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Abstract: Obesity and metabolic disease present a danger to long-term health outcomes. It has been
hypothesized that epigenetic marks established during early life might program individuals and have
either beneficial or harmful consequences later in life. In the present study, we examined whether
maternal diet alters DNA methylation and whether such modifications persist after an obesogenic
postnatal dietary challenge. During gestation and lactation, male Sprague-Dawley rats were exposed
to either a high-fat diet (HF; n = 10) or low-fat diet (LF; n = 10). After weaning, all animals were
fed a HF diet for an additional nine weeks. There were no differences observed in food intake or
body weight between groups. Hepatic DNA methylation was quantified using both methylated
DNA immunoprecipitation sequencing (MeDIP-seq) and methylation-sensitive restriction enzyme
sequencing (MRE-seq). Overall, 1419 differentially methylated regions (DMRs) were identified. DMRs
tended to be located in CpG shores and were enriched for genes involved in metabolism and cancer.
Gene expression was measured for 31 genes in these pathways. Map3k5 and Igf1r were confirmed to
be differentially expressed. Finally, we attempted to quantify the functional relevance of intergenic
DMRs. Using chromatin contact data, we saw that conserved DMRs were topologically associated
with metabolism genes, which were associated with differential expression of Adh5, Enox1, and Pik3c3.
We show that although maternal dietary fat is unable to reverse offspring weight gain in response to a
postnatal obesogenic diet, early life diet does program the hepatic methylome. Epigenetic alterations
occur primarily in metabolic and cancer pathways and are associated with altered gene expression,
but it is unclear whether they bear consequence later in life.

Keywords: DO Had; developmental programming; early life nutrition; gene-environment interactions;
hepatic methylome

1. Introduction

Obesogenic diets are associated with a host of chronic diseases. Calorie-dense diets, including
those that are high in fat and sucrose, have been shown to blunt insulin sensitivity [1,2], increase
the risk for cardiovascular disease [3,4], and increase the incidence of certain types of cancer [5,6].
While consumption of a high-fat (HF) diet is known to produce undesirable outcomes, it has been
suggested that maternal diet may play an important role in preventing the negative consequences of
poor postnatal diet. For instance, compared to control-fed mice, mice fed an obesogenic diet after
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weaning had larger adipocytes, higher fasting glucose and insulin levels, and reduced expression of
insulin signaling proteins [7,8]. However, a maternal low-fat (LF) diet significantly reduced adipocyte
size, lowered fasting glucose and insulin, and ameliorated the protein expression changes. Similarly, an
obesogenic postnatal diet only resulted in cardiac hypertrophy and elevated fibrosis if it was preceded
by an obesogenic prenatal diet, but not if it was preceded by a prenatal LF diet [9].

It has been hypothesized that perinatal nutrition acts via epigenetic mechanisms to mediate
long-term health outcomes. Early life is marked by a highly dynamic epigenetic state. In particular,
DNA methylation that is established during gestation is thought to persist into adulthood. Previously,
maternal intake of micronutrients such as folate and choline, as well as protein restriction has been
associated with altered DNA methylation in adult offspring [10–12]. Macronutrient consumption,
particularly a HF diet, has been shown to produce methylation differences in energy homeostasis
genes, peroxisome proliferator-activated receptor α (Ppara) [13], inflammatory genes, toll-like receptors
1 and 2 (Tlr1 and Tlr2) [14], and the hepatic cell cycle inhibitor, cyclin-dependent kinase inhibitor
(Cdkn1a) [15].

In this experiment, we examined the role of maternal diet on epigenetic programming. Pregnant
Sprague-Dawley rats were fed either a HF or a LF diet during gestation and lactation. After weaning,
male pups from both groups were fed a HF diet until 12 weeks of age. DNA methylation was measured
in hepatic tissue using complementary methylated DNA immunoprecipitation sequencing (MeDIP-seq)
and methylation-sensitive restriction enzyme sequencing (MRE-seq). Differentially methylated regions
(DMRs) were characterized based on association with CpG islands and genes. Pathway analysis
was performed, and gene expression was measured. Finally, we attempted to functionally interpret
intergenic DMRs by examining the chromatin structure around each conserved locus.

2. Materials and Methods

2.1. Animals and Diets

Timed-pregnant Sprague-Dawley rat dams (Charles River Laboratories, Wilmington, MA) were
randomized into two groups for dietary treatment during gestation and lactation. The first group
of 12 rats received a high-fat diet (HF; Research Diets, Inc.; 45% calories from fat), and the second
group of 12 rats received a low-fat diet (LF; AIN93G Research Diets, Inc.; 16% calories from fat).
Dams were individually housed with their pups in standard polycarbonate cages in a humidity- and
temperature-controlled room on a 12-h light-dark cycle with ad libitum access to food and drinking
water [16]. On postnatal day 21, male offspring (n = 10 rats per group from 10 different dams) were all
given ad libitum access to only a HF diet until postnatal week 12. Animals were then sacrificed, and the
median lobe of the liver was frozen in liquid nitrogen and stored at −70 ◦C. It has been shown that lobes
differ in their capacity to store minerals [17], susceptibility to certain diseases [18], and transcriptomic
profiles [19]. In rodents, the left lobe is developmentally distinct from the right, median, and caudate
lobes. By selecting the median lobe, not only do we reduce variation between tissue samples, but
we also choose a representative region that is developmentally similar to the majority of the liver.
Institutional and governmental regulations regarding the ethical use of animals were followed during
the study. The protocol for the ethical use of animals was approved by the Institutional Animal Care
and Use Committee (IACUC protocol no. 09112).

2.2. Methylated DNA Immunoprecipitation (MeDIP) and Methylation-Sensitive Restriction Enzyme
(MRE) Sequencing

Genomic DNA was isolated using previously published methods [20]. Animals were chosen
through an extensive screening process in which gene expression and histology were measured, and
the best representatives from each group were used for sequencing. Complementary MeDIP-seq and
MRE-seq were then performed using previously published protocols [20]. Briefly, MeDIP utilizes
antibodies against 5-methylcytidine to quantify methylated DNA sequences, while MRE-seq uses
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restriction enzymes that cut at unmethylated CpG sites. MeDIP-seq provides better coverage and
MRE-seq offers superior resolution, so that when combined the methylome can be quantified with
high accuracy [21,22]. Antibodies, restriction enzymes, DNA fragmentation, and library preparation
procedures have been detailed by Li et al. [23].

2.3. DMR Identification

MeDIP-seq and MRE-seq data analysis were performed using the methylMnM package in R.
A detailed procedure is presented by Zhang et al. [24]. In brief, the rat genome (Rn4) was partitioned
into 500 bp bins, and MeDIP-seq and MRE-seq data were modeled as a function of CpG content, MRE
site content, and methylation level within each bin. We used the methylMnM algorithm to test the null
hypothesis that methylation level was the same between the two samples. The normalized MeDIP
and MRE reads were treated as mutually independent Poisson random variables and their expected
values were calculated for each sample within each bin. A test statistic and p-value were calculated
assuming that the joint distribution of the random variables followed a multinomial distribution. Bins
with a Benjamini–Hochberg false discovery rate (FDR) p-value <0.05 were considered significant and
were called differentially methylated regions (DMRs). Further information regarding methylMnM
can be found on the Bioconductor website: http://www.bioconductor.org/packages/release/bioc/html/
methylMnM.html) [23,24].

2.4. Annotation and Pathway Analysis

Next, we examined the association between DMRs and CpG islands. CpG islands were defined
based on three criteria: (i) sequence length greater than 200 bp, (ii) GC content greater than 50%, and
(iii) an observed-to-expected CpG ratio greater than 0.6. Shores were the 2,000 bp regions upstream and
downstream of each island [25]. We also annotated DMRs based on location relative to genes. DMRs
were classified as either intergenic, intragenic, downstream, or in the promoter. Promoter regions were
defined as the 1500 bp upstream of the transcription start site (TSS), while downstream regions were
defined as the 1500 bp downstream of the transcription end site (TES) [16]. Intragenic regions included
both exonic and intronic sequences of the gene body. Intergenic DMRs fell outside any gene body or
1500 bp flanking region.

Differentially methylated genes (DMGs) were annotated with Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway terms. DAVID Bioinformatics Resources
version 6.7 was used to identify enriched annotation clusters and pathways with a high degree of
differential methylation (http://david.abcc.ncifcrf.gov/) [26]. Functional clusters were required to have
at least 2 GO and/or KEGG Pathway terms, and the majority of terms within each cluster were required
to have a Benjamini–Hochberg FDR p-value < 0.05. Similarly, we report KEGG pathways that contained
at least 2 DMGs and had a fold enrichment ≥ 1.5 (based on the proportion of a specific pathway’s genes
that were DMGs).

2.5. Methylation Specific PCR

To validate sequencing results, methylation specific PCR (MSP) was used to quantify DNA
methylation in all animals. Primer design, genomic DNA isolation, bisulfite conversion, and qPCR
were performed using published methods [20]. The relative amount of methylated DNA was calculated
as a ratio using the following equation: % methylated DNA = (quantity of methylated DNA)/(quantity
of methylated DNA + quantity of unmethylated DNA) × 100%. All MSP primer information can be
found in Table 1.

http://www.bioconductor.org/packages/release/bioc/html/methylMnM.html
http://www.bioconductor.org/packages/release/bioc/html/methylMnM.html
http://david.abcc.ncifcrf.gov/
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Table 1. Methylation specific PCR (MSP) primers.

Gene CpG Site Position Methylation Primers (5′ → 3′) Efficiency *

Gpam

CpG 1

Forward +52,479 U GTAGTGGAATAAGAAGTTTTCGGAG
98.20%

Reverse +52,587 U ACCTTCAAATAACAATCACGCTAC

Forward +52,485 M AGAGTAGTAGTGGAATAAGAAGTTTTTGG
99.10%

Reverse +52,586 M CACCTTCAAATAACAATCACACTAC

CpG 2

Forward +44,337 U GGTGGAGAGGTATTTGTTATGGA
108.20%

Reverse +44,416 U CCACACAATCTACAAACTTCACAA

Forward +44,332 M TTAGAGGTGGAGAGGTATTTGTTAC
101.19%

Reverse +44,414 M ACACAATCTACAAACTTCACGAAAA

CpG 3

Forward +7619 U TGTAATTTTTTATTTTAATTTATGTGATTTTTGA
95.56%

Reverse +7736 U TTTCTACTTCACAATTACTAATCAACCCA

Forward +7633 M TTAATTTACGTGATTTTTGATTGTTATTATTTT
98.50%

Reverse +7736 M CTACTTCACGATTACTAATCAACCCG

CpG 4

Forward +7288 U AAGTTAAGTTGTAGTGGTTGGGTAATTG
93.47%

Reverse +7360 U CCCACTTATTTTAAACAACATCAAACC

Forward +7289 M AGTCGTAGTGGTCGGGTAATCG
107.81%

Reverse +7357 M CCGCTTATTTTAAACAACATCGAA

Myh7b

CpG 1

Forward +9089 U TGGGTTCGTGTGGGAAATG
99.33%

Reverse +9181 U CCACCTCAACTCTCCCTAAACAA

Forward +9089 M CGGGTTCGTGTGGGAAAC
92.99%

Reverse +9181 M CCGCCTCAACTCTCCCTAAA

CpG 2

Forward +9607 U AGGAGTATAAATGGGAGGGTATTGATT
91.86%

Reverse +9757 U CATACACAACTTCCAACACCATCC

Forward +9621 M CGTGTTGGAGTAGGAGGAGTATAAAC
102.11%

Reverse +9753 M CGCAACTTCCGACACCATC

CpG 3

Forward +10,000 U TGATTTGAGGATTATGTGTATTGGATTT
99.04%

Reverse +10,069 U CCAATTTCTTTTTCCATTCTCCATAC

Forward +9995 M CGAGGATTACGTGTATTGGATTTTAA
103.13%

Reverse +10,065 M TTTCTTTTTCCATTCTCCGTACAATA

CpG 4

Forward +11,606 U AGGAGTGTATGTTTTTTAAGGTTTTAGATG
96.42%

Reverse +11,701 U AACAAAACTACTAAAAATTAAATAACTTCCCA

Forward +11,606 M AGGAGTGTATGTTTTTTAAGGTTTTAGACG
98.73%

Reverse +11,701 M ACGAAACTACTAAAAATTAAATAACTTCCCA

CpG 5

Forward +12,857 U GATTTGGATTTGTTGTTAAGGGTTTT
102.17%

Reverse +12,924 U AACCAACACCCACCACTACCTAA

Forward +12,859 M TTCGGATTTGTCGTTAAGGGTT
106.16%

Reverse 12,927 M CCAACACCCACCGCTACC

CpG 6

Forward +13,120 U TTATTTGGATATGGGATAAGAGAGGG
98.27%

Reverse +13,216 U CACCATCTAAAATAATACTACTTTCTTTCACTTAT

Forward +13,120 M TTATTTGGATACGGGATAAGAGAGG
102.64%

Reverse +13,219 M CGTCTAAAATAATACTACTTTCTTTCGCTT

* The qPCR amplification efficiency is calculated based on the slope of the standard curve
https://www.lifetechnologies.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-
learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html.
Slopes between −3.1 and −3.6 giving reaction efficiencies between 90 and 110% are typically acceptable.

2.6. Gene Expression

Total RNA was extracted using previously published methods [20]. Briefly, frozen liver tissue
was ground in liquid nitrogen and the Direct-zol™ RNA MiniPrep kit (Zymo Research) was used for
RNA isolation. RT-PCR was performed using the High Capacity cDNA Reverse Transcription Kit
(Applied Biosystems) and incubated in a 2720 Thermal Cycler (Applied Biosystems). A serially diluted
standard curve was created, and qPCR was carried out using Power SYBR® Green Master Mix (Life

https://www.lifetechnologies.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
https://www.lifetechnologies.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
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Technologies) run in a StepOnePlus™ Real-Time PCR System. All primers were designed using Vector
NTI (Life Technologies) and manufactured by Integrated DNA Technologies. Information regarding
primers for gene expression is detailed in Table 2.

Table 2. Gene expression primers.

Gene Ensembl ID Common Name Position Primers (5′ → 3′) Efficiency *

Acacb ENSRNOT00000078868.1
Acetyl-CoA

Carboxylase Beta
Forward +1081 ACCCCAAACTTCCAGAGC

105.70%
Reverse +1189 TGGGCTACAATGGTGGAG

Acox3 ENSRNOT00000049798.3
Acyl-CoA Oxidase 3,

Pristanoyl
Forward +1553 TGACTGGTTGGACTCAGA

94.56%
Reverse +1629 TCTGATGACTCTCTCGGA

Actb ENSRNOT00000042459.4 Actin Beta
Forward +451 GAGACCTTCAACACCCCAGC

104.67%
Reverse +526 CAGTGGTACGACCAGAGGCA

Acvr1c ENSRNOT00000059280.4
Activin A Receptor

Type 1C
Forward +511 TGATTTATGATGCCACTGCC

100.24%
Reverse +586 ATTGTCCTTGCGATGGTTCT

Adh1 ENSRNOT00000036993.4
Alcohol

Dehydrogenase 1
Forward +257 ATGAAGGAGTTGGGATAG

100.37%
Reverse +318 ATCACCTGTTCTTACGCT

Adh5 ENSRNOT00000016891.6
Alcohol

Dehydrogenase 5
Forward +637 GTGTGTCTGATTGGATGTGG

117.98%
Reverse +700 TGACCTTGGCAGTGTTGA

Adh7 ENSRNOT00000015870.4
Alcohol

Dehydrogenase 7
Forward +262 GAAGCAGTTGGGATTGTGGAGA

108.18%
Reverse +328 TCACTTTGTCACCTGGTCTCACTG

Cacng8 ENSRNOT00000078444.1
Calcium Voltage-Gated

Channel Auxiliary
Subunit Gamma 8

Forward +297 CTGCGTGAAGATCAACCACT
108.34%

Reverse +395 ATAGGAAAGATGCTGGAGGC

Cpt2 ENSRNOT00000016954.3
Carnitine

Palmitoyltransferase 2
Forward +310 GACACCATGAAGAGATACCT

107.28%
Reverse +387 ACACAACGCTTCTGTTCT

Dapk3 ENSRNOT00000027634.4 Death Associated
Protein Kinase 3

Forward +624 TTCGTCGCCCCTGAGATTGTAA
103.21%

Reverse +685 ATGACGCCGATGCTCCACATAT

Dcc ENSRNOT00000064947.3 DCC Netrin 1 Receptor Forward +1144 GTGGCTGAAAATGAGGCTGGC
100.76%

Reverse +1208 ATGGCAGGCTTGGGGACAA

Enox1 ENSRNOT00000074868.2
Ecto-NOX

Disulfide-Thiol
Exchanger 1

Forward +167 TTGAGAGCATCGCACAGTGT
93.82%

Reverse +239 ATGCTCCCCAAACCATCA

Fads2 ENSRNOT00000059280.4 Fatty Acid Desaturase 2 Forward +711 CGTGTTTGTCCTTGGAGAGTGGC
108.89%

Reverse +790 CATGCTGGTGGTTGTAGGGCA

Flnb ENSRNOT00000066546.1 Filamin B
Forward +353 GCTGGAGAATGTGTCTGT

108.69%
Reverse +422 ACTGTCAATGGACACGAG

Foxo1 ENSRNOT00000018244.5 Forkhead Box O1
Forward +994 AGGATAAGGGCGACAGCAACAG

102.12%
Reverse +1056 GGGACAGATTGTGGCGAATTG

Fzd2 ENSRNOT00000032944.2 Frizzled Class Receptor 2 Forward +818 TTTTGCCCGTCTCTGGAT
93.13%

Reverse +889 TAGGTGGTGACCGTGAAGAA

Gapdh ENSRNOT00000050443.4
Glyceraldehyde-3-

Phosphate
Dehydrogenase

Forward +220 CTCTACCCACGGCAAGTTCAACG 100.39%

Reverse +311 CTCGCTCCTGGAAGATGGTGATG

Hk3 ENSRNOT00000031935.2 Hexokinase 3
Forward +973 CCCTGGTTCCTGGTGCTCAG

119.40%
Reverse +1050 CCAGCACCAGCCTTACCAGC

Igfr1 ENSRNOT00000019267.6
Insulin Like Growth

Factor 1 Receptor
Forward +2239 CTGAGAGGAGGCGGAGAGATG

109.39%
Reverse +2304 TGTTCCTGCTTCGGCTGG

Il1r1 ENSRNOT00000019673.4
Interleukin 1 Receptor

Type 1
Forward +393 GGGTTCATTTGTCTCATTGTGC

101.20%
Reverse +465 TGACCTCATTTGGATACTCCGT

Irs2 ENSRNOT00000032918.6 Insulin Receptor
Substrate 2

Forward +3373 CTTGAAGCGGCTAAGTCT
109.86%

Reverse +3435 TGGCTGACTTGAAGGAAG

Lpin3 ENSRNOT00000022403.5 Lipin 3 Forward +578 CCCTCATCGCAGCCTAAAGACAT
108.38%

Reverse +657 AGGTCAGCAGATGAAAGGTTGGC

Map3k5 ENSRNOT00000051496.6
Mitogen-Activated

Protein Kinase Kinase
Kinase 5

Forward +455 GTTTTTACAACGCTGACATCGC
105.77%

Reverse +525 ATGATAAAACAGGGAAGGCTGC

Mapk3 ENSRNOT00000087625.1 Mitogen-Activated
Protein Kinase 3

Forward +618 CACTGGCTTTCTTACCGAGT
111.47%

Reverse +696 GGTGTAGCCCTTGGAGTTAA
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Table 2. Cont.

Gene Ensembl ID Common Name Position Primers (5′ → 3′) Efficiency *

Mknk2 ENSRNOT00000041106.5
MAP Kinase Interacting

Serine/Threonine
Kinase 2

Forward +177 TTCAGGGCTTCCACCGTTCG
107.33%

Reverse +246 TGGGCGGGGTCTAAGGTGAA

Msh3 ENSRNOT00000018449.7 MutS Homolog 3 Forward +166 TGTCCCCCACAGAACCAGCA
109.37%

Reverse +229 TTCCCCAGTGACCTCTTCCTGC

Mttp ENSRNOT00000014631.6 Microsomal Triglyceride
Transfer Protein

Forward +1042 TAGAACCTGAGAACCTGTCCAACGC
107.54%

Reverse +1113 AAGTGCGGAGGTGCTGAATGAAG

Ncoa4 ENSRNOT00000066062.3 Nuclear Receptor
Coactivator 4

Forward +611 CCTAGTTCTTCAAGTGTCAGGC
108.75%

Reverse +686 TGGATGCTGACTTCTGCTCT

Nfatc2 ENSRNOT00000065615.1 Nuclear Factor Of
Activated T Cells 2

Forward +1599 GGAGCCAAAGAACAACATGCGGG
100.47%

Reverse +1674 CAGCTCGATGTCAGCGTTTCGGA

Ntrk2 ENSRNOT00000042145.2
Neurotrophic Receptor

Tyrosine Kinase 2
Forward +979 TCCTGGACAAACTCGTCA

99.47%
Reverse +1058 GGCTTACAAGGCGTTTCT

Pik3c3 ENSRNOT00000066816.2
Phosphatidylinositol

3-Kinase Catalytic
Subunit Type 3

Forward +60 CTGTGACCTGGACATCAA
93.26%

Reverse +119 TGTTCTCTCTTCCCTTCC

Phkb ENSRNOT00000049624.4
Phosphorylase Kinase

Regulatory Subunit Beta
Forward +369 GCCATAAAGTGTATGAGAGGAG

106.60%
Reverse +435 TGAACTGCTGGACCTTATCA

Ppp1r3b ENSRNOT00000051720.2
Protein Phosphatase 1
Regulatory Subunit 3B

Forward +838 TATGAAAGAATGGAGTTCGCCGTG
107.84%

Reverse +909 TTTGCCTTTGTTGCTGTCCCAGTA

Rasgrp2 ENSRNOT00000028646.6 RAS Guanyl Releasing
Protein 2

Forward +490 CAAGAAGGAAACCGCAGGCAC
108.06%

Reverse +565 TCACCTGCCGCTTCCACTTGT

Rpl7a ENSRNOT00000044551.4 Ribosomal Protein L7a
Forward +64 GAGGCCAAAAAGGTGGTCAATCC

105.33%
Reverse +127 CCTGCCCAATGCCGAAGTTCT

Runx1t1 ENSRNOT00000066191.1 RUNX1 Translocation
Partner 1

Forward +796 TCCCACTGAGACCTTTTG
109.60%

Reverse +894 CAGGGTTCTGTTTGGCTA

Scd ENSRNOT00000018447.5 Stearoyl-CoA Desaturase Forward +942 TCAATCTCGGGAGAACATCCTG
109.77%

Reverse +1013 AAGGCGTGATGGTAGTTGTGGA

Scp2 ENSRNOT00000015420.5 Sterol Carrier Protein 2
Forward +203 GGCTATGTGTACGGTGAATCCA

105.56%
Reverse +280 AATGATAGGGATGCCAGTCAGC

Skp2 ENSRNOT00000089178.1 S-Phase Kinase
Associated Protein 2

Forward +809 CTGGATTTTCTGAGTCTGCC
100.52%

Reverse +882 CCAGGAGAGGTTCAGTTCAT

Taok3 ENSRNOT00000089043.1 TAO Kinase 3
Forward +403 GCTGAAGCACCCGAACACCAT

103.35%
Reverse +476 ACTCCATCACCAACCAAGCGG

Tgfb2 ENSRNOT00000003313.5 Transforming Growth
Factor Beta 2

Forward +1664 ACAATGCTAACTTCTGTGCTGG
91.24%

Reverse +1735 TGAGGACTTTGGTGTGTTGTGT

Traf3 ENSRNOT00000010906.6 TNF Receptor
Associated Factor 3

Forward +870 CTCTTCTGAGGAGTGAGTTGA
108.60%

Reverse +942 CGCTTAAAACTACAGGTGC

Wnt6 ENSRNOT00000023439.6 Wnt Family Member 6 Forward +452 GGGGGTTCGAGAATGTCAGTTCC
103.79%

Reverse +517 GCCTTGCTGTGACTGGAGCAGTT

Zbtb16 ENSRNOT00000045356.3
Zinc Finger and BTB

Domain Containing 16
Forward +1695 GCATTTACTGGCTCATTCAG

100.89%
Reverse +1770 ATCTTCCTTTGAGAACTGGG

* The qPCR amplification efficiency is calculated based on the slope of the standard curve
https://www.lifetechnologies.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-
learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html.
Slopes between −3.1 and −3.6 giving reaction efficiencies between 90 and 110% are typically acceptable.

2.7. Analysis of Intergenic DMRs

In previous analyses, DMRs that are not located within close proximity of genes are often ignored.
We attempted to uncover functions for these DMRs by using previously published high throughput
chromatin contact data (Hi-C) [27]. Such chromatin contact maps are not publicly available for rat
tissue, thus we examined only DMRs that were conserved between species using the phastCons9way
track from Genome Browser. Conservation scores range from 0 to 1, where 1 denotes perfect sequence
alignment and high conservation. For our analysis, we only considered DMRs that had a mean
alignment score >0.5 over the 500 bp bin.

https://www.lifetechnologies.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
https://www.lifetechnologies.com/us/en/home/brands/thermo-scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-tools/qpcr-efficiency-calculator.html
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Next, the analogous region from the Rn4 genome build was identified in the Hg38 genome.
We used the 3D Genome Browser to visualize Hi-C data from human liver tissue [27,28]. In particular,
we examined each of the 500 bp DMRs and the 1 mb region flanking either side of the region. We then
located the topologically associated domain (TAD) which contained the DMR. Genes within the TAD
were considered to have contact with the nearby DMR. Those genes were selected for gene ontology
and pathway analyses.

2.8. Statistical Analysis

For body weight, food intake, MSP, and gene expression, all pairwise comparisons between groups
were made using two-tailed t-tests. For pathway analysis, significant enrichment was determined
using the Benjamini–Hochberg FDR p-value. All statistical analysis was performed in R (version 3.1.2).

3. Results

3.1. Offspring Phenotype

Male Sprague-Dawley rats were divided into two groups and exposed to either a LF or a HF diet
for seven weeks during gestation and lactation (n = 10/group; Figure 1A). After weaning (postnatal
week three), all animals were given a HF dietary challenge that mimicked an obesogenic western
diet. Animals were fed the HF diet for nine weeks and sacrificed at 12 weeks of age. Across the
nine weeks of post-weaning feeding, there was no difference in food intake between the groups
(Figure 1B). Additionally, body weights were consistent between groups, suggesting that maternal diet
was insufficient to compensate for HF-induced postnatal weight gain (Figure 1C,D).
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Figure 1. Maternal diet did not impact postnatal phenotype when followed by a high-fat (HF) diet.
(A) Male Sprague-Dawley rats were given either a HF or low-fat (LF) diet during gestation and lactation
(seven weeks). Both groups were given a HF diet after weaning (nine weeks; n = 10/group). (B) Caloric
intake after weaning did not differ between the two groups. (C) Postnatal, and (D) final, body weight
did not differ between groups.

3.2. DNA Methylation

Despite the lack of phenotypic differences, we hypothesized that epigenetic differences might still
exist. Methylated DNA was measured using MeDIP-seq and unmethylated DNA was measured with
MRE-seq. Combining the two methods, 1,419 differentially methylated regions (DMRs) were identified
between groups (Figure 2A). Of these, 534 (37.6%) were more highly methylated in the HF group,
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while 885 (62.4%) were more highly methylated in the LF group (Figure 2B). Next, analysis of the
genomic location of the DMRs revealed that 827 (58.3%) were located in intergenic regions (not within
1,500 bp of a gene), 524 (36.9%) were within the gene body (including intronic and exonic sequences),
48 (3.4%) were in a promoter (within 1,500 bp upstream of the TSS), and 45 (3.2%) were downstream of
a gene (within 1500 bp downstream of the TES) (Figure 2C). We next examined DMR location relative
to CpG islands and saw that more than twice as many DMRs were located within CpG shores (n = 435,
30.7%) than in islands themselves (n = 177, 12.5%, Figure 2D).
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Figure 2. Maternal diet altered hepatic DNA methylation. (A) MeDIP-seq and MRE-seq were performed
to quantify genome-wide DNA methylation. (B) Sequencing revealed 1,419 differentially methylated
regions (DMRs) between groups (false discovery rate, FDR, p-value < 0.05), including 534 (37.6%) that
were more highly methylated in the HF group and 885 (62.4%) that were more highly methylated in the
LF group. (C) DMR position relative to genomic features, including intergenic regions, gene bodies,
promoters, and downstream regions. (D) DMR location relative to CpG islands and shores.

DNA methylation was validated using MSP. First, we tested one DMR located within the Myh7b
gene that was identified to be more highly methylated in the LF group by MeDIP-seq and MRE-seq
(Figure 3A–D). MSP was performed on six CpG sites within the DMR. Although one site was not
differentially methylated, two of the sites were higher but not significantly hypermethylated in the LF
group (p < 0.1) and three were significantly more methylated in the LF group (p < 0.05, Figure 3E).
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Furthermore, the average DNA methylation across all six sites was significantly higher in the LF group
(p = 0.0089, Figure 3F). Negative control was also performed on four CpG sites within the Gpam gene
(Figure 3G). Four CpGs that were not computationally identified by MeDIP and MRE analysis were
examined with MSP (Figure 3H,I). Neither the individual sites nor the average over the region showed
differential methylation (Figure 3J,K). Findings here and in our previous work demonstrate the validity
of combined MeDIP-seq and MRE-seq analysis [16,20].
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Figure 3. Methylation Specific PCR validates MeDIP-seq and MRE-seq findings. (A) Analysis of
MeDIP-seq and MRE-seq identified a significant DMR within the gene body of the Myh7b gene (FDR
p-value < 0.05). (B) The DMR spanned exon 17, intron 17/18, exon 18, and part of intron 18/19.
(C) MeDIP-seq and (D) MRE-seq values are given as average reads ± standard error of the mean (SEM).
(E) MSP was used to measure DNA methylation at six individual CpG sites within the DMR. (F) MSP
quantities were averaged over the six sites. MSP values are reported as % DNA methylation ± SEM
(* p < 0.05). (G) Among regions that were not significantly differentially methylated, four CpGs were
chosen in the Gpam gene body as negative controls. (H) MeDIP-seq and (I) MRE-seq values are given
as average reads ± SEM. (J) MSP was used to measure DNA methylation at the four CpG sites and
(K) methylation was averaged over the four sites. MSP values are reported as % DNA methylation ±
SEM (* p < 0.05).
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In order to understand the functional relevance of the gene-associated DMRs, gene ontology (GO)
and KEGG pathway analyses were performed. We found that DMGs tended to cluster in processes
involved in ion binding, cell morphogenesis, ion channels, and neuronal development (Table 3).
Additionally, we found that the biosynthesis of unsaturated fatty acids pathway was most highly
enriched for differential methylation, while pathways in cancer contained the greatest number of
differentially methylated genes (Figure 4). Interestingly, we found that other metabolic and cancer
pathways were also enriched, including the insulin signaling, colorectal cancer, and mitogen-activated
protein kinase (MAPK) signaling pathways.

Table 3. Gene ontology clustering.

GO Number GO Annotation Count Fold Enrichment FDR p-Value

Annotation Cluster 1 (Enrichment Score: 6.24)

GO:0046872 Metal ion binding 111 1.54 2.37 × 10−4

GO:0043167 Ion binding 113 1.52 1.70 × 10−4

GO:0043169 Cation binding 111 1.52 1.61 × 10−4

Annotation Cluster 2 (Enrichment Score: 5.24)

GO:0000902 Cell morphogenesis 26 3.02 0.0013

GO:0032989 Cellular component morphogenesis 26 2.73 0.0045

GO:0000904 Cell morphogenesis involved in differentiation 20 3.27 0.0046

Annotation Cluster 3 (Enrichment Score: 4.57)

GO:0005216 Ion channel activity 24 2.83 0.0016

GO:0005261 Cation channel activity 20 3.18 0.0017

GO:0022838 Substrate specific channel activity 24 2.75 0.0018

GO:0015267 Channel activity 24 2.65 0.0028

GO:0022803 Passive transmembrane transporter activity 24 2.65 0.0028

GO:0022836 Gated channel activity 20 2.95 0.0033

Annotation Cluster 4 (Enrichment Score: 4.18)

GO:0048667 Cell morphogenesis involved in neuron
differentiation 19 3.63 0.0029

GO:0000904 Cell morphogenesis involved in differentiation 20 3.27 0.0046

GO:0007409 Axonogenesis 17 3.61 0.0056

GO:0048666 Neuron development 23 2.62 0.014

GO:0048812 Neuron projection morphogenesis 17 3.12 0.021

GO:0031175 Neuron projection development 19 2.75 0.034

GO:0048858 Cell projection morphogenesis 17 2.82 0.045

GO:0032990 Cell part morphogenesis 17 2.71 0.066

Annotation Cluster 5 (Enrichment Score: 4.08)

GO:0022836 Gated channel activity 20 2.95 0.0033

GO:0005244 Voltage-gated ion channel activity 15 3.47 0.0062

GO:0022832 Voltage-gated channel activity 15 3.47 0.0062

Annotation Cluster 6 (Enrichment Score: 3.45)

GO:0051960 Regulation of nervous system development 17 2.95 0.036

GO:0060284 Regulation of cell development 17 2.87 0.044

GO:0045664 Regulation of neuron differentiation 14 3.31 0.042

GO:0050767 Regulation of neurogenesis 15 2.86 0.086



Nutrients 2019, 11, 2075 11 of 22

Nutrients 2019, 11, x FOR PEER REVIEW 14 of 28 

 

In order to understand the functional relevance of the gene-associated DMRs, gene ontology 
(GO) and KEGG pathway analyses were performed. We found that DMGs tended to cluster in 
processes involved in ion binding, cell morphogenesis, ion channels, and neuronal development 
(Table 3). Additionally, we found that the biosynthesis of unsaturated fatty acids pathway was most 
highly enriched for differential methylation, while pathways in cancer contained the greatest number 
of differentially methylated genes (Figure 4). Interestingly, we found that other metabolic and cancer 
pathways were also enriched, including the insulin signaling, colorectal cancer, and mitogen-
activated protein kinase (MAPK) signaling pathways. 

 

Figure 4. Differential methylation was most enriched in metabolic and cancer-related pathways. 

Table 3. Gene ontology clustering. 

GO 
Number GO Annotation Count 

Fold 

Enrichment 
FDR p-Value 

Annotation Cluster 1 (Enrichment Score: 6.24) 

GO:0046872 Metal ion binding 111 1.54 2.37E-04 

GO:0043167 Ion binding 113 1.52 1.70E-04 

GO:0043169 Cation binding 111 1.52 1.61E-04 

Annotation Cluster 2 (Enrichment Score: 5.24) 

GO:0000902 Cell morphogenesis 26 3.02 0.0013 

GO:0032989 Cellular component morphogenesis 26 2.73 0.0045 

GO:0000904 Cell morphogenesis involved in differentiation 20 3.27 0.0046 

Annotation Cluster 3 (Enrichment Score: 4.57)       

GO:0005216 Ion channel activity 24 2.83 0.0016 

GO:0005261 Cation channel activity 20 3.18 0.0017 

GO:0022838 Substrate specific channel activity 24 2.75 0.0018 

GO:0015267 Channel activity 24 2.65 0.0028 

GO:0022803 Passive transmembrane transporter activity 24 2.65 0.0028 

GO:0022836 Gated channel activity 20 2.95 0.0033 

Annotation Cluster 4 (Enrichment Score: 4.18)       

Figure 4. Differential methylation was most enriched in metabolic and cancer-related pathways.

3.3. Gene Expression

Given the enrichment of differential methylation in cancer and metabolic genes, qPCR was utilized
to measure gene expression of 31 differentially methylated genes in those pathways. Details regarding
the genomic location and methylation levels of the gene-associated DMRs can be found in Table 4.
We found two differentially expressed genes, including Map3k5 and Igf1r (p = 0.030 and p = 0.026,
respectively; Figure 5). Both Igf1r and Map3k5 were related to cancer and metabolism. Both Map3k5
and Igf1r were more highly expressed in the LF group compared to the HF group.

Nutrients 2019, 11, x FOR PEER REVIEW 15 of 28 

 

GO:0048667 

Cell morphogenesis involved in neuron 

differentiation 
19 3.63 0.0029 

GO:0000904 Cell morphogenesis involved in differentiation 20 3.27 0.0046 

GO:0007409 Axonogenesis 17 3.61 0.0056 

GO:0048666 Neuron development 23 2.62 0.014 

GO:0048812 Neuron projection morphogenesis 17 3.12 0.021 

GO:0031175 Neuron projection development 19 2.75 0.034 

GO:0048858 Cell projection morphogenesis 17 2.82 0.045 

GO:0032990 Cell part morphogenesis 17 2.71 0.066 

Annotation Cluster 5 (Enrichment Score: 4.08) 

GO:0022836 Gated channel activity 20 2.95 0.0033 

GO:0005244 Voltage-gated ion channel activity 15 3.47 0.0062 

GO:0022832 Voltage-gated channel activity 15 3.47 0.0062 

Annotation Cluster 6 (Enrichment Score: 3.45) 

GO:0051960 Regulation of nervous system development 17 2.95 0.036 

GO:0060284 Regulation of cell development 17 2.87 0.044 

GO:0045664 Regulation of neuron differentiation 14 3.31 0.042 

GO:0050767 Regulation of neurogenesis 15 2.86 0.086 

3.3. Gene Expression 

Given the enrichment of differential methylation in cancer and metabolic genes, qPCR was 
utilized to measure gene expression of 31 differentially methylated genes in those pathways. Details 
regarding the genomic location and methylation levels of the gene-associated DMRs can be found in 
Table 4. We found two differentially expressed genes, including Map3k5 and Igf1r (p = 0.030 and p = 
0.026, respectively; Figure 5). Both Igf1r and Map3k5 were related to cancer and metabolism. Both 
Map3k5 and Igf1r were more highly expressed in the LF group compared to the HF group.  

 
Figure 5. Gene expression in cancer and metabolism genes. Gene expression values are normalized 
to the geometric mean of Actb, Gapdh, and Rpl7a. * p < 0.05.

Figure 5. Gene expression in cancer and metabolism genes. Gene expression values are normalized to
the geometric mean of Actb, Gapdh, and Rpl7a. * p < 0.05.



Nutrients 2019, 11, 2075 12 of 22

Table 4. DMR description.

Gene Function Chromosome Location Genomic
Feature HF MeDIP LF MeDIP HF MRE LF MRE Conservation

ACVR1C Cancer 3 40041000–40041500 Intron 3/8 2.33 (0.89) 2.58 (1.02) 1.64 (0) 0 0.0040 (0.016)

CACNG2 Cancer 7 116000000–116000500 Intron 1/3 8.27 (3.47) 12.26 (4.78) 0.74 (0.42) 0.31 (0.24) 0.77 (0.36)

CACNG8 Cancer 1 64069000–64069500 Exon 4/4 2.56 (1.15) 2.00 (0.82) 0.27 (0) 6.07 (0) 0.18 (0.34)

DAPK3 Cancer 7 10009000–10009500 Exon 7/9 12.89 (6.18) 18.09 (10.40) 1.10 (0.68) 0.14 (0) 0.38 (0.45)

DCC Cancer 18 69043500–69044000 Intron 1/28 8.56 (3.39) 21.00 (9.64) 3.68 (1.51) 2.16 (1.46) 0.0054 (0.0087)

FLNB Cancer 15 19052000–19052500 Intron 1/44 4.89 (2.41) 5.98 (2.59) 2.06 (2.03) 0.51 (0.58) 0.014 (0.017)

FZD2 Cancer 10 91707500–91708000 Promoter 6.27 (3.41) 1.40 (0.55) 0.27 (0.21) 0.95 (0.71) 0.061 (0.094)

IGF1R Cancer 1 122713500–122714000 Intron 1/20 4.31 (1.20) 3.10 (1.81) 0.71 (0) 1.39 (0.99) 0.0057 (0.011)

IL1R1 Cancer 9 39589500–39590000 Intron 1/10 7.39 (4.28) 4.33 (1.62) 0.12 (0) 1.00 (0.93) 0.0053 (0.0099)

MAP3K5 Cancer 1 15307000–15307500 Intron 8/12 1.88 (0.83) 4.86 (2.15) 7.37 (0) 1.13 (0) 0.018 (0.050)

MSH3 Cancer 2 22480500–22481000 Intron 20/23 10.93 (4.44) 4.08 (2.34) 0.42 (0.42) 1.60 (0.93) 0.0050 (0.014)

NCOA4 Cancer 16 7641000–7641500 Promoter 12.59 (3.16) 5.25 (2.38) 0.27 (0.085) 1.10 (0.84) 0.0026 (0.0036)

NFATC2 Cancer 3 159682000–159682500 Intron 8/9 10.58 (5.74) 3.06 (1.24) 1.07 (0) 1.73 (2.32) 0.015 (0.0038)

NTRK2 Cancer 17 11700500–11701500 Intron 12/13 7.81 (3.75) 17.72 (8.57) 4.31 (3.07) 1.21 (1.92) 0.28 (0.41)

RASGRP2 Cancer 1 209198000–209198500 Intron 15/16 4.29 (2.91) 6.10 (4.07) 0.85 (0.14) 0.19 (0) 0.22 (0.33)

RUNX1T1 Cancer 5 28230500–28231000 Exon 1/11 2.63 (1.09) 1.00 (0) 1.70 (1.81) 8.70 (11.88) 0.31 (0.43)

SKP2 Cancer 2 58774500–58775000 Exon 8/10 8.21 (4.43) 17.98 (10.69) 0.93 (1.08) 0 0.13 (0.30)

TAOK3 Cancer 12 40571000–40571500 Intron 5/19 12.23 (7.54) 7.64 (3.88) 1.51 (2.00) 4.16 (5.87) 0.23 (0.41)

TGFB2 Cancer 13 102723000–102723500 Intron 6/7 10.45 (6.36) 4.61 (2.68) 0.24 (0) 3.47 (0.13) 0.39 (0.47)

TRAF3 Cancer 6 135924000–135924500 Promoter 5.27 (2.45) 1.50 (0.71) 0.47 (0.57) 10.45 (21.93) 0.036 (0.073)

WNT6 Cancer 9 74115500–74117500 Intron 3/3 8.30 (6.35) 15.22 (7.88) 3.40 (4.52) 3.54 (5.89) 0.26 (0.43)

ZBTB16 Cancer 8 52035000–52036000 Intron 2/6 5.24 (2.69) 7.58 (2.93) 4.00 (0.63) 0.70 (0.30) 0.45 (0.49)

FOXO1 Cancer/Metabolism 2 141195500–141196000 Intron 1/2 4.84 (2.03) 1.33 (0.58) 0.18 (0.084) 1.31 (0.27) 0.013 (0.026)

MAPK3 Cancer/Metabolism 1 185936000–185936500 Exon 2/10 7.00 (3.22) 13.88 (6.77) 8.62 (0) 2.72 (0) 0.74 (0.39)

MKNK2 Cancer/Metabolism 7 10559000–10559500 Exon 14/14 8.85 (3.70) 14.22 (6.72) 3.20 (2.54) 0.98 (0.97) 0.32 (0.42)
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Table 4. Cont.

Gene Function Chromosome Location Genomic
Feature HF MeDIP LF MeDIP HF MRE LF MRE Conservation

ACACB Metabolism 12 43424500–43425000 Intron 30/58 4.67 (2.22) 5.63 (2.80) 9.21 (0.59) 3.01 (1.59) 0.0020 (0.0041)

ACOX3 Metabolism 14 80781000–80781500 Intron 13/19 15.48 (9.69) 3.00 (1.58) 0 0 0.0047 (0.016)

FADS2 Metabolism 1 212532500–212533000 Intron 4/10 7.83 (3.78) 12.44 (4.55) 1.67 (1.44) 0.87 (0.92) 0.27 (0.44)

IRS2 Metabolism 16 83384000–83384500 Intron 1/1 9.39 (4.22) 1.67 (0.71) 0.24 (0.17) 2.82 (0.27) 0.00077
(0.0032)

PHKB Metabolism 19 22453500–22454000 Intron 13/29 4.43 (2.08) 11.92 (5.76) 0.91 (0.18) 0.19 (0) 0.038 (0.12)

PPP1R3B Metabolism 16 60562000–60562500 Intron 1/1 4.08 (2.56) 1.00 (0) 0.49 (0) 6.85 (0) 0.026 (0.076)

SCD1 Metabolism 1 249463500–249464000 Intron 5/5 10.82 (4.11) 16.68 (5.85) 1.89 (1.58) 0.47 (0.40) 0.012 (0.037)

MeDIP and MRE values are given as average reads (standard deviation). Conservation denotes conservation score (standard deviation).
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3.4. Intergenic CpGs

Finally, we attempted to understand the impact of DNA methylation in regions that were not
associated with particular genes. The majority of the identified DMRs were located in intergenic
regions. Previously, such CpGs have been ignored. We hypothesized that even DMRs without obvious
gene contact would impact expression via altering chromatic confirmation. Three-dimensional DNA
dynamics have been studied in the human genome using chromatic capture techniques; however, these
methods have not been performed in rat samples. Thus, we were only able to address the 42 CpG sites
that had a conservation score >0.5 (Figure 6A). From the Rn4 genome build, the analogous region was
identified in the Hg38 genome. The DMR and the 1 mb region flanking either side were queried for
topologically associated domains (TADs) using Hi-C data from liver tissue (Figure 6B) [27]. KEGG
Pathway and Gene Ontology analyses were performed on all genes that fell within a TAD containing
a DMR (Figure 6C,D). Interestingly, these genes also had functions in metabolism, replicating the
findings in the gene-associated DMRs.

We then measured the expression of ten metabolic genes associated with intergenic DMRs
(Figure 7A). We found that Pik3c3 and Enox1 were more highly expressed in the HF group (p = 0.0028
and p = 0.025, respectively) while Adh5 was more highly expressed in the LF group (p = 0.029). We then
examined the DMRs within 1 mb of each gene. Two DMRs were located upstream of the Pik3c3 TSS
and were more methylated in the LF group as identified by MeDIP-seq and MRE-seq (Figure 7A). Four
DMRs were located upstream of the Enox1 TSS. The two more distant DMRs (−889,247 and −888,747 bp
upstream) were hypomethylated in the LF group, while the two more proximal DMRs (−472,747 and
−373,747 bp upstream) were hypermethylated in the LF group (Figure 7C). Two DMRs were located
upstream of the Adh5 TSS. MeDIP-seq and MRE-seq showed that the more distant DMR (−391,108 bp
upstream) was hypermethylated in the LF group while the more proximal DMR (−170,108 bp upstream)
was hypomethylated in the LF group (Figure 7D).
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Figure 6. Intergenic DMRs in conserved genomic regions were associated with metabolic genes through
chromatin contacts. (A) The conservation score was calculated for every intergenic DMR and only
those with scores >0.5 were considered for further analysis (n = 42). (B) Regions from the Rn4 genome
build were aligned with the Hg38 genome and queried for chromatin contacts. As an example, contact
maps are shown for the three DMRs with the highest conservation scores. Genes located within the
DMR-associated topologically associated domain (TAD; gray bars) were used for functional analysis.
(C) KEGG Pathway analysis and (D) functional clustering showed enrichment for metabolic processes.
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There was no difference in body weight and there were very few changes in gene expression 
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Figure 7. Expression of metabolic genes associated with intergenic DMRs. (A) Three genes were
differentially expressed, including Pik3c3, Enox1, and Adh5. DMRs within 1 mb upstream and
downstream of the gene body are reported for (B) Pik3c3, (C) Enox1, and (D) Adh5. MeDIP-seq and
MRE-seq values are presented as average reads ± SEM.

4. Discussion

In this study, we investigated the role of maternal diet in hepatic epigenomic programming.
Specifically, male Sprague-Dawley rats were fed either a LF or a HF diet during gestation and lactation.
After weaning, all animals were given a HF diet challenge. After nine weeks on the post-weaning
diet, there was no difference in body weight between groups; however, hepatic DNA methylation was
changed at 1419 loci. Closer examination of the DMRs revealed enrichment for metabolic and cancer
pathways. Gene expression analysis showed that only Map3k5 and Igf1r were differentially expressed.
Finally, we looked at the conserved intergenic DMRs and found that they were also located nearby
differentially expressed metabolic genes.
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There was no difference in body weight and there were very few changes in gene expression
between perinatal LF- and HF-exposed animals. Previous experiments have reported inconsistent
results regarding body weight of animals that were given an obesogenic post-weaning diet preceded
by different perinatal diets. After 14 weeks on a post-weaning HF diet, mice that had been exposed
to a maternal HF diet had higher body weights than those exposed to a maternal LF diet [29,30].
Conversely, another study found that maternal dietary fat had no impact on body weight when male
mouse offspring were fed a post-weaning HF diet for 17 weeks [31]. Finally, others have suggested that
the impact of maternal diet is time dependent. In Sprague-Dawley rats, it was shown that perinatal
diet did not change body weight after eight weeks of post-weaning HF feeding but did produce
body weight differences after 16 weeks of post-weaning HF feeding [32]. In our case, we saw that
the perinatal diet was not protective against HF-induced postnatal weight gain after nine weeks of
HF feeding. Additionally, our study is limited because we did not consider any other metabolic
parameters. Previous work has shown that a prenatal HF diet impacts glucose tolerance, lipid profile,
and cardiovascular health [31,33–35]. Such physiological characteristics have also been associated with
DNA methylation [36–38], so it is possible that the perinatal diet acts through epigenetic mechanisms
to affect metabolic outcomes.

The changes in DNA methylation but lack of body weight difference suggest that either perinatally
programmed DNA methylation is slowly washed out by a new dietary challenge, or that DNA
methylation programming is robust and foreshadows distinct future metabolic outcomes. Given
previous findings, we hypothesize that our rats may have been sacrificed before weight differences
could be observed. Because metabolic parameters such as resting metabolic rate, macronutrient
oxidation, and body composition change during aging [39], it is possible that younger rats were able to
compensate for perinatal perturbations. A similar principle might also explain the small number of
differentially expressed genes. Younger animals might be better equipped to combat disturbances in
the methylome. Conversely, it may be the case that DNA methylation established during the perinatal
period is susceptible to change by post-weaning diet and thus yields no observable difference in the
future metabolic outcome. Indeed, exposure to a post-weaning HF diet was shown to mitigate the
epigenomic effects of the early-life diet [31]. Perinatal diet impacted 1,505 DMRs in male offspring
given a post-weaning LF, but only 258 DMRs in offspring fed a post-weaning HF diet. We have also
highlighted the important role of the post-weaning diet in establishing DNA methylation patterns [20].
While we previously found that a post-weaning HF diet increased body weight and impacted 3,966
DMRs, we show here that perinatal diet did not alter body weight and only affected 1419 DMRs. This
suggests that post-weaning diet is a strong predictor of body weight and perhaps a more powerful
determinant of DNA methylation than the perinatal diet. Future investigation should quantify the
contributions of gestation, lactation, and post-weaning diet in determining DNA methylation levels in
order to understand the dynamic nature of the methylome. Further work should also explore whether
epigenetic alterations have the same impact on gene expression and weight gain in older individuals.

Altogether, we measured five differentially expressed genes. Two genes, Map3k5 and Igf1r,
contained intragenic DMRs. Previous studies suggested that the two genes respond to metabolic
stressors. Map3k5 is activated by oxidative stress and inflammation [40], and Igf1r participates in insulin
signaling and fatty acid uptake [41,42]. Moreover, Map3k5 has been shown to be upregulated
in the adipose tissue of obese individuals while Igf1r is upregulated in lymphocytes of obese
children [43,44]. Because a HF diet can induce oxidative stress and inflammation, it is not surprising
that we observed lower expression of Map3k5 in LF-fed animals. Furthermore, the decrease in Igf1r
expression in the LF group might be attributed to a reduced need for IGF1-mediated fatty acid uptake.
Interestingly, expression of both genes was reduced under perinatal LF conditions, but while Igf1r had
a hypomethylated DMR, Map3k5 contained a hypermethylated DMR. This might have been due to
the position of the DMRs relative to the TSS of each gene. In Igf1r, the DMR was located in the first
intron, where it could impact transcription in a canonical manner (i.e., increased DNA methylation
resulting in decreased gene expression). The DMR associated with Map3k5 was located much further
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downstream of the TSS in intron 8. Several studies have suggested that gene body methylation
might have non-traditional effects on transcription, which could account for the discrepancy we
observed [45–47].

Amongst the genes associated with intergenic DMRs, Adh5, Enox1, and Pik3c3 were differentially
expressed. Given their role in metabolic pathways, it is not surprising that these three genes were
differentially expressed as a result of dietary treatments. The reactions catalyzed by Adh5 and Enox1
both involve nicotinamine adenine dinucleotide (NAD). The balance between the oxidized and reduced
form of the NAD cofactor is important for driving metabolic reactions. Pik3c3 plays a role in autophagy,
which has been shown to be altered by different exposures to a HF diet [48–50]. We hypothesize
that DNA methylation in more distant areas could be indicative of chromatin state, such that high
methylation is correlated with closed chromatin [51]. This is reflected in the DNA methylation and
gene expression patterns that we observed. Pik3c3 and Enox1 were expressed at lower levels in the LF
group and the proximal DMRs were hypermethylated. Conversely, Adh5 was highly expressed in the
LF group and the proximal DMR was hypomethylated.

This study provides insight into early life nutritional programming; however, limitations should
be addressed in further experimentation. Here, we only explored dietary effects in male offspring.
In previous studies, we have demonstrated sex-specific physiological and molecular changes after HF
diet exposure [52–54]. We have also found particularly robust changes in hepatic gene expression and
DNA methylation in male rats [16,20,55,56]. Although this study expands upon our prior findings in
males, we cannot assume that these results would broadly apply to females. Further investigation is
necessary to test whether diet-induced DNA methylation patterns are observed in both sexes. Another
limitation of the current study is that epigenomic profiling was performed on whole liver tissue. While
bulk tissue measurements have been previously used to uncover differences in hepatic gene expression
and epigenetic profiles [57–59], future studies should consider isolating hepatocytes in order to better
predict the functional role of differences in DNA methylation.

Our findings represent a novel contribution to the field of nutritional epigenetics. Whereas
several other studies have taken gene-targeted approaches to study DNA methylation, we interrogated
the entire epigenome to uncover novel differences in DNA methylation. This allowed us to better
investigate intergenic DMRs. Previous analysis has focused on gene-associated DMRs located within
1,500 bp upstream and downstream of a gene body. Indeed, certain technologies such as reduced
representation bisulfite sequencing are designed to specifically identify DNA methylation differences in
regions near gene promoters. Using these methods, the majority of identified DMRs have the advantage
of being functionally interpretable. However, intergenic regions are often overlooked. Interestingly,
we found intergenic DMRs to account for more than half of all differential methylation. Intergenic
DNA methylation is thought to play an important in cellular function and disease. Intergenic DMRs
can impact transcription via interaction with enhancer elements [60], and intergenic demethylation
is observed in various cancers [61]. Currently, there are no bioinformatics approaches to identify
specific functions for large numbers of intergenic DMRs. We hypothesized that proximal genes with
significant chromatin contact were most likely to be affected by differential methylation. Although this
hypothesis was supported by three differentially expressed genes, understanding the role of intergenic
methylation should still be a priority in order to facilitate the development of new computational tools
to annotate these regions.

5. Conclusions

Overall, we conclude that perinatal diet impacts hepatic DNA methylation, especially in metabolic
and cancer-related pathways. On the other hand, early-life LF diet is not adequate to prevent postnatal
weight gain induced by an HF diet. Although minimal, a prenatal LF diet produced changes in gene
expression, including increased the expression of Map3k5, Igf1r, and Adh5, and decreased the expression
of Enox1 and Pik3c3. Our findings suggest that diet-mediated epigenetic marks established during
early life persist despite a HF diet challenge during the postnatal period.
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