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ABSTRACT
Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of severe invasive disease in
neonate, elderly, and immunocompromised patients worldwide. Despite recent advances in the diagnosis
and intrapartum antibiotic prophylaxis (IAP) of GBS infections, it remains one of the most common causes
of neonatal morbidity and mortality, causing serious infections. Furthermore, recent studies reported an
increasing number of GBS infections in pregnant women and elderly. Although IAP is effective, it has
several limitations, including increasing antimicrobial resistance and late GBS infection after negative
antenatal screening. Maternal immunization is the most promising and effective countermeasure against
GBS infection in neonates. However, no vaccine is available to date, but two types of vaccines, protein
subunit and capsular polysaccharide conjugate vaccines, were investigated in clinical trials. Here, we
provide an overview of the GBS vaccine development status and recent advances in the development of
immunoassays to evaluate the GBS vaccine clinical efficacy.
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Introduction

Group B streptococcus (Streptococcus agalactiae; GBS) is an
opportunistic gram-positive pathogen and one of the most
common causes of life-threatening bacterial infections world-
wide. In the human neonates, GBS infection commonly results
in the development of pneumonia, sepsis, and meningitis.1,2

Despite considerable advances in the diagnosis, prevention,
and treatment of neonatal GBS infections, it remains an impor-
tant public concern globally. Additionally, an increasing num-
ber of GBS infections in pregnant women and non-pregnant
adults typically with underlying medical conditions, has been
reported. In the first meeting of the Product Development for
Vaccines Advisory Committee (PDVAC) convened by the
World Health Organization (WHO) in 2014, GBS was identi-
fied as an important pathogen leading to a large burden of dis-
ease worldwide and a high priority for the development of a
vaccine.2 Although vaccination is the most promising strategy
for the prevention of GBS infection, currently no licensed GBS
vaccine is available in the market. Here, we reviewed and
described the studies investigating this pathogen and potential
future directions of GBS vaccine development and assay meth-
ods for the evaluation of the clinical efficacy of GBS vaccines.

Disease burden and clinical spectrum of GBS infections

GBS has been identified as a major cause of invasive infections
during the first three months of life since the 1970s. The inci-
dence of invasive GBS infections varies geographically, ranging

from 0.02 per 1,000 live births in Southeast Asia to 1.21 per
1,000 live births in Africa.3 GBS infection cases in the neonates
and infants can be divided into two categories: an early-onset
disease (EOD), which occurs within 0–6 days after birth, and a
late-onset disease (LOD), which occurs within 7–90 days after
birth. GBS is a common colonizer of digestive and female genital
tract in approximately one-third of human population. Maternal
colonization and subsequent neonatal acquisition of GBS is an
established risk factor for GBS sepsis during the early periods of
life.4 Therefore, intrapartum antibiotic prophylaxis (IAP) strat-
egy to reduce the neonatal acquisition of GBS has been applied,
and the incidence of EOD declined from 1.8 cases per 1,000 live
births in 1990 to 0.23 cases per 1,000 live births in 2015. How-
ever, IAP has had no impact on the incidence of LOD and only a
limited impact on disease development in pregnant women. The
incidence of LOD in the United States has remained stable since
1990 at approximately 0.3 to 0.4 per 1,000 live births.5–9 More-
over, approximately 60–80% of LOD occurred in infants whose
mothers had negative results in the GBS screening at 35–37
weeks’ gestation.10,11 This may be due to the recolonization of
GBS shortly before the delivery in these individuals, and their
infants may acquire GBS from breast milk or diverse commu-
nity/nosocomial sources after birth.12

In neonates and infants younger than 3 months, GBS causes
invasive bacterial diseases including sepsis, meningitis, and
pneumonia (Table 1). An unexpected, rapidly progressing sep-
sis is the dominant manifestation of a GBS infection (80–85%)
in EOD, while both primary bacteremia (65%) and meningitis
(25–30%) are common in LOD.8,13–15 Localized GBS infections,
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such as skin and soft tissue infections, bone and joint infec-
tions, and urinary tract infections, occasionally occur in LOD
cases as well.13 GBS is vertically transmitted to neonates during
labor and delivery, so maternal GBS carriage is an important
risk factor for EOD, particularly with obstetric complications,
such as preterm rupture of membrane, preterm delivery, and
prolonged rupture of membrane. GBS carriage rates in preg-
nant women vary geographically between 6.5% and 43.6%, with
approximately 20–30% of pregnant women carrying GBS in
the developed countries.12,16,17 In about 50% of the cases, the
infection is transmitted to their babies, leading to invasive dis-
eases in 1% of neonatal carriers.18

Although GBS infection has been primarily recognized as a
pediatric disease, it has also emerged as an important pathogen
colonizing pregnant and non-pregnant adults, particularly older
ones or adults with underlying medical conditions. A two-to-
four-fold increase in the incidence of invasive GBS diseases in
adults has been observed over the past two decades, reaching 25.4
cases per 100,000 adults.19 Approximately 5% of adults with these
disease experienced relapse with an average of 13-week inter-
vals.20 Moreover, more than 50% of fatal GBS infections occur in
elderly people.19 Common clinical manifestations of adult GBS
diseases includes skin and soft tissue infections, primary bacter-
emia, bone and joint infections, pneumonia, etc. (Table 1).20 Con-
trary to the pregnancy-related cases, which occur in the otherwise
healthy women, most of the non-pregnant adult patients with
GBS infections have underlying medical conditions.19,20 Old age
(�65 years), diabetes mellitus, liver cirrhosis, stroke, and cancer
are considered the common risk factors increasing the invasive-
ness of GBS infections among non-pregnant adults.19,20 GBS col-
onization rate at the genital and gastrointestinal tract ranges from
20% to 35% in adults irrespective of age.20 However, in bed-rid-
den elderly people, GBS has been shown to colonize the dental
plaque and pharynx as well,20 increasing the probability of GBS
pneumonia development in these patients.

Serotype distribution and antimicrobial resistance

Capsular polysaccharide (CPS) is an important virulence factor
of encapsulated bacteria, including GBS, and has been related
to the bacterial disease clinical manifestations and invasive-
ness.21 Among 10 distinct serotypes, more than 90% of EOD
are caused by serotypes Ia, Ib, II, III, and V, while LODs are
caused predominantly by serotype III (Table 1).17 Similar to
the neonates and infants, maternal carriage has been associated
with the GBS disease development in the pregnant women,
with five-fold increase in the risk of disease development,
including genitourinary tract infection, chorioamnionitis, and
endometritis, compared with that in the non-pregnant
women.18 Pregnancy-associated GBS infections may lead to
poor pregnancy outcomes, including spontaneous abortion,
stillbirth, and preterm birth. Serotype distribution of clinical
and colonized isolates was shown to be well correlated in preg-
nant women, and they were determined to be similar to those
leading to the development of EOD (Table 1).17,18 In adults,
serotype V (27.5%) was shown to be a predominant serotype,
followed by Ia (24.3%) and III (16.5%).19

Similar to pneumococci, some GBS capsular serotypes com-
monly colonize the gastrointestinal/genital tract, but rarely
cause the development of invasive diseases. Other serotypes,
however, are more likely to cause invasive diseases with each
episode of colonization.22–26 Previously, the invasive disease-
causing potential of each GBS capsular serotype was investi-
gated, based on the invasive odds ratio (OR) (Table 2).22–26

Invasive OR is calculated by referring to all other serotypes as
follows: OR D (ad)/(bc), where a is the number of invasive A
serotypes, b is the number of carriage A serotypes, c is the num-
ber of invasive non-A serotypes, and d is the number of car-
riage non-A serotypes.21 An OR of 1 indicates that the serotype
is equally likely to cause invasive disease or be recovered from
carriage, an OR>1 indicates an increased probability for a

Table 1. Disease spectrum and serotype distribution of group B streptococcal (GBS) infection according to the age of the patient.

Neonates and infants

Early-onset disease Late-onset disease Pregnant women Non-pregnant adults (old adults)

Common manifestations5,12,13,16–
18

Sepsis with unknown source
(80-85%)
Pneumonia (10%)
Meningitis (7%)

Primary bacteremia (65%)
Meningitis (25-30%)
Bone and joint infection
(5%)
Cellulitis and/or adenitis
(4%)

Genitourinary tract
infection (50%)
Chorioamnionitis (4%)
Endometritis (8%)
Primary bacteremia
(31%)
Pneumonia (2%)
Puerperal sepsis (2%)

Primary bacteremia (24%)
Skin and soft tissue infection (20%)
Respiratory tract infection (12%)
Urinary tract infection (10%)
Bone and joint infection (8%)
Intra-abdominal infection (5%)
Endocarditis (4%)
Central nervous system infection (4%)

Risk factors11–13 Maternal obstetric
complications� Maternal
genital GBS colonization
GBS bacteriuria

Prematurity Genital GBS colonization Old age (�65 years), diabetes mellitus, liver
cirrhosis, stroke, cancer, neurogenic
bladder, decubitus ulcer

Case-fatality rate11,16 5–10% 2–6% Not available 3.7% (up to 15% in old adults)
Serotype distribution11,20 Ia (27.7%)

Ib (7.3%)
II (4.2%)
III (46.2%)
IV (1.5%)
V (12.9%)

Ia (11.3%)
Ib (5.4%)
II (0.7%)
III (76.0%)
IV (0%)
V (6.6%)

Infection
Ia (32.7%)
Ib (4.0%)
II (14.9%)
III (28.7%)
IV (0%)
V (19.8%)
Others
(0.2%)

Colonization
Ia/Ib (36.0%)
II (14.5%)
III (24.0%)
IV (1.2%)
V (20.2%)
Others
(4.1%)

Ia (24.3%)
Ib (12.2%)
II (11.9%)
III (16.5%)
IV (0.3%)
V (27.5%)

�Premature rupture of membrane, preterm delivery, prolonged rupture of membrane
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serotype to cause invasive disease, and an OR<1 indicates a
reduced probability for a serotype to cause invasive disease.
These studies demonstrated that serotype III is the predomi-
nant invasive serotype with high invasive OR (1.8-4.2).22–26 In
a study conducted in Hong Kong, the virulence of serotype III
was further assessed at subtype level, and serotype III-subtype
4 GBS was shown to be more highly invasive compared with
other subtypes (invasive OR, 19.4).26

As recommended by the United States Centers for Disease
Control and Prevention (CDC) guidelines for the IAP for the
prevention of neonatal GBS infections, penicillin or ampicillin
is administered to the pregnant women before delivery.27 For
the patients allergic to b-lactam agents, either erythromycin or
clindamycin can be used as an alternative agent. However, an
increasing rate of resistance to erythromycin and clindamycin
has been observed among clinical GBS isolates (Table 3).28–33

High resistance rate against macrolide antibiotics was reported
in South Korea (51.8%) and China (74.1%).28,29 In South Korea,
serotype V was predominantly shown to have a high macrolide
resistance rate, reflecting clonal spread with the selective advan-
tage of antimicrobial resistance.28 However, in China, more
than 70% of GBS were resistant to macrolide antibiotics, irre-
spective of serotype.29 In South Korea, 42.9% of the GBS iso-
lates were shown to carry ermB, while in China, 52.3% of the
isolates carried this gene, which provided a high level of resis-
tance to both erythromycin and clindamycin.28,29

Virulence factors for a GBS vaccine

GBS expresses numerous virulence factors that are involved in
its colonization, adherence, invasion, and immune evasion,34–36

and these may be used as potential vaccine candidates. Bio-
chemical and molecular analyses of these factors can provide a
better understanding of the infectious process, further assisting
the development of new diagnostic techniques, specific antimi-
crobial compounds, and effective vaccines.

Capsular Polysaccharide (CPS)

GBS expresses a unique CPS that is the most well-studied viru-
lence factor contributing to the evasion of host immune defense
mechanisms by protecting the bacteria from opsonophagocyto-
sis by immune cells.12,37,38 CPS can also increase the invasive-
ness of GBS by enhancing biofilm formation, inhibiting the
binding of antimicrobial peptides and neutrophil extracellular
traps (NET), and affecting bacterial adherence to the epithe-
lium and mucus.39–41 Moreover, a correlation between the pres-
ence of CPS-specific antibodies in serum and the increased risk
of GBS EOD and LOD development was reported,42–44 and
CPS is considered the best target for the development of GBS
vaccine.

Structure and biosynthesis
GBS expresses at least 10 structurally and antigenically different
types of CPS (Ia, Ib, II, III, IV, V, VI, VII, VIII, and IX)
(Fig. 1).45,46 All identified CPSs of GBS are high-molecular
weight polymers with the short side-chain capped terminally
with a sialic acid (N-acetylneuraminic acid) residue. Pneumo-
coccal type 14 polysaccharide (Pn14) is structurally related to
GBS type III polysaccharide (GBS-III), except for the presence
of a terminal sialic acid residue in the side chain.47–50 However,
immunoglobulin G (IgG), induced by the presence of Pn14,

Table 2. Serotype (ST)-specific invasive diseases potential of group B streptococci.14,22–25

Odds ratio (95% confidence interval)

ST Madzivhandila et al. Berg et al. Martins et al. Bisharat et al. Ip et al.

Ia 0.8 (0.6-1.0) 0.9 (0.5-1.9) 2.1 (1.1-4.0) 1.9 (0.8-4.8) 0.6 (0.4-0.8)
Ib 0.9 (0.5-1.5) 1.7 (0.9-3.4) 0.6 (0.1-2.3) 0.5 (0.1-2.1) 1.0 (0.7-1.3)
II 0.5 (0.2-0.8) 0.9 (0.4-2.0) 0.7 (0.3-1.4) 0.3 (0.1-0.9) 0.9 (0.6-1.3)
III 4.2 (3.5-5.0) 2.0 (1.3-3.0) 2.4 (1.4-4.3) 1.8 (0.9-3.8) III-1: 1.1 (0.8-1.5)

III-2: 1.5 (1.1-2.1)
III-3: 1.1 (0.4-2.9)
III-4: 19.4 (9.1-41.2)

IV 0.5 (0.2-1.2) 0.8 (0.2-3.9) 1.4 (0.2-6.7) — 0.1 (0.0-2.2)
V 0.4 (0.2-0.7) 0.6 (0.3-1.1) 0.4 (0.2-0.9) 1.0 (0.4-2.5) 0.6 (0.5-0.9)

Table 3. Resistance rates (%) to macrolide antibiotics in group B streptococcus isolates.

Yoon et al.27 Lu et al.28 Morozumi et al.29 Von Both et al.30 Lin et al.31 Dutra et al.32

Country South Korea China Japan Germany US Brazil
No. of isolates 56 193 443 146 346 185
Overall 51.8% 74.1% 19.2% 19.9% 20.2% 9.7%
Serotype Ia 12.5% 69.4% 13.2% 7.7% 16.3% 5.0%
Serotype Ib 50.0% 76.7% 14.3% 63.6% 8.1% 2.4%
Serotype II — 100% 18.2% 18.2% 8.7% 4.8%
Serotype III 40.0% 78.4% 49.2% 16.3% 26.0% 10.3%
Serotype IV — — — 0% — —
Serotype V 93.8% 74.1% 22.5% 52.6% 34.9% 1.7%
Serotype VI 0% 33.3% 4.8% — — —
ermB 42.9% 52.3% 11.7% 8.9% — 2.7%
ermA 5.4% 10.9% 5.4% 5.5% — 3.8%
mefA 1.8% 32.1% 2.0% 5.5% — 0%
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poorly cross-reacts with GBS-III polysaccharide, suggesting
that the sialic acid-dependent functional epitope may provide
the protective immunity.47,51 Moreover, sialylated CPS of GBS
is recognized as a critical structural moiety for the attachment
to human brain microvascular endothelium and evasion of
human immune system.52,53

Based on the genetic structure of the GBS-CPS synthesis
loci, the genes involved in CPS synthesis are located at the
same chromosomal locus (cps) and are generally synthesized
through the Wzx/Wzy-dependent pathway, similar to the
pneumococcal CPS and Salmonella O-antigen synthesis (Fig. 2,
Fig. 3A, and B).37,54 The locus contains the conserved genes
(cpsA-D), whose products are involved in the regulation of cap-
sule synthesis and the determination of the length of the repeat-
ing unit.37,55,56 CpsA is a membrane anchoring protein and
functions as a key regulator of CpsD phosphorylation.56 CpsB,
-C, and -D compose a phosphoregulatory system, where the
CpsD autokinase phosphorylates its C-terminal tyrosine resi-
dues in a CpsC-dependent manner.55 Capsule synthesis is initi-
ated by the transfer of monosaccharide phosphate to a
membrane-associated undecaprenyl-phosphate by CpsE,57–60

and the additional sugars are sequentially added to form a
repeat unit through the activity of different transferases, such
as CpsF-G, CpsI-K, and CpsM-S.37,60 The repeat unit is trans-
ferred to the outside of the cytoplasmic membrane by flippase
(CpsL) and polymerized to form the mature CPS by polymer-
ase (CpsH). High molecular weight CPS is covalently linked to
GlcNAc C-6 of peptidoglycan, but the genetic and enzymatic
mechanisms involved in polysaccharide-PGN ligation remain
unclear.61

CPS vaccines
Around 1920, Avery and Heidelberger performed a series of
studies establishing the bacterial capsule as a critical virulence

factor of the encapsulated bacteria.62–69 Clinical trials investi-
gating a multivalent polysaccharide vaccine demonstrated its
high efficacy in humans against pneumococcal disease. Hexava-
lent, 14-valent, and 23-valent pneumococcal polysaccharide
vaccines (PPVs) were licensed in 1947, 1977, and 1983, respec-
tively, for the vaccination of adults and children.70 GBS-CPS
vaccine underwent clinical trials in healthy adults including
pregnant women in the 1980s.71–75 Although tetravalent GBS
polysaccharide vaccine with serotypes Ia, Ib, II, and III was
shown to be well-tolerated, the proportion of subjects with
more than four-fold increase in the serotype-specific Ig titers
compared with those in the unvaccinated group was only 33%
for serotype Ia, 0% for serotype Ib, 17% for serotype II, and
70% for serotype III.73 During the PDVAC meeting in 2014, it
was concluded that the native CPS vaccine was ineffective due
to its poor immunogenicity.76

Around 1980, CPS coupling to protein carriers, which trans-
forms T-cell-independent CPS antigens to T-cell-dependent
antigenic vaccines that can elicit a larger IgG response than the
native CPS vaccine, was developed by Robbins and Schneer-
son.77,78 Monovalent or multivalent GBS CPS-protein conju-
gated vaccines (GBS-PCV) were designed and evaluated in
clinical trials.77–93 In healthy adults, trivalent conjugate vac-
cines with serotypes Ia, Ib, and III were well tolerated, signifi-
cantly more immunogenic than the uncoupled CPSs, and
induced predominantly the generation of the IgG antibodies,
which promote opsonophagocytic killing and are effectively
transferred across the placenta.81,94 Currently, two large com-
panies are undertaking efforts to develop GBS conjugate vac-
cines. GlaxoSmithKline (GSK) has conducted phase I/II trials
with a trivalent CPS-CRM197 GBS conjugate vaccine (sero-
types Ia, Ib, and III), and this company plans to conduct a clini-
cal trial of the pentavalent GBS vaccine with serotypes Ia, Ib, II,
III, and V.1 Pfizer has also announced a phase 1/2 trial of

Figure 1. Genetic organization of the cps locus in Streptococcus agalactiae. (A) Comparative cps gene organization in nine serotypes: Ia (AB028896.2), Ib (AAJS01000021.1),
II (ALQD01000015.1), III (AF163833.1), IV (AF355776.1), V (AF349539.1), VI (AF337958.1), VII (LT671990.1), VIII (ALST01000010.1), and IX (LT671992.1). Gene designations
are indicated on each arrow. Similarity between the genes is indicated by the same or similar colors. Gene names are the same as those used in a previous study,45 except
for cpsP, cpsS, and cpsQ. (B) Predicted CPS functions based on the results of previous studies and sequence comparisons.
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Figure 3. Representative Wzx/Wzy-dependent capsular polysaccharide (CPS) biosynthesis pathway in the group B streptococcal serotype III. (A) Serotype III cps gene orga-
nization and putative functions of the gene products.37 (B) Biochemical steps during the CPS synthesis. Galactose-1-phosphate is initially transferred to an undecaprenyl-
phosphate by CpsE and the repeat unit is rapidly assembled by glycosyltransferases. Individual repeat units are translocated across the cytoplasmic membrane by flippase
(cpsL) and linked to form lipid-linked CPS by polymerase (cpsH).

Figure 2. Biochemical capsular polysaccharide (CPS) structure of Streptococcus agalactiae. Association of the encoded sugar transferases and polymerases (cpsH)
with each corresponding CPS structure. Links between two sugars are represented as black lines (b1!4), red lines (b1!4), blue lines (b1!6), and green lines
(a2!3).
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pentavalent conjugate vaccine with serotypes Ia, Ib, II, III, and
V to evaluate its safety, tolerability, and immunogenicity
(NCT03170609).

Surface anchoring adhesins

Although the production, coverage, safety and immunogenicity
of CPS conjugate vaccines have been well established, they
show several limitations, including95–98 (1) their limited usabil-
ity in the low-income countries due to the high cost,96 (2)
potential immune interference with other type of conjugate
vaccines,99 (3) the possibility of serotype replacement and
switching following the vaccination,37,100–102 and (4) an
increase in the occurrence of the unencapsulated GBS.103–105

Therefore, a structurally conserved protein antigen-based vac-
cine against GBS has been investigated as alternative vac-
cines.106,107 Conserved bacterial surface proteins play
important roles during different stages of infection and likely
represent the promising universal vaccine candidates.106,107,108

To initiate infection and invasion of a specific organs, bacterial
pathogens must first be able to attach to an appropriate target
tissue by specific multiple tropisms between bacterial surface
ligands and host receptors. Surface-anchoring adhesion mole-
cules of GBS may therefore represent good candidates for vac-
cine development.

Alp protein family
Most well-known gram-positive bacterial surface proteins are
cell wall proteins covalently anchored to the peptidoglycan
layer through an LPXTG motif by the activity of enzyme sor-
tase A (SrtA).109 The genome of GBS encodes at least 20–25
LPXTG-linked surface proteins.110–112 Proteomic analysis of
GBS was conducted to identify the major surface proteins of
GBS, and Rip protein, one of Alp family protein, was found to
be the most abundant surface protein.110 Furthermore, over
90% of GBS clinical isolates were found to express or encode at
least one of the Alp protein family genes.113 Seven members of
the Alp family, including AlphaC, BetaC, Alp1, Alp2, Alp3
(R28), Alp4, and Rib, have been identified to date. They contain
an N-terminal secretion signal sequence (S), N-terminal con-
served domain (N), a variable number of tandemly arranged
repeats of 70–80 amino acids (R), 8 to 10 repeats, and a C-ter-
minal LPXTG cell-wall anchoring motif (Fig. 4A).111 Certain
domains of Alp proteins may display high sequence similarity,
which provides a structural basis for their interactions with the
same host receptor and cross-protective immunity.114 The roles
of AlphaC and BetaC proteins have been extensively studied,
compared with those of the other members of the Alp family.
AlphaC protein was shown to be an important ligand involved
in the GBS binding to human cervical epithelial cells through
its interaction with glycosaminoglycan (GAG).115 MLKKIE
sequence motif of BetaC protein binds to the Fc region of
human IgA, predominantly found on the mucus surface
(Fig. 4B).116,117 Additionally, it was also shown to bind to
human factor H (FH) to protect GBS from opsonophagocyto-
sis.118 Rib protein shares several biochemical features with
AlphaC protein, but no immunological cross-reaction with
either AlphaC or BetaC proteins has been found.119 The

potential invasive properties of other Alp proteins have not
been studied.

Preclinical vaccine investigations of the AlphaC, Alp3, and
Rib proteins have been conducted, but the use of Alp proteins
as universal vaccines has been limited due to the heterogeneity
of the Alp sequence..114,120–123 Nevertheless, MinervaX Inc.
recently reported that the fusion protein of the highly immuno-
genic N-terminal domains of AlphC and Rib (GBS-NN) led to
over 30-fold increase of GBS-NN-specific antibody in their
phase I clinical trial with 240 healthy adult women
(NCT02459262).124

Serine-rich repeat proteins
Doro et al.125 performed surfome analysis to identify GBS pro-
teins with domains protruding from the bacterial surface.
Among 43 surface-associated proteins identified using GBS
COH1 strain (serotype III), serine-rich repeat 2 (Srr2) protein
was shown to be the most abundant surface protein, which can
be used to generate a protective immune response against GBS
serotype III in mice. Serine-rich repeat (SRR) glycoproteins are
a large and diverse family of adhesins found in most gram-posi-
tive bacteria.126–129 GBS expresses either one of two-allelic SRR
proteins, Srr1 and Srr2,130 with a highly conserved domain
organization that includes a secretion signal sequence, two SRR
domains that are glycosylated, a specialized fibrinogen binding
domain between two SRR domains, and an LPXTG cell wall-
anchoring motif (Fig. 4C). Both Srr1 and Srr2 identified in GBS
can bind fibrinogen Aa chain through the “dock, lock, and

Figure 4. Schematic representation of the group B streptococcal surface proteins.
(A) Alp protein family. Signal peptide (S), conserved domain (CD), repeating
domain (R), LPxTG cell-wall anchoring domain (green). (B) BetaC protein, contain-
ing IgA binding domain (blue) and factor H binding domain (brown). (C) Serine-
rich repeat protein family. Ig-like domain (N1, N2, and N3), serine-rich repeat gly-
cosylation domain (SRR1 and SRR2). (D) C5a peptidase. Protease activity domain
(Protease), protease-associated domain (PA), fibronectin type III domain (Fn1, Fn2,
Fn3). (E) Pilin proteins. Ig-like domain (D1-D3), pilin sorting motif (IPNTG, FPKTG,
IPKTG), and a membrane-spanning hydrophobic domain (M).
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latch” mechanism, and these interactions contributes to the
pathogenesis of GBS meningitis and GBS colonization of the
vaginal surface.131–133 An antigenic domain with 13 amino
acids in Srr1 and Srr2, latch domain, was shown to be crucial
for the pathogenesis of GBS diseases, and latch-peptide vacci-
nation was demonstrated to provide serotype-independent pro-
tection against GBS infection in mice.134

C5a peptidase (ScpB)
C5a peptidase is a highly conserved surface protein that is
expressed on the surface of most GBS serotypes and can specifi-
cally inactivate a human phagocyte chemotaxin, C5a.135–138

C5a peptidase is also involved in GBS invasion, as it interacts
with the human fibronectin through its RGD motif.139,140 This
cell wall-anchoring protease contains N-terminal subtilisin-like
protease domain, two RGD motifs targeting integrin, and three
C-terminal fibronectin type III (Fn) domains (Fig. 4D).137 C5a
peptidase-deficient GBS pathogens were shown to be more rap-
idly cleared from mice supplemented with human C5a, suggest-
ing that this peptidase is an important GBS virulence factor.141

Recombinant C5a peptidase has been investigated as a univer-
sal protein vaccine or a carrier protein of GBS-CPS instead of
the tetanus toxoid.142,143 In a murine model, antibodies raised
against recombinant C5a peptidase were opsonic and enhanced
phagocytic killing of various GBS serotypes. The immunization
with C5a peptidase-conjugated GBS type III CPS led to an
increase in the IgG immune response against both CPS and
C5a peptidase. To enhance the immunogenicity of the recombi-
nant C5a peptidase further, the researchers encapsulated it
within microspheres composed of a lactic and glycolic acid co-
polymer, which enabled this molecule to induce systemic and
mucosal immune responses, offering protection against multi-
ple GBS serotypes.144,145

Pilus
The genome sequences of five GBS serotypes were analyzed to
identify pan-genome genes that encode putative surface-associ-
ated proteins and possible antigens suitable for the develop-
ment of a universal GBS vaccine.95,146,147 Among 396 core
genes, pilin proteins were shown to induce a protective, sero-
type-independent immune response against GBS infection. Pili
are long filamentous structures protruding from the bacterial
surface, which are important for the bacterial virulence and dis-
ease pathogenesis.148 Extensive genomic analyses of a large
panel of GBS isolates revealed the presence of three pilus
islands, PI-1, PI-2a, and PI-2b, which are further classified as
pilus type 1, 2a, and 2b, respectively.147,149,150 Each island enco-
des a pilus composed of three structural proteins, the major
pilus subunit (backbone protein, BP) that forms the pilus shaft
and two ancillary proteins that appear to be located at the pilus
tip (AP1) and at the base (AP2) as anchor protein of the pilus
to bacterial cell-wall.151–156 Although vaccination using either
BP or AP1 induced protective immune responses against GBS,
it was pilus type-specific and better in immunization with BP.
Furthermore, at least six immunologically different variants
were found in BP-2a, which limited BP for the use of vaccine
development.95,149 Nuccitelli et al.157 found that BP-2a variants
share similar four Ig like domain (D1 to D4) and a D3 domain
of BP-2a is a major epitope for a protective immune response.

They further developed a six D3 fused chimeric protein from
six BP-2a variants by using structural vaccine technology and
showed strong protective immune responses against all six BP-
2a variant carrying GBS strains. If this structural vaccine tech-
nology is further expanded to successfully include BP1 and BP-
2b in a six D3 chimeric protein vaccine, a pilus is going to be a
good vaccine candidate for a universal GBS protein vaccine.

Vaccine evaluation assays

Several vaccine candidates are under clinical and preclinical
investigations, but the low baseline incidence of the primary
endpoint of GBS invasive disease requires phase III clinical effi-
cacy trials to be very large.2 Based on a good correlation
between immune response and clinical protection, some
experts suggested that GBS vaccine can be approved based on
the immunogenicity assay.42,158,159 Similarly, Neisseria menin-
gitides group C conjugate vaccine was successfully introduced
in the UK on the basis of the immunogenicity assay results.160

Therefore, the standardization of the clinical immunogenicity
assays is urgently required for the development of GBS vac-
cines. The basic approach to the determination of vaccine
immunogenicity is the measuring of antigen-specific antibody
levels in the patient sera before and after vaccination, to deter-
mine whether an appropriate response has been induced.

For the PCV vaccine, two standard immunological methods,
enzyme-linked immunosorbent assay (ELISA) and opsonopha-
gocytic killing assay (OPKA) for measuring the quantity and
quality of CPS-specific antibodies, are well established and
accepted as the standard vaccine efficacy assays.51,161,162

Although an immunogenicity assay for the analysis of GBS vac-
cine has been developed using certain modifications of the
existing PCV vaccine assay, the modified protocol has not been
standardized and validated in different laboratories to date, and
consequently, the standardization of the GBS vaccine immuno-
genicity assays is necessary.

Antibody quantification
Standard ELISA can be used for the quantification of antibodies
generated due to the immunization by protein-based vac-
cine.163,164 However, the capacity of this test to determine the
levels of the antibodies against serotype-specific CPS antigens
largely depends on the ability of the CPS immobilization on an
ELISA plate, which can be accompanied by considerable tech-
nical difficulties, such as an inconsistent binding of immobi-
lized CPS to the solid phase or a nonspecific serotype-
independent binding with lower avidity.85,89,91,165 Despite the
high degree of similarity between the repeat unit structure of
CPS in different serotypes, their immunogenicity may quite dif-
fer. Therefore, methods used for the quantification of capsular
serotype-specific antibody in serum must be not only sensitive,
but also serotype-specific.89 Baker and Kasper reported that the
use of horse serum albumin-conjugated CPS obtained from dif-
ferent GBS serotypes as coating antigens results in at least 13-
to 215-fold higher binding of antigens to the ELISA plates
than when CPS alone is used and an improved sensitivity
of the ELISA compared with that of the unconjugated
CPS.51,81,87,89,166 However, another study demonstrated that the
chemical conjugation of CPSs and proteins as ELISA antigens
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can alter the antigenic structure of CPS, resulting in the reduc-
tion of antigenic specificity.167 These results demonstrate that
the design of specific ELISA protocol for the determination of
serotype-specific GBS antibodies should be further optimized.

Assessment of functional antibodies
The quantity of antibodies generated against CPS or protein
antigens highly correlates with the level of protection against
GBS infections, but the functional quality of the antibodies
induced by vaccines represents a critical determinant for the
protection against GBS infections as well. Since the application
of ELISA cannot differentiate between poorly functional anti-
bodies with low avidity and the high-avidity antibodies, ELISAs
may not be sufficient to determine the functional quality of
antibodies.168–171 OPKA has been useful for the direct measure-
ment of the protective capacity of antibodies, which function by
opsonizing GBS for phagocytosis.161 The classical OPKA is a
tedious procedure for the examination of several serotype-spe-
cific OPKA in a large number of samples.172,173 For the clinical
testing of pneumococcal vaccine efficacy, OPKA for pneumo-
coccus has been modified to use a granulocytic cell line (HL60)
that allows more convenient use of it with specificity and repro-
duciblity.174 Additionally, this assay has been further simplified
from a single OPKA to a multiplexed OPKA to reduce the assay
time and the amount of serum required for the test.175–177 Eval-
uation of the functional efficacy of vaccine after immunization
of pregnant women with GBS vaccine is performed in the new-
borns, in which extremely small amounts of serum can be
obtained. With the technical advantages of the multiplexed
OPKA, three-fold multiplexed OPKA for GBS (GBS-MOPA)
has been developed, standardized, and validated to be used in
newborns.178 This standardized GBS-MOPA protocol enabled
a practical, large-scale assessment of GBS vaccine immunoge-
nicity against serotypes Ia, III, and V. An additional set of GBS-
MOPA, covering all possible vaccine serotypes, is required to
be developed.

Concluding remarks and perspectives

Despite the remarkable advances in the prevention and treat-
ment of GBS infections over the recent decades, invasive GBS
infections are still important public health problems, particu-
larly in the neonates and infants. Although several vaccine can-
didates are under clinical development, a key issue of the phase
III trials is the low baseline incidence of the primary clinical
endpoints of GBS infections in both neonates and elderly.
Additionally, the optimization of the number, concentrations,
and timing of maternal vaccination conferring protection
against GBS infections in both pregnant women and neonates
is complicated. Therefore, it is critical to develop a standardized
immunogenicity assay and establish GBS serotype-specific pro-
tective cut-off values to succeed in the development of effective
vaccines. Several efforts were made to modify the standard
immunogenicity assay for pneumococcal PCV for the applica-
tion in the GBS vaccine development, however, several con-
cerns were highlighted here. First, no reference serum for the
standardization of GBS ELISA is available, furthermore, the
immobilization of CPS on ELISA plate has to be optimized,
and finally, the low affinity of natural and non-specific binding

antibodies. Moreover, standard immunogenicity assays should
be further optimized and validated in multiple laboratories
across different counties, together with the worldwide epidemi-
ological studies of the GBS serotype and genotype distribution.
After the introduction of pneumococcal PCV, new serotypes
and serotype replacement were identified in the countries
where PCV has been used nationwide. Due to this, the vaccine
effectiveness and changes in the disease incidence should be
constantly assessed and monitored before and after the licens-
ing and implementation of GBS vaccine.
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