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Cells interact with the extracellular environment by means of receptor mol-

ecules on their surface. Receptors can bind different ligands, leading to the

formation of receptor–ligand complexes. For a subset of receptors, called

receptor tyrosine kinases, binding to ligand enables sequential phosphoryl-

ation of intra-cellular residues, which initiates a signalling cascade that

regulates cellular function and fate. Most mathematical modelling approaches

employed to analyse receptor signalling are deterministic, especially when

studying scenarios of high ligand concentration or large receptor numbers.

There exist, however, biological scenarios where low copy numbers of ligands

and/or receptors need to be considered, or where signalling by a few bound

receptor–ligand complexes is enough to initiate a cellular response. Under

these conditions stochastic approaches are appropriate, and in fact, different

attempts have been made in the literature to measure the timescales of receptor

signalling initiation in receptor–ligand systems. However, these approaches

have made use of numerical simulations or approximations, such as

moment-closure techniques. In this paper, we study, from an analytical

perspective, the stochastic times to reach a given signalling threshold for two

receptor–ligand models. We identify this time as an extinction time for a

conveniently defined auxiliary absorbing continuous time Markov process,

since receptor–ligand association/dissociation events can be analysed in

terms of quasi-birth-and-death processes. We implement algorithmic tech-

niques to compute the different order moments of this time, as well as

the steady-state probability distribution of the system. A novel feature of the

approach introduced here is that it allows one to quantify the role played by

each kinetic rate in the timescales of signal initiation, and in the steady-state

probability distribution of the system. Finally, we illustrate our approach by

carrying out numerical studies for the vascular endothelial growth factor

and one of its receptors, the vascular endothelial growth factor receptor of

human endothelial cells.
1. Introduction
Cells interact with the extracellular environment by means of molecules located

on their surface, referred to as receptors. These receptors interact with extra-

cellular molecules called ligands, so that bound receptor–ligand complexes

are formed, which eventually phosphorylate, initiating downstream signalling

in the cytoplasm, and leading to a cellular response. Phosphorylation of a

particular class of receptors, receptor tyrosine kinases (RTKs), occurs upon

sequential activation of tyrosine residues located in the intra-cellular tail of
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the receptors. In order to model cell behaviour regulated

by receptor–ligand interactions, initial cell surface binding

events and subsequent intra-cellular processes must be first

quantified. Once this foundation is established, cellular be-

haviour can be analysed based on the number, state,

and location of the molecules and complexes involved. The

receptor population is involved in binding to the ligand,

cross-linking to other receptors or membrane associated

molecules, internalization, recycling, degradation and

synthesis, broadly termed ‘trafficking’ events [1].

Detailed analyses of receptor–ligand interactions and

phosphorylation kinetics on the cell membrane usually make

use of mathematical models which ignore endocytosis (or

internalization) events, and focus on the biochemical reactions

taking place on the cell surface. For example, Starbuck et al. [2]

consider a particular RTK, the epidermal growth factor recep-

tor (EGFR), to study the role of epidermal growth factor (EGF)

on mammalian fibroblasts. They argue that the receptor signal

is generated at a rate proportional to the number of activated

receptors present, so that the amount of phosphorylated

ligand-bound dimeric complexes is directly related to the

initiation of signalling cascades. Tan et al. [3] consider a

mathematical model of pre-formed RTK receptor dimers,

with instantaneous phosphorylation of ligand-bound dimeric

complexes. However, phosphorylation is in fact a multi-

step process, in which the different tyrosine domains of each

receptor transfer phosphate (from ATP) onto side chains of

specific tyrosine residues of the partner receptor, i.e. trans-

autophosphorylation [4]. In Alarcón & Page [5], stochastic

models of receptor oligomerization by a bivalent ligand are

introduced to study the role of ligand-induced receptor cross-

linking in cell activation. A particular feature of this study is

that a small number of receptors is considered, making a sto-

chastic approach more suitable than a deterministic one (see

[6] for a comparison between deterministic and stochastic

approaches for models of vascular endothelial growth factor

receptors). In order to relate receptor–ligand dynamics on

the cellular membrane to cell activation, the authors [5] intro-

duce a threshold number of bound oligomers that need to be

formed before a cellular response can take place. Once the sto-

chastic process reaches this threshold, they study (by means of

Gillespie simulations) the probability of staying above this

threshold for a given time, T ¼ 10 k21
off , which is identified

with the time required for the activation of kinases and for

the signalling pathway to be initiated [5].

In this study, we analyse receptor–ligand interactions and

phosphorylation dynamics on the cell surface, to compute the

time to reach a given signalling threshold [7], and the late time

probability distribution of the system. To this end, we first

introduce a mathematical model (instantaneous phosphoryl-

ation (IP) model), in which receptor monomers can bind a

bivalent ligand, which allows a second receptor monomer to

cross-link. This model is similar to Model 1 of Alarcón &

Page [5]. However, rather than assuming that a fixed time inter-

val above the threshold leads to a cellular response, we

consider phosphorylation an intrinsic characteristic of the

ligand cross-linked receptor dimers. In the IP model, ligand-

bound receptor dimers are assumed to be instantaneously

phosphorylated, so that the time to initiate the signalling cas-

cade is identified with the time to reach a given threshold

number of ligand-bound phosphorylated receptor dimers.

This results in the analysis of a first-passage time or an absorp-

tion time in the theory of continuous time Markov processes. In
the second model, the delayed phosphorylation (DP) model,

phosphorylation of ligand-bound receptor dimers is con-

sidered as an additional reaction in the system, and we also

consider the possibility of ligand-bound receptor dimer de-

phosphorylation. We then compute the time to reach a given

threshold number of phosphorylated ligand-bound receptor

dimers in the DP model. Finally, the late time behaviour of

the system is studied by analysing its stationary probability

distribution.

As stated in Alarcón & Page [5], the analytical treatment of

the multi-variate stochastic processes describing these biologi-

cal receptor–ligand systems is typically extremely difficult,

and numerical approaches, such as Gillespie simulations, are

normally used instead. However, it is still possible to carry

out an analytical study of these processes without the need

to solve the corresponding master equation. Here, we do so

by making use of a matrix-analytic technique and by consider-

ing a number of stochastic descriptors, conveniently defined in

the spirit of Alarcón & Page [5]. This matrix-analytic approach,

which has its origins in the seminal work by Neuts [8], allows

us to study the stochastic descriptors of interest for moderate

numbers of ligands and receptors in an exact way, as discussed

in §2. Matrix-analytic techniques have historically been devel-

oped in the context of Queueing Theory [9]. However, more

recently, they have been applied in Mathematical Biology

[10–12].

We illustrate our methods by considering a receptor–ligand

interaction involving vascular endothelial growth factors

(VEGFs) and receptors (VEGFRs) in human endothelial

cells. VEGFs are a family of bivalent ligands consisting of

mammalian and virus-encoded members. The first member

discovered was VEGF-A [13], which occurs in different iso-

forms of varying lengths. Mounting evidence suggests that

the various isoforms are involved in diverse cellular responses

[4]. VEGFs specifically bind to three type V RTKs, VEGFR1,

VEGFR2 and VEGFR3, as well as co-receptors, such as neuro-

pilins. In physiological conditions, the vascular endothelium

expresses VEGFR1 and VEGFR2, whereas the lymphatic endo-

thelium expresses VEGFR2 and VEGFR3 [14]. Each receptor has

an extracellular domain for binding ligand, a trans-membrane

domain and an intra-cellular or cytoplasmic domain [1]. Like

many other RTKs, VEGFRs normally require dimerization to

become activated: once VEGF binds to VEGFRs, the intra-cellu-

lar domains become activated by auto-phosphorylation and

start cascades of intra-cellular enzymatic reactions [4]. We aim

to develop a new quantitative study of receptor–ligand inter-

action and phosphorylation kinetics to aid our understanding

of processes such as angiogenesis and vasculogenesis.

The paper is organized as follows. In §2, two different sto-

chastic models are introduced to describe the association and

dissociation dynamics of ligand-bound receptor monomers

and dimers on the cell surface. The models include instan-

taneous phosphorylation or phosphorylation as an additional

reaction. Matrix-analytic techniques are applied (for further

details about these techniques, see appendices B and C) to

study a number of stochastic descriptors of interest to the

system, making use of an auxiliary absorbing continuous time

Markov process. A particular feature of this method is that a sen-

sitivity analysis (described in appendix D) to quantify the effect

of association, dissociation and phosphorylation rates on the

stochastic descriptors can be carried out. In §3.1, parameter esti-

mation is carried out following arguments first described in

Lauffenburger & Linderman [1], and applied to obtain the
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kinetic rates of the receptor–ligand system of interest (VEGFR2

and VEGF-A, respectively) from the physiological parameters

given in §3.2. Finally, numerical results are presented in §3.3

and §3.4, followed by a discussion in §4. The notation used in

the paper is introduced in appendix A.
Figure 1. Reactions of the IP model. (a) Association and dissociation of
bound monomers (M ). (b) Association and dissociation of bound dimers
(P), which instantaneously phosphorylate (represented by red squares as
phosphorylated residues in the intra-cellular tail of the receptors).
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2. Stochastic models
In this section, we introduce two different stochastic models for

the interaction of a surface receptor and a bivalent ligand (see

§3). The bivalent ligand can bind a receptor monomer, creating

a bound monomeric complex. The free site of the ligand in a

bound monomeric complex can then bind to a second receptor

monomer, while these molecules diffuse on the cell surface.

This leads to a bound dimeric complex, consisting of two

receptors bound to a bivalent ligand.

In our models, receptor dimerization is ligand-induced, as

the dimeric VEGF-A ligand binds and recruits two receptor

monomers into a single complex (cross-linking). We thus

assume that two monomeric and free receptors are not able

to create a pre-dimer in the absence of ligand (ligand-induced

dimerization or LID [15, LID model]). We note that the

consideration of receptor pre-dimerization in the model

does not significantly change the dynamics of the process,

especially for low ligand concentrations [15], as considered

here. In some instances, and for highly saturated situations,

the existence of pre-dimers may alter the dynamics of the

system (see, for example, MacGabhann & Popel [15, Figs. 2

and 3] for details). On the other hand, there is experimental

support for the following hypothesis: free VEGFR2 is

observed (electron microscopy) in monomeric form on the

cell surface [16].

Once ligand-bound dimeric complexes are formed, their

activation leads to the initiation of a signalling pathway.

From a biological perspective, this activation is usually the

result of a sequence of phosphorylation events, involving

different tyrosine residues on the intra-cellular tails of the

receptors forming the dimer. From a mathematical pers-

pective, this sequence of events is usually neglected by

considering instantaneous phosphorylation [5,13]. This is

described in §2.1, where the IP model is described. However,

we also consider an extension of this model in §2.2, the DP

model, where the phosphorylation of ligand-bound dimeric

complexes is considered as an additional reaction. We refer

the reader to MacGabhann & Popel [15] for a brief discussion

on the importance of including phosphorylation, and to

Bel et al. [17] for a discussion of the conditions under which

the sequence of phosphorylation events can be treated as a

single reaction.

For the IP and DP models, the aim in §2.1 and 2.2, as well as

appendices B and C, is to compute the time to reach a given

signalling threshold, where the amount of signalling in the

process is identified with the number of phosphorylated

(either instantaneously or not) complexes at any given time.

Moreover, the steady-state distribution of the system is also

computed. Finally, a sensitivity analysis of both models is car-

ried out in appendix D, to quantify how the association,

dissociation, phosphorylation and de-phosphorylation rates

affect the dynamics of the receptor–ligand system.

The study of the number of ligand-bound monomeric, non-

phosphorylated and phosphorylated ligand-bound dimeric

molecules on the cell surface over time can be viewed as the
analysis of the transient behaviour of a specific multi-variate

Markov process, a problem which, in general, is not solvable

in closed form [18]. Therefore, one typically carries out

Gillespie simulations [19], or applies moment-closure techniques

[20,21] to deal with the master equation of the Markov process

under study. In this study, and for the models considered in

§2.1 and 2.2, we apply alternative methods, which allow us to

analyse, in an exact way, the quantities of interest mentioned

above. In particular, by considering the time to reach a given sig-

nalling threshold as a continuous random variable, and by

conveniently structuring the space of states of the continuous

time Markov processes under study, we identify this time as

the absorption time in an auxiliary absorbing continuous time

Markov process. We compute the Laplace–Stieltjes transforms

of this random variable, as well as the steady-state probabilities,

by making use of first-step and matrix-analytic arguments.

A novel local sensitivity analysis for the Markov processes con-

sidered is adapted and applied here by generalizing arguments

from Caswell [22] (see also [23]). This analysis allows us to quan-

tify how the stochastic descriptors considered in §3.3, time to

signalling threshold and steady-state probability distribution,

are affected by the association, dissociation, phosphorylation

and de-phosphorylation rates.

2.1. IP model: instantaneous phosphorylation
In this section, we consider a model of a bivalent ligand that

can bind a free receptor to form a bound monomer (or M
complex). Receptors can diffuse on the cell surface, so that

eventually a free receptor can bind an extracellular ligand

to form a bound monomer M. This complex in turn can

further engage a second receptor to form a ligand-bound

and cross-linked receptor dimer (or P complex). Once a P
complex is formed, it is instantaneously phosphorylated,

so that P complexes on the plasma membrane initiate signal-

ling, in the spirit of Starbuck et al. [2] and Alarcón & Page [5].

Ligand-bound monomers and dimers can dissociate. We

assume that de-phosphorylation of P takes place when

cross-linked receptor dimers also dissociate. In this scenario,

four possible reactions can occur with different association

and dissociation rates as shown in figure 1.

In what follows, we consider an environment with con-

stant number, nR and nL, of receptors and ligands, spatially

well-mixed on the cell surface and in the extracellular space,

respectively. We are interested in the number of M and P com-

plexes on the cell surface as a function of time, which we model

using a stochastic approach: as a continuous time Markov chain

(CTMC) X ¼ {X(t) ¼ (M(t), P(t)): t � 0}, where M(t) and P(t)
represent the number of M and P complexes, respectively, at

time t. We note that, if we define the random variables R(t)
and L(t) as the numbers of free receptors and ligands,
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Figure 2. Transition diagram for the IP model ( process X ).
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Figure 3. Reactions of the DP model. (a) Association and dissociation of
bound monomers (M ). (b) Association and dissociation of non-phosphory-
lated bound dimers (D). (c) Phosphorylation and de-phosphorylation of
phosphorylated bound dimers (P).
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respectively, at time t � 0, it is clear that R(t) ¼ nR 2 M(t) 2

2P(t) and L(t) ¼ nL 2 M(t) 2 P(t), for all t � 0. Then, R(t) and

L(t) are implicitly analysed inX and do not need to be explicitly

considered in the CTMC. We need to impose the conditions

M(t), P(t) � 0 and, from the previous comments, we have

L(t) � 0)M(t)þ P(t) � nL

and R(t) � 0)M(t)þ 2P(t) � nR,

for all t � 0, which specify the state space S of X . Specifically,

we note that given (M(t), P(t)) ¼ (n1, n2) at some time t � 0, then

— if 2nL � nR: n1 þ n2 � nL) n1 þ 2n2 � nR and

— if nR � nL: n1 þ 2n2 � nR) n1 þ n2 � nL,

so that three different specifications of the state space S are

obtained, depending on the particular values of nR and nL.

In particular:

— if 2nL � nR, then S ¼ {(n1,n2) [ (N < {0})2: n1 þ n2 � nL},

— if nR , 2nL , 2nR, then S ¼ {(n1,n2) [ (N < {0})2:

n1 þ n2 � nL, n1 þ 2n2 � nR} and

— if nR � nL, then S ¼ {(n1,n2) [ (N < {0})2: n1 þ 2n2 � nR}.

Although we can deal with each of these cases, without loss

of generality, we focus here on the first one, 2nL � nR, since

these are the physiological conditions for the receptor–

ligand system analysed in §3. Thus, the stochastic process

X is defined over S ¼ {(n1,n2) [ (N < {0})2:n1 þ n2 � nL}.

From figure 1, it is clear that transitions from states in

the interior of S, that is, from states (n1,n2) [ N2 with n1 þ
n2 , nL, can take place to four adjacent states as shown in

figure 2. Transitions for states within the boundary of S are

obtained in a similar way by discarding those transitions

that leave S.

Transitions between states in our CTMC are governed

by the infinitesimal transition rates q(n1,n2),(n1
0 ,n2
0), with

(n1,n2),(n01,n02) [ S. These infinitesimal transition rates are

obtained by mass action kinetics, and by the fact that if the pro-

cess is in state (n1, n2) at a given time, there are (nL 2 n1 2 n2)

free ligands and (nR 2 n1 2 2n2) free receptors available. The

formation of M complexes depends on the number of free

receptors and ligands, and their dissociation only depends

on the number of M complexes. A similar analysis can be

made for P complexes. Finally, we note that the formation of

M complexes and dissociation of P complexes can take place
with any of the two available binding sites of the ligand.

Then, the specific values of the non-null infinitesimal transition

rates are given by

q(n1,n2),(n0
1
,n0

2
)

¼

2aþ(nR � n1 � 2n2)

(nL � n1 � n2), if (n01,n02) ¼ (n1 þ 1,n2),

a�n1, if (n01,n02) ¼ (n1 � 1,n2),

bþn1(nR � n1 � 2n2), if (n01,n02) ¼ (n1 � 1,n2 þ 1),

2b�n2, if (n01,n02) ¼ (n1 þ 1,n2 � 1),

8>>>>>><
>>>>>>:

ð2:1Þ

where aþ, a2, bþ and b2 are positive constants representing

the association and dissociation rates for M and P complexes,

respectively.

For this model, the focus in §3.3 is on several summary

statistics (or stochastic descriptors) that allow one to study

the timescales for signal initiation on the cell membrane, as

well as the late time behaviour of the system, and to carry

out a local sensitivity analysis to test how these summary

statistics depend on the different parameters (e.g. kinetic

rates) of the model. An efficient matrix-oriented analysis of

these summary statistics, for the IP model, can be found in

appendix B.

2.2. DP model: delayed phosphorylation
In the previous section, the P complexes were instantaneously

phosphorylated. Here we relax this requirement and include

phosphorylation as an additional reaction (figure 3). We

note that, in the DP model presented in figure 3, dissociation

of phosphorylated receptors can only occur after their

de-phosphorylation. One may alternatively consider that dis-

sociation can occur due to ligand unbinding to one of the

receptors, even if de-phosphorylation has not occurred yet.

For this case, a similar analysis to the one carried out in this

section could be developed, and bound phosphorylated

monomers should be incorporated as a new molecular species.

Numerical results for the VEGFR2 receptor and VEGF-A

ligand system (§3), including this additional molecular species

and not reported here, show similar qualitative dynamics to

the simpler model considered in this section.

In what follows, we adapt the arguments of the previous

section to the DP model. This not only allows us to evaluate

the relevance of phosphorylation as an independent reaction

(with numerical results presented in §3), but also serves

as an example of how to include new reactions in this type

of stochastic model, while adapting the matrix-analytic

arguments.
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Figure 4. Transition diagram for the DP model ( process X̂ ).
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In brief, we consider the CTMC X̂ ¼ {X̂(t) ¼ (M̂(t),
D̂(t),P̂(t)): t � 0}, where

M̂(t) ¼ ‘number of M complexes at time t0,

D̂(t) ¼ ‘number of D complexes at time t0

and P̂(t) ¼ ‘number of P complexes at time t0,

for all t � 0, where D complexes refer to non-phosphorylated

bound dimers and P to phosphorylated ones. From the

reactions in figure 3, it is clear that for all t � 0

M̂(t)þ D̂(t)þ P̂(t) � nL

and M̂(t)þ 2D̂(t)þ 2P̂(t) � nR,
and, by assuming as previously, that 2nL � nR, it is easy to

show that

M̂(t)þ D̂(t)þ P̂(t) � nL, 8t � 0

) M̂(t)þ 2D̂(t)þ 2P̂(t) � nR, 8t � 0,

so that X̂ is defined over Ŝ ¼ {(n1,n2,n3) [ (N < {0})3:

n1 þ n2 þ n3 � nL}.

From figure 3, the transition diagram can be obtained

(figure 4), where the non-null infinitesimal transition rates

are obtained in a manner analogously to (2.1). In particular,

we have
q(n1,n2,n3),(n0
1
,n0

2
,n0

3
) ¼

2aþ(nR � n1 � 2n2 � 2n3) (nL � n1 � n2 � n3), if (n01, n02, n03) ¼ (n1 þ 1, n2, n3),
a�n1, if (n01, n02, n03) ¼ (n1 � 1, n2, n3),
bþn1(nR � n1 � 2n2 � 2n3), if (n01, n02, n03) ¼ (n1 � 1, n2 þ 1, n3),
2b�n2, if (n01, n02, n03) ¼ (n1 þ 1, n2 � 1, n3),
gþn2, if (n01, n02, n03) ¼ (n1, n2 � 1, n3 þ 1),
g�n3, if (n01, n02, n03) ¼ (n1, n2 þ 1, n3 � 1),

8>>>>>><
>>>>>>:
where aþ, a2, bþ, b2, gþ and g2 are positive constants repre-

senting the association, dissociation and phosphorylation

rates for the complexes in figure 3. Similar summary statistics

to those studied for the IP model, and analysed in §3.3, are

analysed for the DP model in appendix C, by following a

matrix-oriented approach.
3. The vascular endothelial growth factor
receptor – ligand system

In this section, we illustrate the analytical work developed in

the previous ones and the appendices, and focus on the inter-

action between VEGFR2 receptors and VEGF-A ligands on

the surface of human umbilical vein endothelial cells

(HUVECs), an interaction initiating signalling cascades that

can cause diverse cellular responses, such as cell motility,

division or death (i.e. apoptosis). We first develop, in §3.1,
a method to estimate the parameters aþ, a2, bþ and b2 for

the interaction between the VEGFR2 receptor and the

VEGF-A ligand molecule. We do so by making use of the

methods proposed by Lauffenburger and Linderman [1],

where the transport mechanism of free ligand or free receptor

is modelled by molecular diffusion, and where diffusive

transport dominates convective transport caused by fluid

motion at cellular and sub-cellular length scales [1,24].

The rates estimated in §3.1 depend on several physiologi-

cal parameters, which are presented in §3.2. In §3.3, we

analyse a number of stochastic descriptors of interest when

the IP or the DP models are considered for this interaction.

This allows us to study the impact of phosphorylation as a

separate reaction in the process (delayed phosphorylation),

to quantify timescales for signalling initiation under different

ligand concentrations and to analyse the impact that each

kinetic rate has in these stochastic descriptors. Finally, we

investigate in §3.4 the effect that synthesis of new free
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Figure 5. (a) Two-step binding and unbinding of receptor and ligand: kdL
is the ligand transport rate, k3D

þ and k2 are the intrinsic binding and unbinding rates,
respectively, and h is the characteristic length of the experimental volume. (b) Diffusive transport of surface receptor: kdR

is the transport rate for both receptor R and
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þ (which is a 2D version of k3D
þ) or unbind with rate k2.
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receptors on the cell surface, and internalization of bound

complexes into endosomal compartments, can have on the

molecular dynamics.

3.1. Estimation of association and dissociation rates
We estimate in §3.3 the parameters aþ, a2, bþ and b2 (s21) for

the binding and unbinding of the VEGFR2 receptor and its biva-

lent VEGF-A ligand. We consider a fraction, 0 , f , 1, of a

HUVEC, for computational reasons, and denote the receptor

molecule by R and the ligand by L. Firstly, we set the dissociation

rate koff ¼ 1.32 � 1023 s21 as reported in MacGabhann & Popel

[15] for VEGFR2. From the equilibrium dissociation rate, Kd

(mm23 mol), given by Kd ¼ koff/kon, it is possible then to

obtain the biophysical binding rate, kon (mol21 mm3 s21).

Therefore, the transition rates aþ and a2 of §2 are given by

aþ ¼
kon

NAfhsc
and a� ¼ koff,

where h (mm) is the characteristic length of the experimental

volume, sc (mm2) is the total area of the cell surface and

NA (mol21) is Avogadro’s number. In order to estimate the tran-

sition rates bþ and b2, we first note that the binding process

between the receptor and the ligand, such as reaction (a) in

figure 1, can be considered as a one-step process, with qon

(mm3 s21) the association constant and qoff (s21) the dissociation

constant. Constants qon and qoff are related to the biophysical

rates kon and koff as follows:

qon ¼
kon

NA
and qoff ¼ koff:

However, these binding and unbinding events are in fact two-

step processes [1,25–29]. In the first step, the ligand and the

receptor simply encounter each other; that is, ligands diffuse

into a sufficiently close proximity of the receptor to allow

the chemical reaction step to occur. Let us define the ligand

diffusion rate kdL
(mm2 s21), and the 3D reaction intrinsic rate

k3D
þ (mm3 s21). The mechanism of the reverse process is similar,

so that the unbinding of the receptor and the ligand occurs with

intrinsic dissociation rate k2 (s21) and the outward diffusion

with transport rate kdL
(figure 5a).

As mentioned earlier, we restrict our study to a fraction

0 , f , 1 of the cell surface, so that the radius of this target

surface is given by

r ¼
ffiffiffiffiffiffiffiffiffi
nRsc

pnT
R

s
,

where nT
R is the total number of receptors on the cell surface,

and nR ¼ fnT
R is the number of receptors present on the target

surface. We have assumed, thus, an homogeneous spatial
distribution of VEGFR2 on the cell surface [30,31], neglecting

receptor clustering, which might be initiated upon ligand

stimulation [32]. Under this assumption, the contributions

of rates kdL
, k3D
þ and k2 to the overall association and

dissociation rates, qon and qoff, respectively, are given by

qon ¼
kdL

k3D
þ

kdL
þ nRk3D

þ
and qoff ¼

kdL
k�

kdL
þ nRk3D

þ
, ð3:1Þ

where kdL
¼ 4pDLr, as shown elsewhere [1,25–28]. We note that

qon is a per receptor rate, as explained elsewhere [1,33]. A similar

argument (figure 5b, c) applies when computing the rate of free

receptor binding (kc (mm2 s21)) or unbinding (ku (s21)) to a

monomer on the cell membrane [1], which occurs with rates

kc ¼
k2D
þ kdR

kdR
þ k2D

þ
and ku ¼

k�kdR

kdR
þ k2D

þ
, ð3:2Þ

where the transport rate kdR
(mm2 s21) (figure 5b) is given by

kdR
¼ 2pD/log(w/b). The diffusion constant D ¼ DR þ DM

(mm2 s21) is the sum of the diffusivities of the receptor and

the bound monomer on the cell membrane (which are assumed

to be the same DR ¼ DM), b (mm) is the characteristic length of

the receptor, and w (mm) is one-half the mean distance between

receptors, given by

w ¼
ffiffiffiffiffiffiffiffiffi

sc

pnT
R

s
:

We find k3D
þ and k2 from equation (3.1). Once k3D

þ is in hand, the

intrinsic 3D binding rate allows to compute its 2D version, k2D
þ ,

as follows:

k2D
þ ¼

k3D
þ
d

,

where d (mm) is the cell membrane thickness, as suggested in

Lauffenburger & Linderman [1]. Given k2D
þ , rate constants kc

and ku can be found by means of equation (3.2). Finally, these

rates, kc and ku, are related to bþ and b2, respectively, for the

CTMCs considered in §2, as follows:

bþ ¼
kc

fsc
and b� ¼ ku:
3.2. Physiological parameters
All the rates of the IP and DP models (figures 1 and 3, respect-

ively) used in §3.3 and §3.4 have been obtained following the

approach described in §3.1, with physiological parameters

taken from the literature. In particular, physiological parameters

are given in table 1, and the specific rates for the IP and DP

models are given in table 2. The equilibrium dissociation rate



Table 1. Physiological parameters.

physiological parameter value reference

endothelial cell surface area, sc 1023 mm2 [15]

VEGF-A diffusion coefficient at 48C, DL 5.2 � 1025 mm2 s21 [34]

VEGFR2 diffusion coefficient, DR 1028 mm2 s21 [35]

VEGFR2 radius, b 5 � 1027 mm [5]

average membrane thickness of ECs, d 1024 mm [36]

characteristic length of the experimental volume, h 1 mm [15]

dissociation rate, koff 1.32 � 1023 s21 [15]

equilibrium dissociation rate, Kd for VEGFR2 1.5 � 10216 mm23 mol [15]

phosphorylation rate for D complexes, gþ 3.67 � 1023 s21 [1]

de-phosphorylation rate for P complexes, g2 9.17 � 1024 s21 [1]

Table 2. Rates (in s21) for the IP and DP models, considering f ¼ 4% of
the cell surface. Note that parameters gþ and g2 are not considered in
the IP model.

reactions of the IP model aþ 3.653 � 1027

Rþ L N
2aþ

a�
M a2 1.320 � 1023

Mþ R N
bþ

2b�
P bþ 4.483 � 1024

reactions of the DP model b2 1.620 � 1024

Rþ L N
2aþ

a�
M gþ 3.667 � 1023

Mþ R N
bþ

2b�
D g2 9.167 � 1024

D N
gþ

g�
P
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for VEGF-A and VEGFR2 is equal to Kd ¼ 150 pM, as

reported in MacGabhann & Popel [15]. This rate is consistent

with previously reported values for in silico experiments [37],

and agrees with experimentally determined ones [38–41].

We consider in this section the subset of endothelial cells,

called human umbilical vein endothelial cells (HUVECs),

which have been characterized to express (on average) 5800

VEGFR2s per cell [42]. We focus on 4% of the cell surface

( f ¼ 0.04) for computational reasons, so that in this area the

total number of VEGFR2s is nR ¼ 232. For the IP and DP

models, our numerical results should be considered exact,

since they have been obtained making use of the analytical

arguments described in the appendices.

3.3. Results
In this section (both for the IP and the DP models), we focus

on two stochastic descriptors (or summary statistics) that

allow one to study the timescales for signal initiation on the

cell surface (in terms of phosphorylated dimers), as well as

the late time behaviour of the system (in terms of the

steady-state number of free receptors, monomers and

dimers). In particular, we focus on

(1) Starting in any state n (n ¼ (n1,n2) [ S for the IP model,

and n ¼ (n1,n2,n3) [ Ŝ for the DP model), the time Tn(N )
to reach, for the first time, N phosphorylated dimers on

the cell surface; that is, Tn(N ) ¼ infft � 0 : P(t) ¼ Ng for

the IP model, and Tn(N) ¼ inf {t � 0 : P̂(t) ¼ N} for the

DP model.

(2) The stationary probability distribution of the system,

which does not depend on the initial conditions; that

is, the probabilities p(n1,n2) ¼ limt!þ1 P((M(t),P(t)) ¼
(n1,n2)) for the IP model and p(n1,n2,n3) ¼ limt!þ1

P((M̂(t),D̂(t),P̂(t)) ¼ (n1,n2,n3)) for the DP model.

We note that in this section we always consider initial states

such that (n1, n2) ¼ (0, 0) and (n1, n2, n3) ¼ (0, 0, 0). These

initial conditions indicate that at time t ¼ 0 (when ligand

stimulation occurs), all receptors are in monomeric form.

We report in appendices B and C a matrix-oriented approach

to study these summary statistics for the IP and the DP

model, respectively, and in appendix D, a matrix-oriented

method to carry out a local sensitivity analysis of these sum-

mary statistics with respect to the model parameters (e.g.

kinetic rates). This allows one to explore what the contri-

bution is of each kinetic rate to a given stochastic descriptor.

3.3.1. Time to reach a signalling threshold

In figure 6, we plot E[T(0,0)(N )] (for the IP model) and

E[T(0,0,0)(N )] (for the DP model), for values 0 � N � nL,

where nL [ f23, 58, 116g is the number of ligands considered,

which corresponds to the following ligand concentrations, cL

[ f1 pM, 2.5 pM, 5 pMg. We note that these concentrations

are similar to those reported in serum for healthy controls

and cancer studies (see table I in [43]). The three different

values of nL correspond to 10%, 25% and 50% of nR, the

total number of VEGFR2 on the fraction of the cell surface

considered. The number of ligands, thus, verifies the con-

dition 2nL � nR, assumed in the analysis of T(0,0)(N ), as

discussed in §2.1. T(0,0)(N ) is the continuous random variable

that represents the time to reach a total number, N, of phos-

phorylated bound dimers, P, given the initial state (0, 0), in

the IP model where instantaneous phosphorylation is con-

sidered (for details, see §2.1), while T(0,0,0)(N ) is its DP

model counterpart. Our results have been restricted to

times up to 60 min, to describe the early time dynamics on

the cell surface. The late time behaviour of the system will

be analysed by means of its steady-state distribution. In

figure 6, solid curves represent the values of E[T(0,0)(N )],
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while dashed curves represent the values of E[T(0,0,0)(N )],

obtained by means of algorithm 1 (see appendix B). Shaded

areas have been obtained for both models by considering

E[Tx(N )]+SD[Tx(N )], where SD[X ] represents the standard

deviation of the random variable X, also obtained from

algorithm 1.

In figure 6, a monotonic behaviour is observed. For a

fixed value of N in the IP model, E[T(0,0)(N )] is always smaller

for larger ligand concentrations, cL. Indeed, an increase in the

amount of available ligand to bind receptors implies reaching

the given signalling threshold (encoded by N ) in a shorter

time. The behaviour for E[T(0,0,0)(N )] is similar to that

observed for E[T(0,0)(N )], so that the consideration of delayed

phosphorylation in the DP model does not seem to qualitat-

ively affect the main features of this descriptor. This can be

explained as follows: the most likely fate of a bound mono-

mer is to phosphorylate before its dissociation. However,

the consideration of phosphorylation as an additional reac-

tion delays the time to reach a given threshold N and every

curve for the DP model is displaced to the left of its corre-

sponding one for the IP model. For example, for cL ¼ 1 pM,

the mean time E[T(0,0)(N )] to reach a threshold N ¼ 5 (20%

of nL) of phosphorylated bound dimers is approximately 25

min under the IP model. When the phosphorylation of

bound complexes is explicitly considered (DP model), this

mean time increases approximately up to 31 min.
3.3.2. Stationary probability distribution

The asymptotic behaviour of the curves shown in figure 6 is

directly related to the maximum signalling threshold that is,

in fact, reached by the process in short and intermediate time-

scales. From a purely mathematical perspective, any state

within S (or Ŝ in the DP model) is reached in the IP model

(DP model) as t! þ1, since S (Ŝ) is an irreducible finite

class of states for the process X (X̂ ). However, according to

our numerical results, there exists a subset of (high) signalling

thresholds that is not reached in practice by X (X̂ ). This maxi-

mum signalling threshold is encoded in the steady-state
probability distribution of this process, which can be computed

from algorithm 2 (see appendix B), and which measures the

potential of the system to reach any signalling threshold at

sufficiently late times, for different ligand concentrations.

In figure 7, the distribution of the number of (phosphory-

lated and non-phosphorylated) bound dimers at steady state,

for the IP and the DP models, is plotted for different ligand

concentrations, cL [ f1 pM, 2.5 pM, 5 pMg. For low ligand

concentrations, nearly all the nL available ligands are forming

phosphorylated bound dimers in steady state. This is particu-

larly the case in the IP model, where no non-phosphorylated

bound dimers exist. In the DP model, a small number of non-

phosphorylated bound dimers can be found in steady state.

These non-phosphorylated bound dimers in steady state

explain why the distribution of the number of phosphory-

lated bound dimers in steady state is displaced to the left

when phosphorylation is considered as a separate reaction

in the DP model, in comparison with the same distribution

in the IP model.

3.3.3. Dynamics of the receptor – ligand system

We now complement our previous results by carrying out a

number of Gillespie simulations of the models, so that the

time course of the different random variables in our processes

(M(t), P(t), M̂(t), D̂(t) and P̂(t)) can be studied. In particular, we

plot in figure 8 the mean plus and minus (shadowed area) the

standard deviation of the variables of interest (M(t) and D(t) in

the IP model, and M̂(t), D̂(t) and P̂(t) in the DP model). The

time course has been generated by means of Gillespie simu-

lations, where we have broadened the VEGF-A concentration

range by considering nL [ f0.1nR, 0.25nR, 0.5nR, 10nR, 50nR,

100nR, 250nR, 625nR, 1250nRg, which approximately corre-

sponds to concentrations cL [ f1 pM, 2.5 pM, 5 pM, 0.1 nM, 0.5

nM, 1 nM, 2.5 nM, 6.25 nM, 12.5 nMg. We note that for small

ligand concentrations the number of bound dimers grows as

the VEGF-A concentration increases. For concentrations cL [

f1 pM, 2.5 pM, 5 pMg the steady state is not reached in the first

60 min of the numerical simulations (figures 7 and 8). However,

higher concentrations result in a saturated scenario, where we

obtain lower numbers of P complexes for ligand concentrations

higher than cL�2.5 nM. Thus, concentrations around 0.1 nM 2

2.5 nM may be considered as optimum when only surface

dynamics of phosphorylated bound dimers is of interest.

As mentioned above, for ligand concentrations around cL

[ f6.25 nM, 12.5 nMg, the system exhibits a reduction in the

number of bound dimers, which is caused by the fast and

early formation of monomeric bound complexes (figure 8). In

fact, for both IP and DP models and when focusing on the for-

mation of bound monomers as a function of time, we observe,

under optimum ligand concentrations, a peak of monomeric

complexes in the first 5 min, which is followed by a decrease

to the steady-state values. The same early peak can be observed

under these ligand concentrations for non-phosphorylated

bound dimers in the DP model, which is followed by an

increase in the number of phosphorylated bound dimers. For

high ligand concentrations, the steady-state value for mono-

meric complexes increases, so that formation of bound

dimers is effectively blocked. The inhibition of bound dimer

formation at high ligand concentrations is intrinsically related

to the ligand-induced-dimerization assumption, where the for-

mation of free receptor pre-dimers is not allowed. However, if

free receptor pre-dimers were to be considered, their effect
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would be negligible for ligand concentrations below 1 nM [15],

as our results in figure 8 also suggest.
3.3.4. Local sensitivity analysis

We study in this section the effect of the association, dis-

sociation, phosphorylation and de-phosphorylation rates on

the descriptors introduced, which can be estimated by

means of the sensitivity analysis proposed in appendix D. In

table 3, we present the elasticities (i.e. normalized derivatives)

of the descriptors E[T(0,0)(N )], E[T(0,0,0)(N )], pP and p̂P (see

appendices B and C), when N is chosen to be 25% of the

total number of ligands nL, and for different ligand concen-

trations, cL. As expected, the effect of each rate on any

descriptor increases with increasing values of ligand concen-

tration. It is also worth noting that the elasticities of the

mean number of phosphorylated complexes in steady state

are equal, with opposite sign, with respect to the association

and dissociation rates (e.g. (@pP/@aþ)/(pP/aþ) ¼ 2(@pP/

@a2)/(pP/a2)), which means that this variable only depends

on the ratio of parameters: aþ/a2, bþ/b2 and gþ/g2. This

can be easily understood since, from a deterministic perspec-

tive, the steady state corresponding to the DP model can be

obtained as the solution of the following system of equations:

2
aþ
a�

R�L� �M� ¼ 0,

bþ
b�

M�R� � 2D� ¼ 0

and
gþ
g�

D� � P� ¼ 0,

which only depends on these parameter ratios. We also note

that, according to the results of table 3, the rate aþ plays an

important role in all the descriptors. This can be explained

as follows: once a ligand is ‘destined’ to form a bound
monomer complex, its most likely fate is to lead to a phos-

phorylation event before dissociation of the corresponding

dimer occurs (see discussion in §4).

3.4. A study of receptor internalization and synthesis
It is well known that rapid internalization occurs for VEGFR2

following ligand binding and phosphorylation [39]. We briefly

explore in this section how receptor synthesis and internaliz-

ation events can have an impact on the molecular dynamics

of the cell surface. In figure 9, we represent the IP and the

DP models under the assumption that synthesis of new recep-

tors, as well as internalization of free receptors, monomers and

dimers, can also take place. We note that since modelling

endosomal compartments is out of the scope of this paper,

recycling events have not been explicitly considered in what

follows: this would require tracking down the number of mol-

ecules in the different intra-cellular compartments, and thus,

additional variables in the stochastic models. However, one

can interpret the synthesis rate ksyn in figure 9 as an insertion
rate [15], which implies a net contribution of new receptors

on the cell surface, without having to specify whether these

receptors have been truly synthesized and transported to the

surface from the Golgi apparatus, or have been recycled to

the surface from endosomal compartments. Since the par-

ameter nR is the basal (i.e. under no ligand stimulation)

number of receptors on the cell surface, internalization and

synthesis rates need to satisfy the condition ksyn¼ nRkint.

Moreover, we set kint ¼ 2.8 � 1024 s21 as previously deter-

mined [44], and consider that phosphorylated dimers can be

internalized faster than non-phosphorylated ones [15,45], by

setting kP
int ¼ qkint with q [ f1.0, 2.0, 5.0, 10.0g (figure 9).

In figure 10, we plot analogous results to those of figure 8 for

the models considered in figure 9 and values q [ f1, 2, 5, 10g.
We focus here on the dynamics of phosphorylated (P(t) in the
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IP model, P̂(t) in the DP model) and non-phosphorylated (D̂(t)
in the DP model) dimers, and consider concentrations cL [ f0.1

nM, 0.5 nM, 1 nM, 2.5 nM, 6.25 nM, 12.5 nMg. If internalization

of phosphorylated dimers does not occur fast enough (e.g.

values q [ f1.0, 2.0g in figure 10), a steady-state pool of phos-

phorylated dimers is maintained at late times on the cell

surface. Under faster internalization (q [ f5.0, 10.0g), and for

optimum ligand concentrations, a peak of phosphorylated

dimers is observed after ligand stimulation (at time t � 5 min

for the IP model and at time t � 10 min for the DP model). It

is interesting to observe that the peak of non-phosphorylated

dimers is well captured in figure 8 (i.e. when internalization

and synthesis are not considered), and the same is true for the
time course of monomers (not reported in figure 10). It is only

the peak of phosphorylated dimers which is significantly

affected by internalization dynamics. Equally, optimum

ligand concentrations are well characterized by the original IP

and DP models; that is, similar optimum ligand concentrations

are found, of the order of approximately 1 nM, in figures 8 and

10 (i.e. with and without receptor synthesis and internalization).
4. Discussion
In this paper, our aim was to quantify the signalling time-

scales (or phosphorylation) for two different stochastic
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Table 3. Elasticities for the stochastic descriptors E[T(0,0)(N )] and E[T(0,0,0)(N )] and mean values pP and p̂ P, with respect to each parameter, ui [ faþ, a2,
bþ, b2, gþ, g2g for different ligand concentrations, cL [ f1 pM, 2.5 pM, 5 pMg.

elasticity cL a1 a2 b1 b2 g1 g2

@E[T(0,0) (N)]=@u
E[T(0,0) (N)]=u

1 pM 29.98 � 1021 1.61 � 1022 22.17 � 1022 3.42 � 1023 — —

2.5 pM 29.99 � 1021 1.78 � 1022 22.36 � 1022 4.60 � 1023 — —

5 pM 21.00 2.01 � 1022 22.66 � 1022 6.02 � 1023 — —

@E[T(0,0,0) (N)]=@u
E[T(0,0,0) (N)]=u

1 pM 28.47 � 1021 1.22 � 1022 21.73 � 1022 2.12 � 1023 22.26 � 1021 8.82 � 1022

2.5 pM 28.60 � 1021 1.33 � 1022 21.84 � 1022 2.59 � 1023 22.68 � 1021 1.36 � 1021

5 pM 28.72 � 1021 1.51 � 1022 22.07 � 1022 3.30 � 1023 22.99 � 1021 1.76 � 1021

@pP=@u
pP=u

1 pM 3.45 � 1022 23.45 � 1022 3.82 � 1022 23.82 � 1022 — —

2.5 pM 6.67 � 1022 26.67 � 1022 7.17 � 1022 27.17 � 1022 — —

5 pM 1.03 � 1021 21.03 � 1021 1.10 � 1021 21.10 � 1021 — —

@p̂ P=@u
p̂ P=u

1 pM 7.31 � 1023 27.31 � 1023 8.08 � 1023 28.08 � 1023 2.06 � 1021 22.06 � 1021

2.5 pM 1.73 � 1022 21.73 � 1022 1.85 � 1022 21.85 � 1022 2.15 � 1021 22.15 � 1021

5 pM 5.88 � 1022 25.88 � 1022 6.12 � 1022 26.12 � 1022 2.49 � 1021 22.49 � 1021

rsob.royalsocietypublishing.org
Open

Biol.8:180126

11
models of receptor–ligand interaction (instantaneous phos-

phorylation, IP model, and delayed phosphorylation, DP

model), and to analyse their late time behaviour, making

use of new exact matrix-analytic techniques. Stochastic

approaches are essential in order to explore the role of limited

(and small) protein copy numbers in receptor–ligand signal-

ling systems, since the stochastic nature of protein expression

and quantitative differences in the abundance of proteins

could dysregulate receptor-mediated signalling, as recently

reported by Shi et al. [46].

We have assumed that bound dimers are instantaneously

phosphorylated in the IP model, while in the DP model

phosphorylation is considered a new and independent reac-

tion. In these two models, matrix-analytic techniques have

been applied (see appendices B and C, respectively) to

study the time to reach a threshold number of phosphory-

lated bound dimers, P, on the cell membrane, and the

steady-state probability distribution. We have identified

these times as absorption times in conveniently defined

auxiliary CTMCs, and their Laplace–Stieltjes transforms

and different order moments have been computed algorith-

mically by means of a first-step analysis, while exploiting

the quasi-birth-and-death structure of the infinitesimal gen-

erators associated with these processes. Moreover, the

construction of the DP model as an extension of the IP

model in §2 allows us not only to analyse the role played

by phosphorylation events (see §3.3), but also to show how

different reactions may be incorporated while adapting the

matrix-analytic approach. A particular feature of this analytic
approach is that it allows one to study the role played by

each kinetic rate, by computing the partial derivatives of

the descriptors under consideration with respect to the

corresponding model parameters.

Our numerical results in §3 have considered the inter-

action between receptor VEGFR2 and bivalent ligand

VEGF-A in human vascular endothelial cells. Our results

indicate that phosphorylation, as an additional reaction,

only seems to quantitatively affect the timescales for signal-

ling (or phosphorylation), but does not qualitatively change

the dynamics of the process. Moreover, by sequentially incor-

porating receptor synthesis and internalization dynamics, we

found that intra-cellular receptor trafficking plays an impor-

tant role in shifting the original signal (in terms of

phosphorylated dimers) found on the cell surface into endo-

somal compartments, but where the dynamics of free

receptors, monomers and non-phosphorylated dimers are

well characterized with mathematical models exclusively

describing the cell surface. These cell surface models allowed

us as well to identify optimum ligand concentrations, which

were qualitatively unchanged if synthesis and internalization

events are included (figure 10).

Our previous comments can be further illustrated by car-

rying out a single-molecule analysis; that is, by studying the

fate of a bound monomer in the system. In particular, we con-

sider a single ligand that has been captured by a receptor

forming a bound monomer, and analyse the dynamics of

this single complex, neglecting the effects due to other

ligands or receptors in the system. Thus, we focus on the
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Figure 10. Gillespie simulations for the extended IP and DP models of figure 9, for different initial ligand concentrations, cL [ f0.1 nM, 0.5 nM, 1 nM, 2.5 nM, 6.25
nM, 12.5 nMg and different values of q [ f1, 2, 5, 10g. Dashed lines correspond to the IP model and solid lines correspond to the DP model. Time course for
phosphorylated and non-phosphorylated dimers.
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Figure 11. Individual bound monomer fate under (a) the extended IP model and (b) the extended DP model. Fate I: dissociation or internalization before signalling.
Fate II: signalling before dissociation or internalization.

Table 4. Probability of a single monomer signalling (i.e. dimerizing and
becoming phosphorylated, psignal) and conditioned time for this to occur
(tsignal).

kint model psignal tsignal

0 IP model 0.9874 9.5356 s

DP model 0.9863 283.0799 s

2.8 � 1024 s21 IP model 0.9847 9.5095 s

DP model 0.9137 265.1743 s
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fate of this complex (phosphorylating or not before the bound

monomer dissociates or internalizes), which depends on the

kinetic rates, and is controlled by the stochastic processes

illustrated in figure 11. We note that the original models

(without internalization) can be obtained by setting kint ¼ 0

in figure 9, since in that case we also set ksyn ¼ nRkint ¼ 0.

If we define

psignal ¼ ‘probability of the complex signalling

(or phosphorylating) before dissociation or

internalization’;

that is, the probability of Fate II. This probability can be

computed as follows:

— IP model (instantaneous phosphorylation):

psignal ¼
bþ(nR � 1)

kint þ a� þ bþ(nR � 1)
:

— DP model (delayed phosphorylation):

psignal ¼
gþbþ(nR � 1)

(kint þ a�)(kint þ 2b� þ gþ)þ bþ(nR � 1)(kint þ gþ)

On the other hand, if we focus on the time to signalling and

define

tsignal ¼ ‘mean time to complex signalling before

dissociation or internalization, conditioned on

this occurring’,

this conditioned mean time can be written as:

— IP model (instantaneous phosphorylation):

tsignal ¼
1

kint þ a� þ bþ(nR � 1)
:

— DP model (delayed phosphorylation):

tsignal¼
2b�þgþ

gþ

1

kintþa�þbþ(nR�1)
þ 1

kintþ2b�þgþ

� �
:

The values of psignal and tsignal are reported in table 4 for kint

[ f0, 2.8 � 1024 s21g. From these results, it seems clear that

once a ligand is bound to a monomeric receptor, the
probability to phosphorylate and, thus, to signal is almost

one (for either model), when no internalization occurs.

Internalization of complexes and delayed phosphorylation

cannot decrease this probability on their own, and only

when these two events are considered together, the single-

molecule signalling probability of a monomer decreases

approximately by 9%. However, the timescales to phosphor-

ylate are mainly affected by the delayed phosphorylation. On

the other hand, it might seem counterintuitive that the time-

scales for signal initiation are shorter when internalization

takes place. We note here that these are conditioned times

for signalling, that is, times conditioned on this signalling

actually occurring. Thus, our results for tsignal in table 4

should be interpreted as the fact that, if internalization can

occur, only those monomers reaching dimerization and phos-

phorylation soon enough will initiate signalling before

internalization takes place.

From a biological perspective, we note that the total

number of VEGFR2s per cell varies according to other studies

[30,39,47] and could be larger than the numbers used in our

computations [42]. A larger number of VEGFR2 receptors on

the cell surface would, however, only quantitatively change

our results, and in particular a higher optimum ligand con-

centration threshold would be reported. The sensitivity

analysis carried out for the descriptors enables us to show

how the monomeric formation rate, aþ, plays a crucial role

in these models, with an effect which can be more than

twice the effect of any other rate for some of the descriptors

we have considered. Finally, the numerical results presented

in §3 for the VEGF-A and VEGFR system have allowed us to

quantify the effect of different ligand concentrations on the
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timescales to signalling, the late time behaviour of the system

and the time course dynamics of the individual molecular

species. Increasing ligand concentration decreases the times

to reach any signalling threshold and increases the maximum

potential signalling thresholds to be reached. However,

high ligand concentrations can result in saturated scenarios,

where the phosphorylation of bound dimers is reduced and

monomeric bound complexes are enhanced.

The approach presented here could be, in principle,

applied to other RTKs, most notably the EGFR, which is driv-

ing cellular proliferation in a variety of epithelial tumours.

This receptor is of special relevance in clinical oncology,

since a series of promising anti-EGFR small-molecule RTK

inhibitors have already been designed. Unfortunately, drug

resistance usually emerges during the course of treatment

and it is important to understand the molecular mechanisms

that underlie the development of such drug resistance, which

may involve both the wild-type and mutant receptors [48].

Other RTKs of interest, for example, are those of the fibroblast

growth factor receptor family, insulin receptor family and the

leucocyte RTK family.
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Appendix A. Notation
In this appendix, we set some standard notation to be used in

the paper. First, di,j represents Kronecker’s delta; that is,

di,j ¼
(

1, if i ¼ j,
0, otherwise:

Given a set S, #S represents its cardinality. Matrices and

vectors are always given in bold, where 0p (eq) represents a

column vector of zeros (ones) with dimension p (q). The

symbol T represents the transposition operator and, for a

matrix A(u), we use the calculus notation

A(l)(0) ¼ dl

dul A(u)

�����
u¼0

:

Finally, when a matrix depends on different parameters, A(a, u),

its first-order partial derivatives with respect to each par-

ameter are given by A (a)(a, u) and A (u)(a, u), respectively.
Appendix B. Analysis of the IP model
The analysis carried out in this appendix requires the use of

levels for the organization of the state space, Laplace–Stieltjes

transforms, first-step arguments and auxiliary absorbing

Markov chains. We first organize the state space S, which
contains

#S ¼ (nL þ 1)(nL þ 2)

2
,

states, by levels (groups of states) as

S ¼
[nL

k¼0

L(k),

where L(k) ¼ f(n1, n2): n2 ¼ kg, 0 � k � nL, so that J(k) ¼

#L(k) ¼ nL 2 k þ 1. That is, a level L(k) comprises all the poss-

ible states (n1, n2) of the process with a total number of P
complexes equal to k. Moreover, we order these levels as

L(0) � L(1) � � � � � L(nL),

and states inside a level, L(k) ¼ f(0, k), (1, k), . . ., (nL 2 k, k)g,
0 � k � nL, are ordered as

(0,k) � (1,k) � � � � � (nL � k,k):

Given the transitions of figure 2, it is clear that from a state

(n1, n2) in level L(n2), the process can only move to states in

the same level, L(n2), and to states in adjacent levels, L(n2 2 1)

and L(n2 þ 1). That is, if the state of the system is (n1, n2)

(and then, the process is in level L(n2)), the only possible tran-

sitions are to (n1 2 1, n2) (if a bound monomer dissociates, in

which case the process remains in level L(n2)), to (n1 þ 1, n2)

(if a bound monomer is formed, leaving the process in level

L(n2)), to (n1 þ 1, n2 2 1) (if a bound dimer dissociates, and

the process then decreases to level L(n2 2 1)) or to (n1 2 1,

n2 þ 1) (if a bound dimer is created, increasing the level of

the process to L(n2 þ 1)).

The organization of S, previously proposed, becomes

crucial to obtain a convenient structure for the infinitesimal

generator Q of X , the matrix containing the transition rates

in the Markov chain. In particular, the resulting Q is of

the quasi-birth-and-death type [18] (tridiagonal by blocks

structure)

Q¼

A0,0 A0,1 0J(0)�J(2) � �� 0J(0)�J(nL�1) 0J(0)�J(nL)

A1,0 A1,1 A1,2 � �� 0J(1)�J(nL�1) 0J(1)�J(nL)

0J(2)�J(0) A2,1 A2,2 � �� 0J(2)�J(nL�1) 0J(2)�J(nL)

..

. ..
. ..

. . .
. ..

. ..
.

0J(nL�1)�J(0) 0J(nL�1)�J(1) 0J(nL�1)�J(2) � �� AnL�1,nL�1 AnL�1,nL

0J(nL)�J(0) 0J(nL)�J(1) 0J(nL)�J(2) � �� AnL,nL�1 AnL,nL

0
BBBBBBB@

1
CCCCCCCA

,

ðB 1Þ

where sub-matrices A k,k0 contain the infinitesimal transition

rates of the transitions from states in level L(k) to states in

level L(k0), with k0 [ fk 2 1, k, k þ 1g. In particular, matrices

A k,k0 in (B 1) are obtained from (2.1) and are as follows:

— For 1 � k � nL,

(Ak,k�1)ij ¼
2b�k, if j ¼ i þ 1,
0, otherwise,

�

where 0 � i � nL 2 k, 0 � j � nL 2 k þ 1.

— For 0 � k � nL,

(Ak,k)ij¼

2aþ(nR� i�2k)(nL� i�k), if j ¼ i þ 1,
a�i, if j ¼ i � 1,
�(2aþ(nR� i�2k)(nL� i�k)
þa�iþ2b�kþbþi(nR� i�2k)), if j ¼ i,

0, otherwise,

8>>>><
>>>>:

where 0 � i � nL 2 k, 0 � j � nL 2 k.
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— For 0 � k � nL 2 1,

(Ak,kþ1)ij ¼
bþi(nR � i� 2k), if j ¼ i � 1,
0, otherwise,

�

where 0 � i � nL 2 k, 0 � j � nL 2 k 2 1.

We consider the time to obtain a threshold number, N . 0, of

P complexes. In particular, given an initial state of the process

(n1, n2), and a certain threshold N . 0, we consider the

random variable

T(n1,n2)(N) ¼ ‘time to reach a number N of P complexes inX ,

if the process starts at (n1,n2) [ S0:

We observe that this time is 0 for N � n2. In order to study

this descriptor for N . n2, we make use of an auxiliary

CTMC, X (N), which depends on the threshold value N.

We define X (N) over the state space S(N) with

S(N) ¼ C(N) < { �N},

where we denote C(N) ¼ <N�1
k¼0 L(k), and where �N is a

macro-state that consists of all the states in the set

<nL
k¼NL(k). Regarding the transitions of this auxiliary CTMC,

we retain those transitions of X between states in C(N),

with �N an absorbing state, so that once X (N) enters �N, it

does not leave this state. Transitions from states in level

L(N 2 1) to states in L(N ) of the original process X become

transitions from states in level L(N 2 1) to the macro-state
�N in X (N), where their infinitesimal transition rates are

computed from the original ones as follows:

q(n1,n2), �N ¼
X

(n0
1
,n0

2
)[L(N)

q(n1,n2),(n0
1
,n0

2
), 8(n1,n2) [ L(N � 1):

The process X (N) can be seen as the process X until a number
N of P complexes are formed. Then, X (N) ends since �N is an

absorbing state for this auxiliary process. With X (N) so

defined, it is clear that the time taken to obtain a number N
of P complexes in the original process X is equal to the

time until absorption at �N in the (absorbing) process X (N),

which is known to follow a continuous phase-type (PH) dis-

tribution (e.g. [9,18]). The analysis of the exact distribution of

a continuous phase-type random variable is, in general, a dif-

ficult problem. In our case, it would imply obtaining the

exponential matrix exp (T(N)) ¼
Pþ1

n¼0 (T(N)n=n!), where

T(N ) is a specific sub-matrix of the infinitesimal generator

of X (N). Here, we instead make use of the Laplace-Stieltjes

transform of T(n1,n2)(N ), which completely determines its dis-

tribution, and which allows us to obtain any lth-order

moment E[T(n1,n2)(N )l]. We can also efficiently calculate the

lth-order moment by using the (l 2 1)th-order moment, pro-

ceeding recursively, with the computational effort devoted to

obtaining inverses of square blocks Ak,k, with dimension

J(k) ¼ nL 2 k þ 1. Again, the proposed organization of states

is essential for the construction of an efficient algorithm. If

we define the Laplace–Stieltjes transform of T(n1,n2)(N ) as

fN
(n1,n2)(z) ¼ E[e�zT(n1,n2)(N)], <(z) � 0,

then, the different lth-order moments of T(n1,n2)(N ) can be

obtained as

E[T(n1,n2)(N)l] ¼ (� 1)l dl

dzl f
N
(n1,n2)(z)

�����
z¼0

, 8l � 1:

We can apply a first-step argument in order to obtain a

system of linear equations for the Laplace–Stieltjes trans-

forms fN
(n1,n2)(z), given a state (n1,n2) [ S(N). We can write

down the equation
fN
(n1,n2)(z) ¼ (1� dn1þn2,nL

)
2aþ(nR � n1 � 2n2)(nL � n1 � n2)

zþ A(n1,n2)
fN

(n1þ1,n2)(z)þ (1� dn1,0)

� a�n1

zþ A(n1,n2)
fN

(n1�1,n2)(z)þ (1� dn1,0)
bþn1(nR � n1 � 2n2)

zþ A(n1,n2)
(dn2,N�1

þ (1� dn2,N�1)fN
(n1�1,n2þ1)(z))þ (1� dn2,0)

2b�n2

zþ A(n1,n2)
fN

(n1þ1,n2�1)(z),

ðB 2Þ
where from now on A(n1,n2) ¼ 2aþ(nR 2 n1 2 2n2)(nL 2 n1 2

n2) þ a2n1 þ bþn1(nR 2 n1 2 2n2) þ 2b2n2. Equation (B 2)

relates the Laplace–Stieltjes transforms of all the states in

S(N), so that a system of linear equations is obtained. If we

organize the Laplace–Stieltjes transforms in vectors by

levels as follows:

gN(z) ¼ (gN
0 (z)T,gN

1 (z)T,gN
2 (z)T, . . . ,gN

N�1(z)T)T,
with gN
k (z) ¼ (fN

(0,k)(z), fN
(1,k)(z), fN

(2,k)(z), . . ., fN
(nL 2 k, k)(z))T, for

0 � k � N 2 1, then the system given in (B 2) can be

expressed in matrix form as

gN(z) ¼ AN(z)gN(z)þ aN(z), ðB 3Þ

with the matrix AN(z) given by
A0,0(z) A0,1(z) 0J(0)�J(2) � � � 0J(0)�J(N�2) 0J(0)�J(N�1)

A1,0(z) A1,1(z) A1,2(z) � � � 0J(1)�J(N�2) 0J(1)�J(N�1)

0J(2)�J(0) A2,1(z) A2,2(z) � � � 0J(2)�J(N�2) 0J(2)�J(N�1)

..

. ..
. ..

. . .
. ..

. ..
.

0J(N�2)�J(0) 0J(N�2)�J(1) 0J(N�2)�J(2) � � � AN�2,N�2(z) AN�2,N�1(z)
0J(N�1)�J(0) 0J(N�1)�J(1) 0J(N�1)�J(2) � � � AN�1,N�2(z) AN�1,N�1(z)

0
BBBBBBB@

1
CCCCCCCA

,
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and the vector aN(z) ¼ (0T
J(0), 0T

J(1), . . ., 0T
J(N22), aN21(z)T)T. Sub-

matrices Ak,k0(z) and sub-vector aN21(z) in (B 3) are given by

— (aN21(z))i ¼ bþi(nR 2 i 2 2(N 2 1))/(z þ A(i,N21)), for 0 �
i � nL 2 N þ 1.

— For 1 � k � nL,

(Ak,k�1(z))ij ¼
2b�k

zþA(i,k)
, if j ¼ i þ 1,

0, otherwise,

(

where 0 � i � nL 2 k, 0 � j � nL 2 k þ 1.

— For 0 � k � nL,

(Ak,k(z))ij ¼

2aþ(nR�i�2k)(nL�i�k)
zþA(i,k)

, if j ¼ i þ 1,

a�i
zþA(i,k)

, if j ¼ i � 1,

0, otherwise,

8>><
>>:

where 0 � i � nL 2 k, 0 � j � nL 2 k.

— For 0 � k � nL 2 1,

(Ak,kþ1(z))ij ¼
bþi(nR�i�2k)

zþA(i,k)
, if j ¼ i � 1,

0, otherwise,

(

where 0 � i � nL 2 k, 0 � j � nL 2 k 2 1.

Exploiting the special block structure of AN(z) allows for an

efficient solution of the system in (B 3), in a recursive manner

through a specialized block-Gaussian elimination process,

leading to algorithm 1 (Part 1). The calculation of the

Laplace–Stieltjes transforms in algorithm 1 (Part 1) has its

own merit, since it determines the distribution of the random

variable under consideration. Moreover, the calculation of the

distribution function of T(n1,n2)(N ) by numerical inversion of

the transform is possible, although computationally expensive,

and is not developed here (e.g. [49]).
Once the Laplace–Stieltjes transforms are in hand, we can

obtain the different lth-order moments by successive differen-

tiation of the system in (B 3). In particular, we can write

mN,(l)¼
Xl

p¼0

(�1)p
� l

p

� dp

dzp AN(z)

����
z¼0

mN,(l�p)þ (�1)l dl

dzl a
N(z)

�����
z¼0

,

ðB 4Þ

where mN,(l ) is the column vector containing the desired

moments E[T(n1,n2)(N )l], for (n1,n2) [ C(N). We organize

these moments in sub-vectors by levels as follows:

mN,(l) ¼ (mN,(l)T
0 , mN,(l)T

1 , mN,(l)T
2 , . . . ,mN,(l)T

N�1 )T,

with m N,(l )
k ¼ (E[T(0,k)(N )l], E[T(1,k)(N )l], E[T(2,k)(N )l], . . .,

E[T(nL2 k, k)(N )l])T, for 0 � k � N 2 1. Note that the notation

mN,(0) ¼ gN(0) ¼ e#C(N) is implicit in (B 4). That is, the

moment of order l ¼ 0 is the Laplace–Stieltjes transform for

z ¼ 0. Finally, the system in (B 4) is rewritten following the

notation presented in appendix A:

mN,(l) ¼ AN(0)mN,(l) þ
Xl

p¼1

� l
p

�
(�1) pAN,(p)(0)mN,(l�p)

þ (�1)laN,(l)(0):

ðB 5Þ

It is clear that the direct calculation of the inverse

(I#C(N) �AN(0))�1 involved in the solution of (B 5) can be

avoided if working by levels and solving (B 5) in a similar

way to algorithm 1 (Part 1). By starting with the known

moment of order p ¼ 0, we proceed recursively by calculating

mN,( p) from mN,( p21), until the desired order p ¼ l is reached,

leading to algorithm 1 (Part 2). Matrices AN,( p)(0) and

aN,( p)(0) in (B 5) are given by
AN,(p)(0) ¼

A
(p)
0,0(0) A

(p)
0,1(0) 0J(0)�J(2) � � � 0J(0)�J(N�2) 0J(0)�J(N�1)

A
(p)
1,0(0) A

(p)
1,1(0) A

(p)
1,2(0) � � � 0J(1)�J(N�2) 0J(1)�J(N�1)

0J(2)�J(0) A
(p)
2,1(0) A

(p)
2,2(0) � � � 0J(2)�J(N�2) 0J(2)�J(N�1)

..

. ..
. ..

. . .
. ..

. ..
.

0J(N�2)�J(0) 0J(N�2)�J(1) 0J(N�2)�J(2) � � � A
(p)
N�2,N�2(0) A

(p)
N�2,N�1(0)

0J(N�1)�J(0) 0J(N�1)�J(1) 0J(N�1)�J(2) � � � A
(p)
N�1,N�2(0) A

(p)
N�1,N�1(0)

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

aN,(p)(0) ¼

0J(0)

0J(1)

..

.

0J(N�2)

a
(p)
N�1(0)

0
BBBBBBB@

1
CCCCCCCA

,

where expressions for a ( p)
N21(0) and A ( p)

k,k0(0), for p � 1, are as

follows:

— (a ( p)
N21(0))i ¼ ( 2 1)pp!(bþi(nR 2 i 2 2(N 2 1))/Apþ1

(i,N21)), for

0 � i � nL 2 N þ 1.

— For 1 � k � nL, p � 1,

(A
(p)
k,k�1(0))ij ¼

(� 1)pp! 2b�k
A pþ1

(i,k)

, if j ¼ i þ 1,

0, otherwise,

(

where 0 � i � nL 2 k, 0 � j � nL 2 k þ 1.
— For 0 � k � nL, p � 1,
(A
(p)
k,k(0))ij ¼

(�1)pp! 2aþ(nR�i�2k)(nL�i�k)

A pþ1

(i,k)

, if j ¼ iþ 1,

(�1)pp! a�i
A pþ1

(i,k)

, if j ¼ i� 1,

0, otherwise,

8>>><
>>>:
where 0 � i � nL 2 k, 0 � j � nL 2 k.
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— For 0 � k � nL 2 1, p � 1,

(A
(p)
k,kþ1(0))ij ¼

(�1)pp!
bþi(nR�i�2k)

A pþ1

(i,k)

, if j ¼ i � 1,

0, otherwise,

(

where 0 � i � nL 2 k, 0 � j � nL 2 k 2 1.

Finally, the late time behaviour of the process is given by the

stationary probability distribution of the CTMC; that is, the

probabilities

p(n1,n2) ¼ lim
t!þ1

P((M(t), P(t)) ¼ (n1,n2)), 8(n1,n2) [ S,

which do not depend on the initial state. We can store this

probability distribution in a row vector p ¼ (p0, p2, . . ., pnL
),

where the row sub-vector pk contains the ordered probabil-

ities p(n1,n2) for states in level L(k). Solving the system

pQ ¼ 0T
#S and pe#S ¼ 1,

and adapting arguments from Latouche & Ramaswami [9,

ch. 10], we obtain algorithm 2. With p in hand, the long-

term mean number of M and P complexes can be obtained as

pM ¼ ‘mean number of M complexes in steady state’

¼
XnL

k¼0

k
XnL

j¼0

(p j)k

0
@

1
A,

pP ¼ ‘mean number of P complexes in steady state’

¼
XnL

k¼0

k(pkeJ(k)):

Algorithm 1 (to obtain the Laplace–Stieltjes transforms gN(z)

and the lth-order moments mN,(l ))

PART 1

HN
0 (z) ¼ IJ(0) 2 A0,0(z);

For k ¼ 1, . . . ,N � 1:

HN
k (z) ¼ IJ(k) 2 Ak,k(z) 2 Ak,k21(z)

� HN
k21(z)21Ak21,k(z);

gN
N21(z) ¼ HN

N21(z)21aN21(z);

mN,(0)
N21 ¼ gN

N21(0);

For k ¼ N � 2, . . . ,1,0:

gN
k (z) ¼ HN

k (z)21Ak,kþ1(z)gN
kþ1(z);

mN,(0)
k ¼ gN

k (0);

PART 2

mN,(0)
N21 ¼ gN

N21(0);

For k ¼ N � 2, . . . ,1,0:

mN,(0)
k ¼ gN

k (0);

For p ¼ 1, . . . ,l:

P
N,(p)
0 ¼

Pp
k¼1

ð p
kÞ(�1)k(A(k)

0,0(0)m
N,(p�k)
0

þA (k)
0,1(0)mN,( p2k)

1 );

For j ¼ 1, . . . ,N � 1:

PN,( p)
j ¼ Aj,j21(0)HN

j21(0)21PN,( p)
j21

þ
Pp
k¼1

ð p
kÞ(�1)k(A(k)

j,j�1(0)m
N,(p�k)
j�1

þ A (k)
j,j (0)mN,( p2k)

j þ (1 2 dj,N21)

� A (k)
j,jþ1(0)mN,( p2k)

jþ1 );

mN,( p)
N21 ¼HN

N21(0)21(PN,( p)
N21 þ (21)pa ( p)

N21(0));

For j ¼ N � 2, . . . ,1,0:

mN,( p)
j ¼HN

j (0)21(PN,( p)
j þ Aj,jþ1(0)mN,( p)

jþ1 );
Algorithm 2 (to obtain the stationary distribution p)

H0 ¼ A0,0;

For k ¼ 1, . . . ,nL � 1:

Hk ¼ Ak,k 2 Ak,k21H21
k21Ak21,k;

p*nL
¼ 1;

For k ¼ nL � 1, . . . ,0:

p*k ¼ 2p*kþ1Akþ1,kH
21
k ;

For k ¼ 0, . . . ,nL:

pk ¼ 1PnL

j¼0

p�j eJ(r)

p�k ;
Appendix C. Analysis of the DP model
To study the descriptors described in §3.3, we again define

levels in the state space, and arrange Ŝ in levels as follows:

Ŝ ¼
[nL

k¼0

L̂(k),

where L̂(k) ¼ {(n1,n2,n3) [ Ŝ: n3 ¼ k}, for 0 � k � nL, so that

Ĵ(k) ¼ #L̂(k) ¼ (nL � k þ 1)(nL � k þ 2)

2
:

The three-dimensionality of our process implies that each

level L̂(k) may be split into sub-levels, as follows:

L̂(k) ¼
[nL�k

r¼0

l(k; r),

with l(k; r) ¼ {(n1, n2, n3) [ Ŝ: n2 ¼ r, n3 ¼ k}, for 0 � r �
nL 2 k, 0 � k � nL, and J(k; r) ¼ #l(k; r) ¼ nL 2 r 2 k þ 1.

That is,

l(k; r) ¼ {(0, r, k),(1, r, k), . . . ,(nL � r� k, r, k)},

0 � r � nL � k, 0 � k � nL,

and states in l(k; r) are ordered as indicated above.

The given order of states and the organization by levels and

sub-levels yield an infinitesimal generator similar to (B 1),

where quantities J(k) and matrices Ak,k0 are replaced by Ĵ(k)

and Âk,k0 , respectively. Matrix Âk,k0 contains the ordered infini-

tesimal transition rates corresponding to transitions from states

in level L̂(k) to states in level L̂(k0). Each matrix Âk,k0 is formed by

sub-blocks Bk,k0
r,r0 which contain the infinitesimal transition rates

corresponding to transitions from states in sub-level

l(k; r) , L̂(k) to states in sub-level l(k0; r0) , L̂(k0). We observe

that the dimension of the matrix Âk,k0 is

Ĵ(k)� Ĵ(k0) ¼ (nL � k þ 1)(nL � k þ 2)=2�
(nL � k0 þ 1)(nL � k0 þ 2)=2, while the dimension of the sub-

block Bk,k0
r,r0 inside Âk,k0 is J(k; r) � J(k0; r0) ¼ (nL 2 r 2 k þ 1) �

(nL 2 r0 2 k0 þ 1). Expressions for these matrices are as follows:

— for 0 � k � nL

Âk,k ¼

Bk,k
0,0 Bk,k

0,1 0 � � � 0 0

Bk,k
1,0 Bk,k

1,1 Bk,k
1,2 � � � 0 0

0 Bk,k
2,1 Bk,k

2,2 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � Bk,k
nL�k�1,nL�k�1 Bk,k

nL�k�1,nL�k

0 0 0 � � � Bk,k
nL�k,nL�k�1 Bk,k

nL�k,nL�k

0
BBBBBBBBBB@

1
CCCCCCCCCCA

,
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— for 0 � k � nL 2 1,

Âk,kþ1 ¼

0 0 0 � � � 0 0
Bk,kþ1

1,0 0 0 � � � 0 0

0 Bk,kþ1
2,1 0 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � 0 0
0 0 0 � � � Bk,kþ1

nL�k,nL�k�1 0

0
BBBBBBBBB@

1
CCCCCCCCCA

,

— for 1 � k � nL,

Âk,k�1¼

0 Bk,k�1
0,1 0 � � � 0 0

0 0 Bk,k�1
1,2 � � � 0 0

0 0 0 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � Bk,k�1
nL�k�1,nL�k 0

0 0 0 � � � 0 Bk,k�1
nL�k,nL�kþ1

0
BBBBBBBBB@

1
CCCCCCCCCA
:

We note that, although we are omitting the dimensions of the

matrices 0 for the ease of notation, the dimension of each

matrix 0, representing transitions from states in sub-level

l(k; r) to states in sub-level l(k0; r0), is J(k; r) � J(k0; r0). The

expressions for the matrices B k,k0
r,r0 are given as follows:

— For 0 � r � nL 2 k, 0 � k � nL,

(Bk,k
r,r )ij ¼

a�i, if j ¼ i � 1,
�A(i,r,k), if j ¼ i,
2aþ(nR � i� 2r� 2k)

(nL � i� r� k), if j ¼ i þ 1,
0, otherwise,

8>>>><
>>>>:

where 0 � i � nL 2 r 2 k, 0 � j � nL 2 r 2 k, and, from

now on, A(i,r,k) ¼ 2aþ(nR 2 i 2 2r 2 2k)(nL 2 i 2 r 2 k) þ
a2i þ bþi(nR 2 i 2 2r 2 2k) þ 2b2r þ gþr þ g2k.

— For 0 � r � nL 2 k 2 1, 0 � k � nL,

(Bk,k
r,rþ1)ij ¼

bþi(nR � i� 2r� 2k), if j ¼ i � 1,
0, otherwise,

�

where 0 � i � nL 2 r 2 k, 0 � j � nL 2 r 2 k 2 1.

— For 1 � r � nL 2 k, 0 � k � nL,

(Bk,k
r,r�1)ij ¼

2b�r, if j ¼ i þ 1,
0 , otherwise,

�

where 0 � i � nL 2 r 2 k, 0 � j � nL 2 r 2 k þ 1.

— For 1 � r � nL 2 k, 0 � k � nL 2 1,

(Bk,kþ1
r,r�1 )ij ¼

gþr, if j ¼ i,
0 , otherwise,

�

where 0 � i � nL 2 r 2 k, 0 � j � nL 2 r 2 k.

— For 0 � r � nL 2 k, 1 � k � nL,

(Bk,k�1
r,rþ1 )ij ¼

g�k, if j ¼ i,
0, otherwise,

�

where 0 � i � nL 2 r 2 k, 0 � j � nL 2 r 2 k.

For an initial state (n1, n2, n3) [ Ŝ and a number N . 0, we

are also interested in the random variable

T(n1,n2,n3)(N) ¼ ‘time to reach a number N of P complexes,

if the process starts at (n1, n2, n3)0:
We omit N in the notation for convenience, and denote the

random variable under study T(n1,n2,n3). Again, this time is 0

for N � n3. For N . n3, we follow an argument similar

to that of appendix B, so that T(n1,n2,n3) is studied as an

absorption time in a suitable auxiliary process.

In order to obtain the different lth-order moments in an

efficient way, we define the Laplace–Stieltjes transform of

T(n1,n2,n3) as
j(n1,n2,n3)(z) ¼ E[e�zT(n1 ,n2 ,n3) ], <(z) � 0,
and the different lth-order moments of T(n1,n2,n3) can be

obtained as
E[Tl
(n1,n2,n3)] ¼ (�1)l dl

dzl j(n1,n2,n3)(z)

�����
z¼0

, 8l � 1:
By a first-step argument (omitted here since it is analogous to

(B 2)), we obtain the system
ĝ(z) ¼ Â(z) ĝ(z)þ â(z), ðC 1Þ
where the Laplace–Stieltjes transforms are stored in vectors

ĝ(z), following the order given by the levels and sub-levels,

and where the expressions for matrices Â(z) and â(z) are

omitted for brevity. By successive differentiation of the

system in (C 1), we obtain the different lth-order moments

E[Tl
(n1,n2,n3)] through an adapted version of algorithm 1, with

the lth-order moments stored in the vectors m̂(l). We note

that in the adapted version of algorithm 1 to solve (C 1),

which is omitted, we need to deal with inverses of matrices

with dimension Ĵ(k) ¼ #L̂(k). The complexity of transitions

between states does not allow us to gain further efficiency

in our algorithms by working with inverses of matrices

with the dimensions of the given sub-levels. However, in

the special case g2 ¼ 0, that is, when de-phosphorylation is

neglected, it is possible to improve the procedures so that

the highest computational effort is placed on inverting

matrices with the dimensions of sub-levels instead of levels,

which would yield an algorithm 3, not described here.

Finally, we focus on the stationary distribution of the

process, that is, the probabilities
p̂(n1,n2,n3) ¼ lim
t!þ1

P((M̂(t), D̂(t), P̂(t)) ¼ (n1, n2, n3)),

8(n1, n2, n3) [ Ŝ,
which do not depend on the initial state. Similar arguments

to those considered in appendix B allow us to obtain the

stationary distribution in a row vector p̂ ¼ (p̂0,p̂2, . . . ,p̂nL
),

where p̂k ¼ (p̂k
0,p̂k

2, . . . ,p̂k
nL�k), and where row sub-vectors

p̂k
r contain, in an ordered manner, steady-state probabilities

of states in sub-levels l(k; r). An adapted version of algorithm 2

can be obtained, where the matrices Aj,j0, in (B 1), would be

now replaced by the matrices Âk,k0 previously defined. Once
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these vectors are in hand, it is clear that

p̂M ¼ ‘mean number of M complexes in steady state’

¼
XnL

i¼0

i
XnL�i

k¼0

XnL�i�k

r¼0

(p̂k
r )i

 !
,

p̂D ¼ ‘mean number of D complexes in steady state’

¼
XnL

r¼0

r
XnL�r

k¼0

XnL�r�k

i¼0

(p̂k
r )i

 !
,

p̂P ¼ ‘mean number of P complexes in steady state’

¼
XnL

k¼0

k
XnL�k

r¼0

XnL�r�k

i¼0

(p̂k
r )i

 !
:

8:180126
Appendix D. Local sensitivity analysis for
the stochastic descriptors
The objective of this appendix is to develop a local sensitivity

analysis to understand the effect that each of the (association,

dissociation, phosphorylation or de-phosphorylation) rates

(aþ, a2, bþ, b2, gþ and g2) has on the stochastic descriptors

introduced (appendices B and C) for the DP and the IP

models, in a given neighbourhood of parameter space.

This selected neighbourhood of parameter space may be

obtained from a parameter estimation of in vitro and in silico
experiments, as shown in §3.1. Our aim then is to obtain the

partial derivatives of our descriptors with respect to each par-

ameter, so that these derivatives provide a measure of the effect

of a perturbation of the parameters on the descriptors.

Sensitivity analysis for CTMC with absorbing states has been

recently developed [22]. Although the Markov chains considered

in our models are, in general, non-absorbing, the arguments in

Caswell [22] can be clearly generalized to the CTMCs considered

here; see Gómez-Corral & López-Garcı́a [23] for how to adapt

these arguments to structured Markov processes such as the

ones considered in this study. We briefly explain how to adapt
them in what follows, while keeping the spirit of the matrix-ana-

lytic approach applied in previous sections.

We note that the descriptors of §3.3 are analysed

in appendices B and C by following a matrix-oriented

methodology, where algorithms 1 and 2 depend on the use

of matrices Ak,k0(z), Hk(z) and inverses H21
k (z), which

are matrices that clearly depend on parameters (aþ, a2, bþ,

b2, gþ, g2). Thus, when carrying out a local sensitivity

analysis (in terms of partial derivatives) by adapting

arguments of Caswell [22], one would need to compute the

element-by-element partial derivatives of these matrices with

respect to the parameters of interest. We note that given any

matrix Bm�n(u), that depends on some parameters vector u,

we denote by B (ui)(u) its element-by-element derivative with

respect to ui [ u. It is possible to calculate the derivative of

its inverse, B21(u), with respect to ui from B (ui)(u) as [50,51]

(B�1)(ui)(u) ¼ �B�1(u)B(ui)(u)B�1(u):

We make use of this and other basic matrix calculus properties,

as discussed in Caswell [22], to obtain algorithms 1S and 2S,

which are given below, and can be obtained by sequentially dif-

ferentiating all matrices in algorithms 1 and 2, respectively.

Finally, the explicit expressions for matrices in these algorithms,

consisting of the element-by-element partial derivative of the

matrices defined in appendices B and C, with respect to any

parameter, ui [ faþ, a2, bþ, b2, gþ, g2g, are not reported here.

It is clear that, since our descriptors are stored in the vec-

tors mN,(l ), m̂(l) (time to reach a threshold number of P
complexes in the IP and DP models, respectively) and the

quantities pj and p̂ j (mean number of j complexes in steady

state in the IP model ( j [ fM, Pg) and the DP model ( j [

fM, D, Pg), respectively), the objective in algorithms 1S and

2S is to obtain the derivative vectors mN,(l,ui), m̂(l,ui), p (ui)

and p̂(ui). The first two vectors contain the derivatives of the

lth-order moments of the time to reach a given threshold

number of P complexes, and the last two yield the derivatives

of the quantities pj and p̂ j, with respect to each rate ui [ faþ,

a2, bþ, b2, gþ, g2g.
Algorithm 1S (to obtain the derivative of the rth-order moments E[T(n1,n2)(N )r] with respect ui [ faþ, a2, bþ, b2g)
H0

N,(ui)(0) ¼ 2A0,0
(ui )(0);

For k ¼ 1, . . . ,N � 1:

H
N,ðuiÞ
k ð0Þ ¼ �A

ðuiÞ
k,k ð0Þ � ðA

ðuiÞ
k,k�1ð0ÞH

N
k�1ð0Þ

�1Ak�1,kð0Þ �Ak,k�1ð0ÞHN
k�1ð0Þ

�1

�H
N,ðuiÞ
k�1 ð0ÞH

N
k�1ð0Þ

�1Ak�1,kð0Þ þAk,k�1ð0ÞHN
k�1ð0Þ

�1A
ðuiÞ
k�1,kð0ÞÞ;

m
N,ð0,uiÞ
N�1 ¼ �HN

N�1ð0Þ
�1H

N,ðuiÞ
N�1 ð0ÞHN

N�1ð0Þ
�1aN�1ð0Þ þHN

N�1ðzÞ
�1a

ðuiÞ
N�1ðzÞ;

For k ¼ N � 2, . . . ,1,0:

m
N,ð0,uiÞ
k ¼ �HN

k ð0Þ
�1H

N,ðuiÞ
k ð0ÞHN

k ð0Þ
�1Ak,kþ1ð0ÞmN,ð0Þ

kþ1 þHN
k ð0Þ

�1A
ðuiÞ
k,kþ1ð0Þm

N,ð0Þ
kþ1 þHN

k ð0Þ
�1Ak,kþ1ð0ÞmN,ð0,uiÞ

kþ1 ;

For j ¼ 1, . . . ,r:

P
N,ð j,uiÞ
0 ¼

Pj

k¼1

ð j
kÞð�1ÞkðAðk,uiÞ

0,0 ð0Þm
N,ð j�kÞ
0 þA

ðkÞ
0,0ð0Þm

N,ð j�k,uiÞ
0 þA

ðk,uiÞ
0,1 ð0Þm

N,ð j�kÞ
1 þA

ðkÞ
0,1ð0Þm

N,ð j�k,uiÞ
1 Þ;

For p ¼ 1, . . . ,N � 1:

P
N,ð j,uiÞ
p ¼ A

ðuiÞ
p,p�1ð0ÞHN

p�1ð0Þ
�1P

N,ð jÞ
p�1 �A p,p�1ð0ÞHN

p�1ð0Þ
�1H

N,ðuiÞ
p�1 ð0Þ

�HN
p�1ð0Þ

�1P
N,ð jÞ
p�1 þA p,p�1ð0ÞHN

p�1ð0Þ
�1P

N,ð j,uiÞ
p�1 þ

Pj

k¼1

ð ikÞð�1Þk

�ðAðk,uiÞ
p,p�1ð0Þm

N,ð j�kÞ
p�1 þA

ðkÞ
p,p�1ð0Þm

N,ð j�k,uiÞ
p�1 þAðk,uiÞ

p,p ð0Þm
N,ð j�kÞ
p

þAðkÞp,pð0Þm
N,ð j�k,uiÞ
p þ ð1� d p,N�1ÞðAðk,uiÞ

p,pþ1ð0Þm
N,ð j�kÞ
pþ1 þA

ðkÞ
p,pþ1ð0Þm

N,ð j�k,uiÞ
pþ1 ÞÞ;

m
N,ð j,uiÞ
N�1 ¼ �HN

N�1ð0Þ
�1H

N,ðuiÞ
N�1 ð0ÞHN

N�1ð0Þ
�1ðPN,ð jÞ

N�1 þ ð�1Þjað jÞN�1ð0ÞÞþHN
N�1ð0Þ

�1ðPN,ð j,uiÞ
N�1 þ ð�1Þjað j,uiÞ

N�1 ð0ÞÞ;
For p ¼ N � 2, . . . ,1,0:

m
N,ð j,uiÞ
p ¼ �HN

p ð0Þ
�1HN,ðuiÞ

p ð0ÞHN
p ð0Þ

�1ðPN,ð jÞ
p þA p,pþ1ð0ÞmN,ð jÞ

pþ1 Þ þHN
p ð0Þ

�1

�ðPN,ð j,uiÞ
p þA

ðuiÞ
p,pþ1ð0Þm

N,ð jÞ
pþ1 þA p,pþ1ð0ÞmN,ð j,uiÞ

pþ1 Þ;
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We point out that mN,(r,ui)
k and A (r,ui)

k,k0(0) in algorithm 1S,

which corresponds to the model with instantaneous phos-

phorylation, represent the derivatives of mN,(r)
k and A (r)

k,k0(0),

respectively, with respect ui, for ui [ faþ, a2, bþ, b2g.

Algorithm 2S (to obtain the derivative of pM and pP with

respect ui [ faþ, a2, bþ, b2g)
H0

(ui) ¼ A0,0
(ui);

For k ¼ 1, . . . ,nL � 1:

Hk
(ui) ¼ Ak,k

(ui) 2 (Ak,k21
(ui) H21

k21Ak21,k 2 Ak,k21

� H21
k21Hk21

(ui ) H21
k21Ak21,k þ Ak,k21H

21
k21Ak21,k

(ui) );
pnL

*,(ui) ¼ 0;

For k ¼ nL � 1, . . . ,1, 0:

p *,(ui)
k ¼ 2(p *,(ui)

kþ1 Akþ1,kH
21
k þ p*kþ1A (ui)

kþ1,kH
21
k

2 p*kþ1Akþ1,kH
21
k H (ui)

k H21
k );

For k ¼ 0, . . . ,nL:

p
(ui)
k ¼ 1

p�e#S
(p�,(ui)

k � pkp
�,(ui)e#S);

p
(ui)
M ¼

PnL

k¼0

k
�PnL

j¼0

(p(ui)
j )k

�
;

p
(ui)
P ¼

PnL

k¼0

k(p(ui)
k eJ(k));
Open
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