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Abstract: Due to the complexity of the biomolecules and titanium (Ti) combination, it is a challenge
to modify the implant surface with biological cytokines. The study proposed a new method for
immobilizing cytokines on implant surface to solve the problem of low osseointegration under type 2
diabetes mellitus (T2DM) condition. This new modified protein that connected Ti-binding artificial
aptamer minTBP-1 with Insulin-like growth factor I (IGF-I), had a special strong affinity with Ti
and a therapeutic effect on diabetic bone loss. According to the copies of minTBP-1, three proteins
were prepared, namely minTBP-1-IGF-1, 2minTBP-1-IGF-1 and 3minTBP-1-IGF-1. Compared with
the other modified proteins, 3minTBP-1-IGF-1 adsorbed most on the Ti surface. Additionally, this
biointerface demonstrated the most uniform state and the strongest hydrophilicity. In vitro results
showed that the 3minTBP-1-IGF-1 significantly increased the adhesion, proliferation, and mineral-
ization activity of osteoblasts under T2DM conditions when compared with the control group and
the other modified IGF-1s groups. Real-time PCR assay results confirmed that 3minTBP-1-IGF-1
could effectively promote the expression of osteogenic genes, that is, ALP, BMP-2, OCN, OPG, and
Runx2. All these data indicated that the 3minTBP-1-IGF-1 had the most efficacious effect in promoting
osteoblasts osteogenesis in diabetic conditions, and may be a promising option for further clinical use.

Keywords: implant; osseointegration; IGF-1; T2DM; peptide aptamer

1. Introduction

Currently, commercially pure titanium, known for its high degree of biocompatibil-
ity and good mechanical properties, remains the most widely used implant material in
dental implant clinics [1]. The improvement of implant design, surface characteristics
and surgical scheme makes the implant a safe and highly predictable procedure, with an
average survival rate of 94.6% and an average success rate of 89.7% over 10 years [2]. The
survival of implants initially depends on successful bone integration after implantation.
However, in some pathological conditions, such as diabetes, osseointegration was impaired
because of the poor bone quality [3]. A review of implant failure rate assessment through
13 studies showed that the highest failure rate of patients with diabetes was 14.3%, which
was two times higher than that of normal patients [4]. According to the latest statistics
from the International Diabetes Federation, the number of diabetic patients aged 20–79 is
424.9 million, which is three times the number of patients in 2000. By 2045, patients with
diabetes may reach 629 million [3]. Among them, T2DM accounts for about 90% of DM [3].
Recently, the 40-year trend of tooth loss in diabetes and non-diabetic patients over the age
of 25 has been investigated in the United States, which found that the number of missing
teeth in diabetic patients is almost two times that of non-diabetic patients [5]. Therefore,
it is of great significance to improve the success rate of implant-supported dentures in
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T2DM patients. The prominent features of T2DM are hyperglycemia, glucose intolerance,
and insulin resistance. Some authors have suggested that T2DM could adversely interfere
with the process of implant osseointegration, and incomplete and delayed bony formation
around the implant leads to its ultimate failure [6,7]. It has been proven that the apoptosis
rate of osteoblasts increases significantly and the mineralization rate decrease remarkably,
which suggests that high glucose can impair the osteogenic function of osteoblasts [8].
Despite the extensive use of Ti implants and a substantially growing body of studies on the
modification of implant surfaces, osseointegration of implants in a medically compromised
condition such as T2DM still remains a challenge [2,9].

In humans, IGF-1 and its binding proteins have positive roles in the acquisition of
peak bone mass (PBM) and the maintenance of bone mineral density (BMD) [10]. The
anabolic hormone IGF-1 primarily regulates the linear and microarchitectural bone growth
through osteoblast cells [11]. Clinically, the serum IGF-1 level in diabetic patients is sig-
nificantly decreased [12]. Systemic treatment with IGF-1 reversed impaired bony healing
in diabetic animals, possibly through improvement in the formation of bone and inhibi-
tion of resorption [13]. There is a continuing search for local IGF-1 delivery systems to
improve the osseointegration of the implant. Some studies have investigated the use of
co-polylactic/glycolic acid (PLGA, a biodegradable injectable polymer) microcapsules to
make a preparation that releases IGF-1 over a certain period. However, how to load these
microcapsules on the implant surface is still a problem [14,15].

Efficient immobilization of biomacromolecules on the mental surface is a crux to
development in areas of regenerative medicine and tissue engineering [16]. To biologically
modify a metal surface, the first step is typically the formation of an organic layer on the
metal surface to introduce functional groups for binding to biological molecules [17]. The
silane-coupling method, electrodeposition, photoimmobilization, and chemical treatment
with molecules containing phosphate groups or catechol-related groups (dopamine or
polydopamine) have recently been developed [18,19]. Because there are many possible
residues participating in the conjugation reactions, proteins are often denatured due to
the collapse of their tertiary structure [20]. These methods are sometimes not suitable for
protein immobilization [20]. In the last several years, peptide aptamers (=binders) that
specifically bind to the surfaces of various inorganic materials have been attracting attention
in the field of bionanotechnology [20]. At present, many peptide aptamers that bind to a
variety of inorganic materials have been screened out. Notably, a linear 6-mer new peptide
aptamer, named minTBP-1 (RKLPDA), has been proved to have a specifically high affinity
with Ti [21]. Considering its specific and strong binding ability, minTBP-1 could be used as
a bridge between Ti and IGF-1 to form a new kind of modified protein, which endowed the
chimeric peptide with a specific binding ability with Ti and the biological function of IGF-1.
Due to the high molecular weight of IGF-1, only three chimeric peptides were produced,
namely minTBP-1-IGF-1, 2minTBP-1-IGF-1, and 3minTBP-1-IGF-1. Whether these three
modified proteins can effectively play the function of IGF-1, and promote the proliferation
and differentiation of osteoblasts under T2DM conditions in vitro would be explored in
subsequent experiments.

To the best of our knowledge, studies of endosseous dental implant placement in com-
bination with the modified IGF-1s in diabetic conditions have not yet been performed. The
(n)MinTBP-1-IGF-1-Ti complex represents a novel biomaterials-based tissue engineering
strategy in bone regeneration. The purpose of this experiment is to verify the effect of
functionalized (n)minTBP-1-IGF-1s modified titanium on its adhesion, proliferation, and
differentiation of osteoblasts under T2DM conditions in vitro.

2. Materials and Methods

Figure 1 shows the biointerface preparation and the experimental process. MinTBP-1-
IGF-1, 2minTBP-1-IGF-1, and 3minTBP-1-IGF-1 were loaded on Ti surfaces, and in vitro
osteoblasts responses in terms of cell adhesion, proliferation, mineralization, and osteogenic
gene expression are determined and discussed under diabetic condition.
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Figure 1. Preparation and experimental process of (n)minTBP-1-IGF-1-Ti complex: (a) conformational
space of (n)minTBP-1-IGF-1; (b) samples preparation and (n)minTBP-1-IGF-1 loaded on Ti surfaces
under T2DM condition; (c) the effects of functionalized Ti on osteogenesis under T2DM condition.

2.1. Coating Ti Plates/Implants with the Modified IGF-1s

Pure Ti samples (included Ti specimens 2 × 32 × 32 mm, Zhong Bang Corporation,
Xi’an, China) were divided into four groups: machined-surface group (control), minTBP-1-
IGF-1 group, 2minTBP-1-IGF-1 group, and 3minTBP-1-IGF-1 group. Before use, all samples
were ultrasonically cleaned with acetone and 70% (v/v) ethanol for 20 min, followed by
sterile deionized water for 10 min. The samples were then dried and sterilized with irradi-
ated cobalt 60. For protein adsorption, first, the modified IGF-1s were at a concentration of
0.1 mg/mL dissolved in binding buffer (5 M urea, 0.2 M Tris–HCl (pH 9.5), 0.1% Tween 20),
then samples were placed into 10 mL the protein solution at ambient temperature for 1 h,
finally, the samples were washed three times with binding buffer and TBS.

2.2. Surface Characterization

Surface morphology and roughness were observed by atomic force microscopy (AFM,
Vecco Instrument Dimension, Icon, Aschheim, Germany). Measurements were carried out
at scan size of 3 µm and at scan rate of 0.3 Hz.



Materials 2022, 15, 3134 4 of 15

2.3. Water Contact Angle Test

The surface hydrophilicity was assessed by contact angle measurements using Auto-
matic Contact Angle Meter Model SL200B (Solon, Shanghai, China), which was conducted
at room temperature by dropping 2 µL of distilled water onto the surface.

2.4. Assaying Adsorbed Modified IGF-1s

Modified IGF-1s were quantified using a Human IGF-1 ELISA development kit (Pe-
proTech, Rocky Hill, NJ, USA). To estimate the amount of adsorbed protein, specimens
were immersed in the modified IGF-1s solution for 30 min, 1, 6, 24 h at ambient temper-
ature. Afterward, the specimens were put into 5 M urea, 0.2 M HCl, and 0.1% Tween 20
for 30 min [22]. This eluate was diluted 1:20 in PBS containing 0.1% BSA before carrying
out ELISAs.

2.5. T2DM Animal Model

The design and implementation of the animal experiment were carried out with the
permission of the Animal Ethics Committee of the School of Stomatology (Air Force Medical
University, Xi’an, China). A total of 18 male Sprague-Dawley (SD) rats (260–300 g) were
purchased from the animal holding unit of Air Force Medical University. As previous
report, a high-fat diet (consisting of 48% carbohydrate, 22% fat, and 20% protein, with
a total calorific value of 44.3 kJ/kg) and low-dose streptozotocin (STZ, Sigma, Neustadt,
Germany) intraperitoneal injection were applied to SD rats to induce T2DM [7]. Rats
received intraperitoneal injection of streptozotocin with a dose of 30 mg/kg after five
weeks of high-fat diet. Four weeks following the STZ injections, rats with blood glucose
levels of ≥16.7 mmol/L were used for experiments.

2.6. Culture of Cells

Osteoblasts were isolated from the calvaria of neonatal SD rats by enzyme separation
method. Briefly, the calvaria tissues were digested after shredding with 0.5% trypsin for
15 min at 37 ◦C. After being washed intensively with PBS, the segments were transferred
to culture flask under normal culture conditions: Dulbecco’s modified Eagle’s medium
(DMEM, Gibco) supplemented with 10% fetal calf serum (FCS, Gibco, Waltham, MA, USA),
50 mg/mL gentamicin (Sigma), 100 mg/mL ampicillin (Sigma) at 37 ◦C in a humidified
atmosphere of 5% CO2. The cells between passage 2 and passage 4 were used in the
following experiments. The cells were incubated with diabetic serum which was acquired
from T2DM rats.

2.7. Cell Attachment and Proliferation Assay

The Cell Counting Kit-8 (CCK-8, Dojindo, Kumamoto, Japan) assay was used to
evaluate the cell attachment and proliferation ability. A 500 µL aliquot of suspended cells
at a density of 1 × 104 cells mL−1 was seeded on different sample surfaces, then incubated
for about 6 h for attachment assay and 1, 3, 6 d for proliferation assay. At these four time
points, the culture medium was removed, and an aliquot of CCK-8 (10%, 100 µL) dissolved
in media was added to each well, after which the plates were incubated for 2 h. The CCK-
8-containing solution was transferred to a 96-well plate, and the absorbance at 450 nm was
measured using a spectral scanning multimode reader (Varioskan Flash, Thermo Scientific,
Waltham, MA, USA).

2.8. Cell Morphology

After culturing for 7 days, the samples were rinsed with PBS, fixed with 2.5% glu-
taraldehyde for 10 min, dehydrated with gradient alcohol, and sputter-coated with a thin
gold layer, finally surveyed by field emission scanning electron microscopy (FE-SEM, JEOL
JSM-6460).
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2.9. Alkaline Phosphatase Activity and Detection of the Mineralized Product

After osteogenic induction for 7 days, osteoblasts were washed twice with PBS, fixed
with 4% PFA, and stained with the BCIP/NBT ALP Color Development Kit (Beyotime,
Haimen, China) to qualitatively evaluate the ALP activity. In the quantitative assay, the
cells were lysed in 0.5 mL of distilled water through four standard freeze-thaw cycles. The
lysate mixed with the solution of ALP Assay Kit (Beyotime) was incubated at 37 ◦C for
30 min. The OD value was detected using a microplate reader at 405 nm. The ALP levels
were normalized to the total protein content determined by the bicinchoninic acid (BCA)
Protein Assay Kit (Beyotime).

Matrix mineralization of osteoblasts was evaluated by Alizarin Red S (Sigma) staining.
After induction for 14 days, the samples were fixed in 75% ethanol for 1 h followed
by staining with 40 mM Alizarin Red S (pH 4.2) for 30 min at room temperature. The
unabsorbed stain was removed by rinsing with distilled water and dried for the qualitative
assay. Quantitative analysis was performed by eluting the adsorbed stain to 500 µL of
10% cetylpyridinium chloride in 10 mM sodium phosphate (pH 7.0) for 2 h and the optical
density at 570 nm was measured on the microplate reader.

2.10. Osteogenesis-Related Gene Expression

Expression of osteogenesis-related genes was evaluated using quantitative real-time
PCR assay. Osteoblasts were seeded with 2 × 104 cells/cm2 and cultured for 7 and
14 days. Total RNA was subsequently extracted using TRIzol (Thermo-Fisher Scientific)
and first-strand complementary DNA (cDNA) was synthesized using a cDNA synthesis kit
(Promega). Quantitative real-time PCR was then performed using rat ALP, BMP-2, OCN,
OPG, and Runx2 primers, and Fast SYBR Green Master Mix in a Step One Plus™ Real-Time
PCR System (Applied Biosystems, Carlsbad, CA, USA). The primers were designed and
synthesized by Genecopoeia (China). The expressions of the genes were normalized to the
mRNA levels of the internal control β-actin.

2.11. Statistical Analysis

The data were expressed as mean ± standard deviation. The statistical significance
of differences was determined by one-way analysis of variance (ANOVA) and Tukey’s
multiple comparison tests using SPSS 16.0 statistical software (SPSS, Chicago, IL, USA).
The difference was considered to be significant and highly significant when p < 0.05 and
0.01, respectively.

3. Results

To study the surface properties, the roughness and topography of the samples interface
were analyzed by AFM. The control group exhibited a coarse surface revealing Ra value
of 7.59 nm on average, and there are a great deal of bulges and gullies on machined Ti
surface (Figure 2a). The three modified IGF-1 groups involved a reduction of the roughness
revealing Ra(nm) values of 4.07 (minTBP-1-IGF-1 group), 3.56 (2minTBP-1-IGF-1 group)
and 2.83 (3minTBP-1-IGF-1 group) in average, respectively (Table 1). In the minTBP-1-IGF-1
group and the 2minTBP-1-IGF-1 group, proteins were arranged in lumps which indicated
that these two kinds of proteins had limited adsorption capacity and could not completely
cover the Ti surface (Figure 2b,c). However, in the 3minTBP-1-IGF-1 group, the decrease in
Ra value was the greatest, and the 3minTBP-1-IGF-1 protein was distributed evenly on Ti
surface as membrane (Figure 2d).
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Table 1. Ra values of surface roughness of the four experimental groups.

Group Ra (nm)

control group 7.59 ± 0.62
minTBP-1-IGF-1 group 4.07 ± 0.41 *

2minTBP-1-IGF-1 group 3.56 ± 0.47 *
3minTBP-1-IGF-1 group 2.83 ± 0.32 **

n = 10; * p ≤ 0.05; ** p ≤ 0.01.
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The interface wettability was characterized by the water contact angle measurement.
From Figure 2e, the contact angle between droplet and interface decreases gradually
from the control group to the 3minTBP-1-IGF-1 group. Water contact angle measurement
results (Figure 2f) showed that the surface wettability changes from 79.4 ± 6.6◦ (control
group) to 46.5 ± 6.9◦ (minTBP-1-IGF-1 group), 34.4 ± 4.7◦ (2minTBP-1-IGF-1 group), and
28.2 ± 3.1◦ (3minTBP-1-IGF-1 group). These results demonstrated that the modified IGF-1s
promoted surface hydrophilicity (Figure 2e) and the 3minTBP-1-IGF-1-Ti interface showed
the strongest hydrophilicity.

The densities of the three modified IGF-1s adsorbed on the Ti surface were 343 ± 39 ng/cm2

(minTBP-1-IGF-1), 537 ± 27 ng/cm2 (2minTBP-1-IGF-1), and 695 ± 44 ng/cm2 (3minTBP-
1-IGF-1) separately after one hour of adsorption (Figure 2g), indicating that the affinity
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between the three kinds of chimeric protein and Ti was different and the adsorption ca-
pacity of 3minTBP-1-IGF-1 was the strongest. Figure 2g also verified that the amount of
adsorbed modified IGF-1s tended to be stable at 1 h.

Throughout the experiment, the blood glucose level of the SD rats was stable at around
18.6 mmol/L from four weeks after T2DM induction.

The quantitative results of cell attachment were further corroborated by CCK-8 assay
(Figure 3a). The results showed that after culturing for 6 h, more cells were attached to
the modified interfaces than to the machined surface. There was no significant difference
in absorbance between the control group and the minTBP-1-IGF-1 group (p > 0.05). In
addition, the absorbance of the 3minTBP-1-IGF-1 group was much higher than those of the
other groups.
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Figure 3. (a) Absorbance of osteoblast attachment by CCK-8 assay after 6 h of incubation.
(b) Absorbance of osteoblast proliferation by CCK-8 after culturing for 1, 3, and 6 days on ma-
chined Ti and the (n)minTBP-1-IGF-1 interfaces. (c–f) SEM images of osteoblasts after culturing for
7 days on different samples at lower magnification (×200). (g–j) SEM images of osteoblasts after
culturing for 7 days on different samples at higher magnification (×800). n = 10, * p < 0.05, ** p < 0.01.

The CCK-8 assay was employed to evaluate the proliferation level of osteoblasts
culturing for 1, 3, and 6 days of different groups (Figure 3b). The control group and the
minTBP-1-IGF-1 group demonstrated lower absorbance values when compared with the
2minTBP-1-IGF-1 and the 3minTBP-1-IGF-1 groups on day 1. For longer periods of incuba-
tion, this tendency was enhanced. On the third day and sixth day, absorbance values of both
the 2minTBP-1-IGF-1 group and the 3minTBP-1-IGF-1 group were significantly increased
when compared with the control group, and the minTBP-1-IGF-1 group. Additionally,
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the absorbance of the 3minTBP-1-IGF-1 group was significantly higher than those of the
other groups (p < 0.05). These results indicated that introducing 3minTBP-1-IGF-1 to the Ti
surface significantly increased cell proliferation.

The SEM images of the morphology of osteoblasts cultured on the different interfaces
for 7 days are presented in Figure 3c–j. As shown by the lower magnification images
(Figure 3c,d), the osteoblasts were less and expressed fusiform morphology with little
filopodia and lamellipodia in the control group and the minTBP-1-IGF-1group. On the
contrary, the osteoblasts (Figure 3e,f) were more and expressed polygonal with abundant
filopodia and lamellipodia in the 2minTBP-1-IGF-1 group and the 3minTBP-1-IGF-1group.
Among the four groups, the performance of the 3minTBP-1-IGF-1 group was the most
prominent. The higher-magnification images (Figure 3g–j) disclosed that the osteoblasts of
the three modified IGF-1s groups had a larger cell spreading area compared with those on
the machined surface. Most importantly, the 3minTBP-1-IGF-1 group had the largest cell
extension area.

To determine whether (n)minTBP-1-IGF-1 promoted osteogenic differentiation, we
measured the ALP activity and nodule formation of osteoblasts culturing on modified
IGF-1s interfaces. The ALP activity results showed that the staining color in modified
IGF-1s groups was deeper than that in the control group and the 3minTBP-1-IGF-1 group
demonstrated the deepest color after 7d (Figure 4a–d). Furthermore, the absorbance of the
3minTBP-1-IGF-1 group was significantly higher than those of the other groups (Figure 4e)
(p < 0.05). To evaluate the level of calcification of the nodules secreted by osteoblasts
culturing on different interfaces, Alizarin Red Staining was performed at 14d of incubation.
The results indicated that secreted bone nodules were dyed red (Figure 4f–i). In the control
group and the minTBP-1-IGF-1 group, small size and few numbers of red mineralization
nodules were observed. However, 2minTBP-1-IGF-1 and 3minTBP-1-IGF-1 induced more
and larger min-eralization nodules, especially the 3minTBP-1-IGF-1 group showed the
most uniform red color which demonstrated the best mineralization capacity. The result
of Alizarin Red Staining showed (Figure 4j) that the absorbance of the 3minTBP-1-IGF-1
group was significantly higher than those of the other groups (p < 0.05).
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To understand the possible mechanisms by which (n)minTBP-1-IGF-1s stimulated
cell mineralization, we investigated their effects on the expression of osteogenesis-specific
marker genes, ALP, BMP-2, OCN, OPG, and Runx2 in osteoblasts, and they were normal-
ized to the housekeeping gene β-actin. In general, the expression of osteogenesis-promoting
genes increased over time in all groups. In the first week, the expression of ALP and Runx2
(Figure 5a,e) increased significantly in the modified IGF-1 groups compared to the control
group. Although there was no difference among the modified IGF-1 groups, the ALP
and Runx2 expression of the 3minTBP-1-IGF-1 group was the highest. In the second
week, the ALP expression of the 3minTBP-1-IGF-1 group increased the most. Compared
with the control group, the expression of Runx2 in the 3minTBP-1-IGF-1 group increased
from 1.58 times in the first week to 4 times in the second week. In BMP-2 expression
(Figure 5b), there were significant differences between the 3minTBP-1-IGF-1 group and
the other groups. In the first week, there was no difference in the expression of OCN and
OPG among groups (Figure 5c,d). In the second week, the OCN and OPG expression of the
modified IGF-1 groups was significantly higher than that of the control group. Especially
the 3minTBP-1-IGF-1 group showed the highest expression level among the three modi-
fied IGF-1 groups. These results suggested that 3minTBP-1-IGF-1 can effectively promote
osteogenic gene expression.
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4. Discussion

Due to the relationship between T2DM and periodontitis, a large proportion of pa-
tients with tooth loss in the T2DM population. An implant-supported denture is a good
way to treat tooth loss and patients with T2DM have great demand for implant therapy.
There is increasing evidence that T2DM could affect implant success due to poor bone-
implant osseointegration [4]. Given that the implant surface is a key point of successful
osseointegration during the early stage of bone healing, numerous studies have focused on
enhancing dental implants’ stability by modifying the surface properties of the implants, to
minify the failure rate and recovery time after implantation [2,6,7,10,11]. The development
of surface-modified implants by increasing micro roughness or changing their chemical
composition has been a major research hotspot in recent years [1]. However, there are few
studies on different surface modification effects in the DM environment [4]. Osteoblasts
play an important role in bone matrix formation and mineral deposition in osseointegration.
A large number of studies have confirmed that hyperglycemia has direct and indirect
effects on the function and differentiation of osteoblasts, thus affecting bone mass [20,21].
In vitro studies have shown that hyperglycemia directly affects the metabolism and mat-
uration of osteoblasts by changing gene expression, so as to reduce the quality of bone
minerals [21,22]. In addition, hyperglycemia has been shown to increase the level of human
proinflammatory cytokines and nuclear factors- κb receptor activator expression of ligand
(RANKL) [23] mediates osteoblast death and osteoclastogenesis [24].

Lots of experiments have confirmed that IGF-1 plays an important role in improving
bone formation and mineralization in T2DM conditions [25]. Additionally, in vitro studies
have confirmed that IGF-1 can protect cell function from the negative effects of high glucose
levels [25]. Therefore, how to introduce IGF-1 to the implant surface becomes the focus we
pay attention to. A previous experiment has confirmed that nucleic acid aptamer minTBP-1
with high affinity to pure titanium can carry DNA polymerase and self-assemble on the Ti
surface. In this experiment, we used minTBP-1 as the carrier of IGF-1 to self-assemble on
the Ti surface [26].

We prepared three fusion proteins. The AFM images (Figure 2a–d) showed that the
more minTBP-1 contained, the more homogeneous protein adsorption on the Ti surface.
In addition, the ELISA experiment (Figure 2g) confirmed that the more minTBP-1 con-
tained, the greater adsorbed amount of the fusion protein. Therefore, a sufficient amount
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of 3minTBP-1-IGF-1 can form a film on the Ti surface, then the roughness was significantly
reduced and the hydrophilicity was remarkably improved. Surface wettability plays an
important role in the improvement of early bone healing through cell adhesion, protein
adsorption, and platelet adhesion [27,28]. Researchers have analyzed the relationship be-
tween material surface hydrophilicity and cell biological behavior and found that compared
with the hydrophobic surface the hydrophilic surface is more beneficial to cell early adhe-
sion/proliferation [2,27]. In a subsequent experiment, it was confirmed that the surface
modified with the 3minTBP-1-IGF-1 could most effectively promote cell adhesion.

Cell attachment, belonging to the first phase of cell-biomaterial interaction, acts as
a key role in regulating cell proliferation [29]. The good initial adhesion activity of cells
on the biomaterial surface can promote later proliferation and differentiation [30]. The
CCK-8 assay demonstrated that the absorbance value of 3minTBP-1-IGF-1group was the
highest, which indicated that 3minTBP-1-IGF-1 protein could effectively promote cell
attachment in diabetic conditions. After adhering to the substrate, the cells begin to spread.
The cytoskeleton composed of microtubules, microfilaments (F-actin), and intermediate
filaments [31] not only maintains the cell shape but also participates in cell proliferation and
differentiation [30,32]. The SEM results confirmed that osteoblasts on 3min TBP-1-IGF-1
coating spread best, and the cells had already fused after 7 days. The broad cell adhesion
and spreading on the 3minTBP-1-IGF-1 modified surface was beneficial for subsequent
proliferation and differentiation, considering that the osteoblast differentiation is benefited
by good cell spreading [33,34] and cell-to-cell communication [35,36].

After osteoblasts were planted on specimens for 1, 3 and 6 days, the CCK-8 assay
confirmed that the absorbance values of the 3minTBP-1-IGF-1 group were always the
highest, which indicated that introducing 3minTBP-1-IGF-1 to Ti surface significantly
increased cell proliferation level. It is well known that IGF-1 promotes cell proliferation
and inhibits cell apoptosis [36–39]. The above experiments confirmed that the prepared
fusion protein can effectively play the role of IGF-1.

Hyperglycaemia has been shown to reduce the rate of bone formation markers includ-
ing osteocalcin, alkaline phosphatase [5–8], and procollagen type 1 N-terminal propeptide
(PINP). The reduced rate of bone turnover markers together with changes to the organic
matrix and cortical structure results in an overall deterioration of the quality, resilience, and
structure of the bone tissue [40]. It had been confirmed that IGF-1 plays an important role
in regulating bone cell metabolism. Additionally, it stimulates ECM synthesis and affects
proliferation, phenotypic gene expressions, and mineralization of osteoblasts [7,41,42]. ALP
and alizarin red staining were introduced to detect the early and late osteogenic differenti-
ation of cells, respectively. From Figure 4, both stainings in the 3minTBP-1-IGF-1 group
were the deepest, suggesting that 3minTBP-1-IGF-1 can play a short-term and long-term
role in improving osteoblasts mineralization.

In vitro, high glucose has been shown to inhibit the osteogenic differentiation/proliferation
of osteoblasts and reduce the expression of pro-osteogenic markers such as Runx2 and
Osterix. In order to verify the effect of the fusion protein, we detected five osteogenesis-
related genes in this study, namely, ALP, OCN, OPG, BMP-2, and Runx2. ALP is an
abundant protein expressed in the early stages of osteoblastic differentiation [43], and its
expression is prior to that of OCN and OPG [44]. Runx2 binds to the promoter regions
of all osteogenesis-specific genes and acts as a master regulator to control the expression
of downstream osteoblastic markers during osteoblasts differentiation [45]. Some studies
showed that at the early stage of osteoblast differentiation high expression of BMP-2 can
activate the expression of ALP and Runx2 downstream [44]. Therefore, in the early stage,
the expression of the BMP-2 gene was the earliest and strongest among the five genes. PCR
results showed that in the first week, although the expression of ALP and Runx2 in the
3minTBP-1-IGF-1 group was the highest, there was no significant difference between the
three experimental groups. OCN was reported to be involved in regulating the formation
of mineralization matrix and was recognized as the marker that appeared in the late stage
of osteogenic differentiation and as the representative of mature osteoblastic cells [44]. OPG
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was one of the new biochemical markers for bone metabolism, which can contribute to
bone formation in a long steady period [44]. Thus, there was no difference in the expression
of OCN and OPG genes among the four groups in the first week. In the second week, the
gene expressions in the three experimental groups were significantly different from that
in the control group, and the expression in the 3minTBP-1-IGF-1 group was the highest.
These findings are consistent with the previous report manifested that IGF-1 promotes the
differentiation and maturation of osteoblasts by inducing Runx2 expression with attendant
increases in the levels of ALP, OCN, and OPG [45].

The limitations of this study include that in vitro results are not validated in vivo. First
of all, the internal environment is very complex, especially in diabetes; secondly, there may
be a loss of adsorbed modified IGF-1s during implantation. Therefore, the validation of the
(n)minTBP-1-IGF-1-implant complex in vivo is particularly important. We will continue
this work in the follow-up experiments

5. Conclusions

The fabrication of (n)minTBP-1-IGF-1 on the Ti surface provides a new method for
implant surface modification. 3MinTBP-1-IGF-1 showed the strongest affinity with Ti, and
the interface demonstrated the strongest surface hydrophilicity and the most homogeneous
state. The in vitro biological evaluation results showed that 3minTBP-1-IGF-1 modified
surface promoted osteoblasts adhesion, proliferation, spreading, alkaline phosphatase
activity, mineralized product, and osteogenesis-related gene expression, superior to the
other groups in diabetic conditions. It was confirmed that minTBP-1 could be used as
an effective carrier of IGF-1 and the 3minTBP-1-IGF-1 had the most obvious effect on the
osteogenic activities. All the above results suggest that 3minTBP-1-IGF-1 is a convenient,
effective, and functional protein that enhances osteogenesis on the implant Ti surface.
Additionally, this study may provide new strategies for implant repair in T2DM patients.
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