephalans (Poulin and
Thomas, 1999). The number of hosts susceptible to be manipu-
lated by parasites is also wide, including both vertebrate and
invertebrate species (Poulin and Thomas, 1999), and even plants
(Ingwell et al., 2012). Interestingly, the inventory of manipulative
parasites also includes medically and veterinary important species
that are already well studied (Hurd, 2003; Lagrue and Poulin, 2010),
such as parasites causingmalaria (Koella et al., 1998), toxoplasmosis
(Berdoy et al., 2000), or rabies (Klein, 2003). However, even though
the manipulative abilities of those parasites could have implica-
tions for epidemiology and pathology (Lagrue and Poulin, 2010),
epidemiologic models tend to completely ignore them.
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Similarly, despite the importance of host manipulation by par-
asites for ecosystems and health, the effects of environmental
changes on their ecological roles are largely ignored. After
emphasizing the ecological importance of manipulative parasites,
we show here that environmental changes can interact with them
in many different ways, leading to consequences that deserve more
attention, especially in the area of conservation, in order to make
accurate predictions regarding the effects of global change.

2. Ecological importance of host manipulation by parasites

Parasites are widely recognized to have numerous effects on
communities and ecosystems, in particular through density-
dependent pathogenic effects on their hosts (Hatcher et al., 2012).
For instance, differential host susceptibility and tolerance can
reverse the outcome of competition, when the fitness of the su-
perior competitor is more impaired by parasitic infection than that
of other host species. The presence of parasites might then lead to
the coexistence of several species that would otherwise exclude
each other. Moreover, parasites influence the organization of
communities and, through that, play such an important role in the
stability of ecosystems that they have been proposed to serve as a
proxy of their quality (Hudson et al., 2006). On the other hand,
parasites can also have negative effects on biodiversity, such as
causing local extinctions (McCallum and Dobson, 1995).

An important aspect is that all parasites are embedded in large
food webs. In particular, parasites with complex life-cycles have the
potential to impact several host species in succession, making their
global impact (see below) even more consequent. Some of those
parasites are able to induce phenotypic modifications in their in-
termediate hosts, which are believed to be more than simple
pathological effects. Through host manipulation, parasites are
thought to enhance their own fitness, in particular by increasing
their probability of transmission from one host to another, at the
expense of that of their hosts (Thomas et al., 2005). Many theo-
retical as well as empirical studies have highlighted that this phe-
nomenon, along with more classic pathogenic effects, can have
profound ecological impacts on a large scale, ranging from host
populations to ecosystems (Lef�evre et al., 2009). Although manip-
ulative parasites can affect ecosystems in diverse ways, three major
effects can be distinguished: the impact of parasites on food webs,
their influence on the population dynamics of host species, and
their impact on habitats.

2.1. Impact on food webs

Trophically-transmitted parasites often manipulate their inter-
mediate hosts in ways that increase their probability of being
predated by definitive hosts. For instance, killifish (Fundulus par-
vipinnis) parasitized by the trematode Euhaplorchis californiensis
are up to 31 times more susceptible to predation than uninfected
individuals (Lafferty and Morris, 1996). The effect on the energy
flow is even more substantial considering that the increased
vulnerability to predation induced by parasites is often not
restricted to suitable hosts (Kaldonski et al., 2008; Sepp€al€a et al.,
2008b), leading to a higher predation by other species, as illus-
trated by cockles (Austrovenus stutchburyi) being exploited as in-
termediate hosts by trematode parasites. Infected cockles typically
remain lying on the sediment surface (Thomas and Poulin, 1998),
where they are more conspicuous to birds that serve as a definitive
host for trematodes. However doing so, infected cockles also
become more vulnerable to predation by fish which constitute
'dead-end' predators for parasites (Mouritsen and Poulin, 2003).

Manipulative parasites can also create new trophic interactions.
One of the most spectacular examples comes from nematomorph
parasites (Gordionus spp.), which induce their terrestrial insect
hosts into jumping in the water (a crucial stage in the life cycle of
the parasite; Sato et al., 2011). Empirical evidence shows that
manipulated insects represent a new and substantial energy intake
for fish (Sato et al., 2011), with the interesting consequence of
decreasing fish predation on benthic invertebrate communities,
thus leading to subsequent decrease in algae biomass, and, ulti-
mately, to a reorganization of the whole ecosystem (Sato et al.,
2012).

Another impact of parasites on food webs, though not neces-
sarily restricted to manipulative ones, lies in the alteration of the
functional role of their hosts. For instance, several acanthocephalan
parasites are known to alter the feeding ecology of their interme-
diate hosts, decreasing predation rate in amphipods (Fielding et al.,
2003) or reducing the consumption of detritus in isopods
(Hernandez and Sukhdeo, 2008). Such alterations can have sub-
stantial effects within ecosystems, especially when modified host
species play important functional roles (Hernandez and Sukhdeo,
2008).

2.2. Impact on population dynamics

Host modifications induced by manipulative parasites are likely
to alter hosts population dynamics and structure. For instance, the
trematode Gynaecotyla adunca alters the vertical distribution of its
snail host on sandbars (Curtis, 1987). Several gammarid species
infected by acanthocephalan parasites present altered geotactic or
phototactic preferences (Bauer et al., 2005, 2000; Haine et al.,
2005), supposed to drive them to areas where they are more
exposed to predators. By altering both the behavior and
morphology of their hosts, parasites can then lead them to occupy
new ecological niches (Miura et al., 2006; Ponton et al., 2005).
Along with effects on individual distribution, other phenotypic al-
terations induced by manipulative parasites are likely to induce
ecological segregation, through dividing the host population into
two sub-units consisting of infected vs. uninfected individuals, each
of them having its own properties (Lef�evre et al., 2009).

Manipulative parasites are also likely to modify predator-prey
dynamics. Evidence from mathematical modelling (Fenton and
Rands, 2006) suggests that manipulation can influence both
predators' and prey's abundance, and induce oscillations in their
population densities that are likely to have consequences on the
dynamics of other species within the ecosystem. Accordingly,
Lafferty and Kuris (2012) suggested that the parasite Echinococcus
granulosus might be responsible for the persistence of moose and
wolves on Isle Royale. Indeed, recordings suggest that infection
with E. granulosus increases moose vulnerability towolves (Joly and
Messier, 2004). As suggested by another mathematical model
(Hadeler and Freedman, 1989), the parasite might be essential for
wolves to be able to feed on moose, and to persist in the ecosystem.
The presence of the parasite and its interaction with moose and
wolves might actually prevent the demographic explosion of
moose populations, which would lead to over-grazing followed by
starvation, as was observed before colonization by wolves (Lafferty
and Kuris, 2012).

Similarly, manipulative parasites can drive competition be-
tween hosts. In the same way that non-manipulative parasites can
affect closely-related host species with different susceptibility and
tolerance to infection, host species can also present different sus-
ceptibility to manipulation. Hatcher et al. (2014) used a mathe-
matical model to show that parasite manipulation can change the
outcome of the competition between two hosts showing mutual
predation, and determine whether the two host species can coexist
or not. In addition, some studies have shown that parasites do not
always manipulate closely-related host species to the same extent
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(Bauer et al., 2000; Thomas et al., 1995). For instance, amphipods
Gammarus pulex infected by the acanthocephalan Pomphorhynchus
laevis show reversed phototaxis, while that of infected Gammarus
roeseli remains unaltered (Bauer et al., 2000).
2.3. Impact on habitats

By modifying the phenotypes of their hosts, manipulative par-
asites may create new habitats for other species, or change habitats'
parameters, endorsing the role of ecosystem engineers (Thomas
et al., 1999). When infected by the parasite Sacculina carcini, the
green crab, Carcinus maenas, stops molting (O'Brien and van Wyk,
1985). Its cuticle then becomes a permanent substrate on which
an epibiont community can develop (Mouritsen and Jensen, 2006;
Thomas et al., 1999). Another illustration comes from cockles (see
paragraph 2.1.) infected by trematode parasites. Parasitized in-
dividuals, which are unable to burrow in the sand, also become a
substrate with new properties for epibionts to colonize. Thomas
et al. (1998) showed that the presence of parasites can then facili-
tate the coexistence of two epibionts, anemones and limpets, by
providing the limpets with a new substrate unsuitable for anem-
ones due to their vulnerability to desiccation, thus preventing them
from predating upon limpets. Moreover, Mouritsen and Poulin
(2005) put forward that biodiversity is higher on mudflats when
those parasites are present, an observation that could be explained
by the cockles' impaired bioturbation potential.
3. How environmental changes can alter the roles of
manipulative parasites

Parasite manipulation results from complex interactions be-
tween properties of parasites, properties of their hosts, and many
biotic and abiotic environmental factors (Fig. 1). It appears there-
fore very plausible that any environmental change might affect not
only manipulation itself, but also its consequences. Considering the
effects of parasite manipulation on a large scale, those conse-
quences might in turn induce new environmental changes or
modify their intensity, thus altering the role of parasites within
Fig. 1. Schematic representation of all the interacting factors in a system involving
parasite manipulation. The intensity of host manipulation induced by parasites is likely
to be influenced by a variety of parameters concerning the parasites, their hosts and
environmental properties. In return, manipulation can also have an impact on those
parameters. Moreover, all components in the systems also interact with each other.
ecosystems. To emphasize the complexity behind all the interacting
components of systems involving parasite manipulation, illustrated
in Fig. 1, we provide here a few examples about the outcome of the
interaction between manipulative parasites and several environ-
mental modifications of major concern.

3.1. Climate change

Temperature is one of the most important abiotic factors
affecting parasites’ biology (see Morley and Lewis, 2014; Morley,
2011; Thomas and Blanford, 2003 and references therein). When
focusing on parasite manipulation, it is important to take into ac-
count that modifications induced by environmental factors on the
ways parasites alter their hosts are likely to be indirect. Indeed, the
intensity of parasitic manipulation is dependent on many param-
eters intrinsic to the physiology, morphology or population dy-
namic of both hosts and parasites (reviewed in Table 1). Any
environmental factor affecting those parameters is then susceptible
to also have effects on the extent of host modifications induced by
parasites. Acanthocephalan parasites and their amphipod inter-
mediate hosts constitute one of the most studied hosteparasite
systems in the word of parasite manipulation (C�ezilly et al., 2013).
Various studies have shown that several traits in both hosts and
parasites can be important to explain variation observed in the
intensity of manipulation at the intraspecific level (Table 1). Inter-
estingly, many of those traits appear to be sensitive to temperature,
as well as to other environmental factors (Fig. 2). For instance,
several studies suggest that the time taken by one parasite to
develop in its intermediate host could subsequently affect the in-
tensity of behavioral alterations in that host (Franceschi et al.,
2010b, 2008). As for many other parasites, the development time
of acanthocephalans is largely influenced by temperature (Tokeson
and Holmes, 1982), which thus can indirectly drive the intensity or
timing of manipulation.

Climate-mediated physiological stress can have substantial ef-
fects on host immunity, thus increasing host susceptibility to
infection (Cheng et al., 2005; Dittmar et al., 2013). Beyond an in-
crease in the number of infected hosts, the intensity of manipula-
tion may also depend upon host immuno-competence (Adamo,
2002). Therefore, climate-mediated stress may lead to widely
infected and manipulated populations. On the other hand, some
manipulative parasites have been shown to suppress the immune
response of their hosts (Cornet et al., 2009), a phenomenon that
could increase host susceptibility to manipulation, but also to
infection by other parasites (Cornet and Sorci, 2010). The cumula-
tive effects of both parasite immune-suppression and climate-
mediated stress have not been investigated yet, but the combina-
tion of the two phenomena may ultimately increase host mortality,
with potential consequences for both host and parasite population
dynamics.

Several manipulative parasites also present seasonal variations,
not only in their prevalence, but also in the intensity of their
manipulation. For instance, some acanthocephalan parasites induce
a stronger change in refuge use by their isopod hosts during spring,
compared to summer or fall (Benesh et al., 2009a). Benesh et al.
(2009a) suggested that seasonal variations in isopod behavioral
alterations could result from a manipulation strategy adjusted to
seasonal variation in the diet of definitive hosts. Regardless of
whether seasonal modifications in manipulation are adaptive or
not, temperature changes are very likely to alter such seasonality
through their influence on both host and parasite ecology. For
instance, a spatial overlap between intermediate and definitive
hosts might appear only during a short period of time (Marcogliese,
2001). Under such circumstances, one would expect parasite's
manipulative efforts to have been tuned by natural selection to



Table 1
Parameters affecting the intensity of parasite manipulation.

Parameter Host Parasite Trait modified Reference

Parameters intrinsic to the parasite
Age/stage of the parasite Amphipod Acanthocephalan Phototaxis Franceschi et al., 2010a, 2008

Amphipod Acanthocephalan Refuge use Dianne et al., 2011
Isopod Acanthocephalan Mating behavior Sparkes et al., 2006
Insect Protozoan Host-seeking Koella et al., 2002
Insect Nematomorph Jumping into water Sanchez et al., 2008
Rodent Nematode Activity Dolinsky et al., 1985
Fish Trematode Aggressiveness Mikheev et al., 2010

Parasite sibship Amphipod Acanthocephalan Phototaxis Franceschi et al., 2010a
Parasite population Amphipod Acanthocephalan Phototaxis Franceschi et al., 2010b; Labaude et al., 2015
Genetic strain Amphipod Acanthocephalan Phototaxis Perrot-Minnot, 2004
Parasite sex Isopod Acanthocephalan Colouration Benesh et al., 2009a,b
Parasite size Amphipod Acanthocephalan Phototaxis Dianne et al., 2012

Fish Cestode Demelanization Ness and Foster, 1999
Parameters intrinsic to the host
Host size Isopod Acanthocephalan Colouration Benesh et al., 2009a,b
Host weight Amphipod Acanthocephalan Activity Dianne et al., 2014
Host age Fish Trematode Motionless Poulin, 1993
Parameters relative to the infection
Parasites total volume Isopod Acanthocephalan Colouration Benesh et al., 2009a,b
Parasite load Amphipod Acanthocephalan Phototaxis Franceschi et al., 2008

Fish Trematode Motionless Poulin, 1993
Mollusc Trematode Burrowing ability Mouritsen and Poulin, 2003

Multi-infection with Amphipod Acanthocephalan Phototaxis Dianne et al., 2010
Different stages Copepod Cestode Activity Hafer and Milinski, 2015
Multi-infection with different parasite species Amphipod Acanthocephalan, microsporidia Geotaxis Haine et al., 2005

Amphipod Acanthocephalan Vertical distribution C�ezilly et al., 2000
Mollusc Trematodes Distribution Miura and Chiba, 2007
Mollusc Trematodes Shell size Miura and Chiba, 2007
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coincide with this period, in order to maximize transmission.
However, rapid changes in temperatures leading to modifications
in the spatial distribution of both hosts and parasites may even-
tually result in the peak of manipulative efforts occurring at the
wrong time.
Fig. 2. Examples of the impacts of temperature on a system of gammarid species infected by
or a bird). Solid lines represent assumption supported by studies, while dotted lines are ex
influences the time of development or parasites within the intermediate hosts, which is like
studies suggested that (2) the time of development of parasites is linked to the intensity of th
increase of predation rate between the final host and the intermediate host. (4) Tempera
influencing its predation rate (Bystr€om et al., 2006). Altogether, (6) modifications in man
Meanwhile, (7) temperature also affects the metabolism of gammarid hosts (Issartel et al.,
infection depends on food consumption, the risk of infection might vary accordingly, affec
temperature is also likely to alter the intensity of manipulation, for instance through its ef
population dynamic.
Direct effects of temperature on host manipulation are poorly
known. Considering that the behavior of uninfected individuals can
be dependent upon temperature, and knowing that temperature
affects both host and parasite metabolism (see for example Le Lann
et al., 2014; where the behavior and physiology of both aphid hosts
acanthocephalan parasites. Final host varies depending on parasite species (either a fish
pectations that remain to be investigated. In this system, (1) the temperature widely
ly to be driven by the metabolic rate of parasites (Tokeson and Holmes, 1982). Several
eir manipulation (Franceschi et al., 2010b, 2008), which in turn might (3) influence the
ture is also likely to influence the final host metabolism (Bystr€om et al., 2006), (5)
ipulation and predation rates are likely to induce changes in parasites' population.

2005), inducing changes in their food consumption (Pellan et al., 2015). (8) Given that
ting parasites' population. Although its direct effect has not been investigated yet, (9)
fect on hosts' metabolism and activity, and therefore (10) secondarily impact parasite
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and their parasitoids are altered by temperature in different de-
grees), there is every reason to believe that temperature could
affect the intensity of host modifications induced by parasites. In
addition, parasite manipulation can directly involve behaviors
related to temperature. For instance, Macnab and Barber (2012)
showed that plerocercoid parasites induce a preference for
warmer temperatures in their fish host, a result also found in snails
infected by a trematode parasite (Bates et al., 2011). As it is the case
for many other altered host traits, such an attraction can lead to a
spatial segregation between infected and uninfected individuals.
However, as the ambient temperature reaches the temperature
preferred by infected individuals, this dichotomy would disappear,
along with its potential environmental effects (see paragraph 2.3).

In oceans, the rise of CO2 not only induces an increase in tem-
perature, but is also accompanied by a decrease of pH, a phenom-
enon known as ocean acidification (Feely et al., 2004). Ocean
acidification induces deep biological negative consequences, such
as decreased calcification rates in phytoplankton, corals and mol-
lusks (Feely et al., 2004), but also alterations in metabolism, growth
or survival in various invertebrate larvae (e.g. Bechmann et al.,
2011). By analogy, similar negative effects have been suspected in
parasites, particularly those with free-stage larvae (MacLeod and
Poulin, 2012), and a recent study showed that exposure to experi-
mentally acidified water reduces survival and longevity in cercariae
and metacercariae of four species of marine trematodes (MacLeod
and Poulin, 2015). However, another study showed that the im-
mune response of the mussel, Mytilus edulis, was more affected by
modifications in temperature than in pH, although both a high
temperature and a decrease in pH changed the abundance and
diversity of pathogens (Mackenzie et al., 2014). Indirect effects of
ocean acidification on parasite manipulation can be expected,
through such negative effects on hosts and parasites (Fig. 1), and
could, like other stressors, destabilize trophic interactions
(MacLeod and Poulin, 2012). However, the direct effect of ocean
acidification on manipulation is unknown, and remains to be
investigated.

3.2. Changes in community composition: biological invasions

The introduction of non-native species in new areas is often
associated with the globalization of human transportation around
theword, but alsowith alterations in habitat parameters, that make
them suitable for non-native species. Biological invasions represent
a major cause of biodiversity loss, and often induce profound
changes in native communities' structure, leading to new envi-
ronmental modifications (Molnar et al., 2008). The invasion success
of an exotic species in a new area relies on many factors, including
properties of the new ecosystem as well as properties of the
invading species. There is increasing evidence that parasites may
play an important role in the successful establishment of invasive
species (Dunn et al., 2012). Interestingly, manipulative parasites
have received much attention from scientists in relation to bio-
logical invasions.

There are many ways in which manipulative parasites can in-
fluence invasion success. First, following the “enemy release hy-
pothesis”, species might escape their parasites when invading a
new area (Torchin and Mitchell, 2004; Torchin et al., 2002). This
phenomenon might, among other reasons, result from the fact that
the invasion process is initiated by a small number of individuals,
thus reducing the probability that they bring with them the whole
community of parasite species from their native range. Moreover,
manipulative parasites often present complex life-cycles, and are
thus sensitive to the absence of any obligatory host in the new
ecosystem. Torchin et al. (2005) found that while a native mud snail
was infected by ten native trematode parasites, an introduced
sympatric mud snail only harbored one introduced trematode. This
“enemy release” directly leads to “parasite manipulation release”,
which is likely to have consequences. For instance, the predation
facilitation induced by some parasites is supposed to negatively
impact the population dynamics of their hosts. Conversely, an
absence of parasites might then lead to an explosion of the host
population (as suggested above in the case of moose and wolves;
see paragraph 2.2).

Parasites can also have indirect effects by affecting the
competitive interactions between native and invasive closely-
related host species, through differential effects on each host spe-
cies (Hudson and Greenman, 1998; see paragraph 2.3). Mediated
competition is often highlighted in the case of parasites causing a
highermortality due to pathogenic effects in one of the competitive
host species (Dunn et al., 2012). Apart from pathogenic effects, host
mortality can also be driven by the consequences of manipulation,
especially when parasites alter the behavior of their intermediate
hosts in ways that increase their probability of being predated by
definitive hosts. In many French rivers, the native amphipod
G. pulex has to face competition from its closely-related invader,
G. roeseli (Karaman,1977). Although both species can be infected by
the acanthocephalan P. laevis, only the native species shows a
reversed phototactic behavior when infected (Bauer et al., 2000).
The same result has been found in the Irish native amphipod
G. duebeni celticus, whose phototaxis is altered by the acantho-
cephalan Polymorphus minutus, while that of its invasive rival
Gammarus tigrinus is not (MacNeil et al., 2003a,b). In both cases,
only the native species has to face an increase in predation by fish
when infected, which is likely to facilitate the invasion by the
congeneric rival species (Lagrue et al., 2007). However, other
altered behaviors may influence the competition between native
and exotic rivals. For instance, the Irish amphipod G. d. celticus is
being replaced by the introduced G. pulex, which induces numerous
changes in freshwater macroinvertebrate communities (Kelly et al.,
2006). Dick et al. (2010) reported that G. pulex harboring the
acanthocephalan Echinorhynchus truttae have a higher predatory
rate, consuming significantly more preys than uninfected in-
dividuals. Together with a higher parasitic prevalence compared to
the native species (Dick et al., 2010), this functional response could
give a competitive advantage to the invasive species. Conversely,
Sargent et al. (2014) found that parasites Microphallus spp. reduce
the foraging behavior of the invasive crayfish species Orconectes
rusticus, potentially affecting its invasion success.

Competition between native and exotic species can be more
direct, particularly when predation occurs between them. Manip-
ulative parasites have the potential to drive the outcome of such a
competition, as has been shown by Hatcher et al. (2014) (see
paragraph 2.2). The replacement of Irish G. d. celticus amphipods by
G. pulex (see above) can be partly explained by mutual predation
biased in favor of the invader. However, infection with the acan-
thocephalan E. truttae reduces the predatory impact of the exotic
species, thus potentially slowing down the invasion process
(MacNeil et al., 2003a,b). This example also highlights the
complexity of the impact of parasites: being infected can be both a
disadvantage (lowered ability to predate upon the competitor
species) and an advantage for the invasive species (modification of
the functional response, see above). In the field, the impact of
parasites on the competitive abilities of their hosts can be deduced
from spatial variation in co-occurrence. For instance, the amphipod
Crangonyx pseudogracilis co-occurs with G. pulex more frequently
when the latter is parasitized by P. minutus, a phenomenon that can
be explained by a reduced predation rate on C. pseudogracilis by
parasitized G. pulex (Macneil and Dick, 2011).

Another aspect of biological invasions concerns the introduction
of new parasites within an ecosystem. In particular, invasive species
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can bring new parasites with them, which are also likely to inter-
fere with the invasion process. Bacela-Spychalska et al. (2014) re-
ported that the microsporidian Cucumispora dikerogammari, which
dispersed together with its invasive host Dikerogammarus villosus,
is likely to decrease its host's predatory pressure on communities
through altered behavior. Moreover, the arrival of new parasite
species, which might be able to affect both invasive and local host
species, may increase the size of the infra-community of parasites.
Many hosts would then harbor several parasites with different in-
terests in terms of transmission, either because they target
different species as final hosts or because they differ in develop-
mental stage, and, hence, infectivity to final hosts. One of the
consequences of such multi-infections, apart from increased
immunological and energetic costs for the host, would be a modi-
fication of the parasite-induced alterations following a competition
for manipulation inside the host (“sabotage” hypothesis, Hafer and
Milinski, 2015), and thus a modification of the effects of manipu-
lation on population dynamics (see Table 1 for examples).

Finally, even though most of the studies concerning the impact
of parasites in invasions focused on the effects on invasive and
native host species, it is important to keep in mind that many non-
host species interact with them. Consequences might first emerge
at the scale of the whole ecosystem if invasive species or their
native competitors are key species, as is the case of many gammarid
species (Kelly et al., 2002). In addition, in the case of invasions
driven by parasites through their effects on predation facilitation,
other predator species might benefit from the arrival of invasive
hosts, as a new source of food. As illustrated by the case of nem-
atomorph parasites (see paragraph 2.1), the introduction of new
food resources in food webs can have large consequences on many
parameters of an ecosystem.

3.3. Pollution

Human activities are responsible for the release of more and
more pollutants in the environment, especially in freshwater eco-
systems (Loos et al., 2009). Toxic chemicals could influence parasite
manipulation in various ways, although the interaction between
pollution and parasite manipulation itself has received very little
attention from scientists (Thomas et al., 2011). As discussed earlier
with the effects of climate, pollution can, in the same way, impact
host or parasite traits, which could in turn have consequences on
the extent of manipulation. Moreover, pollutants often constitute a
stress for hosts, impacting their immuno-competence (Lafferty and
Kuris, 1999). Thus, one direct consequence would be a higher
prevalence of parasites due to an increase in hosts susceptibility to
infection (Khan, 1990). In addition, many studies showed that
infection by parasites increases hosts susceptibility to pollutants in
terms of mortality (Brown and Pascoe,1989; Gismondi et al., 2012a,
2012c; Khalil et al., 2014).

Chemical substances can also directly interfere with behavioral
changes induced by manipulative parasites. Although the mecha-
nisms through which parasites manipulate their hosts are not yet
fully understood, the potential role of neuromodulators has been
pointed out in several cases (Adamo, 2002; Perrot-Minnot and
C�ezilly, 2013). It is then very likely that certain pollutants, especially
pharmaceuticals, might interfere with those mechanisms. For
instance, gammarids infected by manipulative fish acanthocepha-
lans present an increase in brain serotonin immunoreactivity (Tain
et al., 2006). In addition, the experimental injection of serotonin in
uninfected gammarids led to several behavioral alterations that are
quite similar to those induced by acanthocephalan fish parasites
(Perrot-Minnot et al., 2014; Tain et al., 2006). Interestingly, fluox-
etine, a reuptake inhibitor of serotonin that is widely prescribed as
an anti-depressant, can be found in many natural streams (Kolpin
et al., 2002). Guler and Ford (2010) found that exposure to both
serotonin and fluoxetine altered phototaxis and geotaxis in marine
amphipods, two traits often modified by acanthocephalan para-
sites. In addition, De Lange et al. (2006) showed that even low
concentrations of fluoxetine could affect the activity of freshwater
amphipods. Although, to our knowledge, the combined effects of
manipulative parasites and drug releases have not been investi-
gated, it is very likely that either the intensity of manipulation (due
to cumulative effects) or its outcome in terms of increased sus-
ceptibility to predation (due to a homogenization of both infected
and uninfected hosts behavior), might be altered.

Behavioral alterations induced by parasites rely on hosts' sen-
sory and locomotor systems, which can also be altered by chemical
compounds. For instance, host ability to detect chemical cues
signaling the presence of a predator and to respond to them can be
disrupted by some manipulative parasites. While rats normally
display a natural aversion for cat odor, individuals infected by
Toxoplasma gondii show no aversion, and sometimes attraction, to
odors of certain cats (Berdoy et al., 2000; Kaushik et al., 2014).
Amphipods G. pulex infected by the acanthocephalan P. laevis are
also attracted to predator odor (Baldauf et al., 2007; Kaldonski et al.,
2007; Perrot-Minnot et al., 2007). Pollutants are very diverse and
can have many negative effects, including disruption of hosts'
sensory systems, such as chemoreceptive performances (Blaxter
and Hallers-Tjabbes, 1992; Tierney and Atema, 1986), and might
then interfere with manipulation based on the detection and re-
action to chemical cues coming from predators. Moreover, those
disruptions are likely to have consequences on the physiology and
behavior of both uninfected and infected individuals (Scott and
Sloman, 2004; Zala and Penn, 2004). Once again, the interaction
between those effects and the alterations induced by manipulative
parasites remain to be investigated.

Despite the lack of studies about the effects of pollutants, par-
asites have received substantial attention from scientists in relation
to their ability to accumulate heavy metals such as cadmium and
lead. Although the phenomenon is not restricted to manipulative
parasites, it has been particularly well documented in adult acan-
thocephalans (Sures et al., 1999) infecting diverse vertebrate hosts,
such as rats (Scheef et al., 2000) or fish (Sures and Taraschewski,
1995). In such host species, harboring parasites might be an
advantage in polluted environments, because of the ability of par-
asites to detoxify host tissues (Thomas et al., 2000). Larval acan-
thocephalan parasites, on the other hand, can affect the antitoxic
response of their intermediate hosts to heavy metals (Gismondi
et al., 2012a), often inducing a higher mortality (Brown and
Pascoe, 1989). However, this pattern may actually depend on the
sex of the host. Indeed, Gismondi et al. (2012b) found that, unlike
females, infected male gammarids had both lower cadmium con-
centrations, and lower mortality compared to uninfected males. In
this case, being infected might be, overall, beneficial, despite the
increased probability of being predated.

3.4. Habitat and resources modifications

Environmental modifications can lead to other types of habitat
alterations that are also likely to alter the interaction between hosts
and their manipulative parasites. Importantly, habitat alterations
might induce changes in the geographical distribution of species,
including parasites' hosts and vectors (reviewed in Lafferty and
Kuris, 1999).

Apart from effects on hosts' communities, the configuration of
hosts' habitats, especially in rivers, can directly impact parasite
manipulation or its outcome. For instance, G. pulex individuals
manipulated by the acanthocephalan P. laevis were found to be
significantly more predated than uninfected individuals only when
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refuges were available (Kaldonski et al., 2007). One of the conse-
quences of environmental changes could be a modification in the
availability of refuges, notably due to modifications of water levels
due to global warming. A decrease in refuge availability is then
likely to make manipulation of gammarids ineffective. The alter-
ation of phototaxis in amphipods infected with an acanthocephalan
has also been shown to depend on light properties (Benesh et al.,
2005; Perrot-Minnot et al., 2012). Considering that phototaxis is
one of the most strongly altered behaviors in infected gammarids
(Perrot-Minnot et al., 2014), we can expect the light regime in the
environment to play a role in the outcome of manipulation. In
particular, eutrophication of freshwater bodies induces modifica-
tions of light penetration into the water (Van Duin et al., 2001). The
same phenomenon is also likely to alter underwater vision, and,
hence, reduce the predatory success of final hosts. Thus, if parasite
manipulation relies on visual cues to increase the susceptibility of
infected hosts to predation, its efficiencymight be altered following
perturbations of the light regime (but see Perrot-Minnot et al.,
2012).

Eutrophication, as well as modifications in any food resources,
are also likely to alter host and parasite communities (see
Marcogliese, 2001). Host life history traits, such as size or immune
capacities, also depend on their diet. On the other hand, host re-
sources are essential for parasites to develop, and many studies
found that fewer parasites would develop if their hosts are starving
(Logan et al., 2005; Pulkkinen and Ebert, 2004; Sepp€al€a et al.,
2008a). In contrary, an increase in host resources might reduce
the competition between parasites within hosts, and allow the co-
existence of multiple parasites (Dianne et al., 2012; Labaude et al.,
2015), leading to modifications in manipulation intensity (see
Table 1). Substantial host resources might also lead to the devel-
opment of larger parasites, and Dianne et al. (2012) highlighted that
larger larval acanthocephalans induce deeper modifications in
phototactic preferences of their gammarid hosts. The distribution
of hosts’ resources can also influence the trophic transmission of
parasites. For instance, Luong et al. (2014) found that the avail-
ability of alternative food resources for final hosts decreased their
infection by trophically-transmitted parasites, as a consequence of
reduced predation upon intermediate hosts. In this case, manipu-
lation might, once again, become ineffective. Although their direct
effects on manipulation remain to be studied, resources might thus
play a role in the interaction between manipulative parasites and
their hosts.

4. Conclusions and future directions

The examples provided here highlight the importance of the
interaction between environmental changes and manipulative
parasites. However, most of the studies cited here considered this
interaction in single specific contexts. Although simplifications are
essential to disentangle the roles of each component, it has to be
kept in mind that many of the factors discussed above might occur
simultaneously. For instance, ecosystems often face several an-
thropic disturbances in concert, while only few studies considered
such combined effects (e.g. Alonso et al., 2010). On the other hand, a
single factor is also likely to affect several protagonists of ecosys-
tems. For instance, we highlighted earlier that fluoxetine might
increase predation on exposed prey, by inducing behavioral mod-
ifications that are close to those induced by manipulative parasites.
However, this increased predatory rate might be balanced by
impaired predation success in fish predators exposed to fluoxetine
(Gaworecki and Klaine, 2008). We suggest that future studies
should adopt a more integrative approach, taking into account
multiple components of the systems as well as their interactions.
For this, long term studies and field studies might be appropriate
tools to bring a better understanding of the complexity underlying
the role of manipulative parasites in a changing world. For example,
as proposed earlier in this review, we suggest to investigate the
combined effects of both parasite-mediated and climate-mediated
stresses on the immune system, in order to understand effects on
parasite manipulation, and investigate the combined effects of
manipulative parasites and contaminant releases on the host's
susceptibility to predation. We also propose to explore the effect of
global change on several components of systems involving
manipulative parasites. For instance, although testing the effect of
an increase of temperature on host manipulation is needed, its
consequences cannot be understood without also testing the effect
of temperature on transmission success, since both the interme-
diate (manipulated) and the final hosts (predator of the interme-
diate host) will experience the increase in temperature.

Most of the environmental changes considered here are quite
recent, such that adaptive modifications might not be visible yet,
leading to a higher consideration from scientists for direct ecolog-
ical consequences rather than evolutionary ones. However, the
intensity or the timing of manipulation are likely to evolve in
response to global change. For instance, hosts might suffer from a
higher mortality induced by many stressors, such as higher tem-
peratures and pollution. Thomas et al. (2002) suggested that par-
asites might benefit from adjusting their exploitation strategy
depending on the probability of near death of their host. If expected
life-span is reduced for every individual host, we might expect an
overall better success for parasites which are able to manipulate
their hosts sooner and in more efficient ways, allowing a higher
probability of transmission to the next host before the death of
their intermediate host. Similarly, Lebarbenchon et al. (2008) sug-
gested that parasite strains with different levels of virulence might
be selected when environmental conditions affect the survival of
infective stages. In the case of manipulative parasites, higher
manipulative efforts might be expected as a compensation for the
loss of infective stages in those environments. However, the
adaptation of manipulative parasites to rapid environmental
changes is questionable, as it relies on parameters which have been
poorly studied. For example, only a few studies are available on
both host and parasite genetic variation (review in Thomas et al.,
2011), the raw material for evolutionary adaptation. Therefore, in-
vestigations on genetic variation and reaction norms among con-
trasted environments are necessary to know if responses of
manipulative parasites to environmental changes (i) are possible
and (ii) result from selection or phenotypic plasticity.

On the other hand, wemight expect manipulation to decrease in
response to other environmental disturbances. As discussed earlier,
harboring parasites accumulating heavy metals could be advanta-
geous for their definitive hosts in a polluted environment, due to
the parasites ability to detoxify the host. Those predator hosts
might then benefit from feeding specifically on infected preys,
whether manipulated or not. Therefore, it could be worth investi-
gating the consequences of benefits associated with detoxification
on the manipulation phenomenon to answer the following ques-
tions: Are predation behaviors of definitive hosts different between
polluted and clean environments? Could manipulation be counter-
selected in polluted environments, provided that contamination
show some stability in time?

Finally, manipulative parasites deserve more attention in
applied sciences. Despite their numerous roles, epidemiologic
models keep ignoring their impact on the spread of infectious
diseases. In the field of conservation biology, they are also largely
overlooked. However, their impact on the success of biological in-
vasions proves that introduced species should be considered along
with their parasites in order to make accurate predictions on their
probability of establishment success. Thus, apart from invasion
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problematics, manipulative parasites are also likely to drive the
success of reintroductions, for example. In the case of population
reinforcement with individuals coming from different geographic
locations, the question would arise whether or not those in-
dividuals should be relocated with their own parasites, and
whether local manipulative parasites are likely to alter those in-
dividuals in a similar ways, thus not disturbing the role of rein-
troduced animals in the ecosystem. Manipulative parasites,
although they could be a burden in conservation biology, are also
likely to become helpful tools. In a recent paper, Tompkins and
Veltman (2015) showed that T. gondii could be used to improve
vertebrate pest control. This parasite induces several behavioral
modifications in its rat host, among which a decreased neophobia
and an increased activity (Webster, 1994; Webster et al., 1994). Rats
constitute a highly invasive species in New Zealand, and a sub-
stantial threat for indigenous species. Trapping is often used to
control rats’ populations, but the natural neophobia of rats renders
them hard to capture. Tompkins and Veltman (2015) reported that
infection by T. gondii widely increases the trapability of rats, and
that infection would reduce the trapping efforts required to
maintain rat population under a threshold for conservation benefit.
We follow them in considering that other manipulative parasite
species might be of interest for ecosystems and population
management.
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