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Abstract: (1) Background: Biomarker and model development can help physicians adjust the man-
agement of patients with community-acquired pneumonia (CAP) by screening for inpatients with a
low probability of cure early in their admission; (2) Methods: We conducted a 30-day cohort study of
newly admitted adult CAP patients over 20 years of age. Prognosis models to predict the short-term
prognosis were developed using random survival forest (RSF) method; (3) Results: A total of 247 adult
CAP patients were studied and 208 (84.21%) of them reached clinical stability within 30 days. The
soluble form of suppression of tumorigenicity-2 (sST2) was an independent predictor of clinical
stability and the addition of sST2 to the prognosis model could improve the performance of the
prognosis model. The C-index of the RSF model for predicting clinical stability was 0.8342 (95% CI,
0.8086–0.8598), which is higher than 0.7181 (95% CI, 0.6933–0.7429) of CURB 65 score, 0.8025 (95% CI,
0.7776–8274) of PSI score, and 0.8214 (95% CI, 0.8080–0.8348) of cox regression. In addition, the
RSF model was associated with adverse clinical events during hospitalization, ICU admissions, and
short-term mortality; (4) Conclusions: The RSF model by incorporating sST2 was more accurate than
traditional methods in assessing the short-term prognosis of CAP patients.

Keywords: community-acquired pneumonia; suppression of tumorigenicity 2; random survival
forests; clinical stability

1. Introduction

Community-acquired pneumonia (CAP) is a common and deadly infectious disease
that kills 3 million people worldwide each year and places a significant strain on global
health care systems [1]. Despite continuous improvements and breakthroughs in medical
conditions in recent decades, CAP remains a significant cause of ICU admission and death
in adults [2–4]. The current treatment for most CAP patients is antibiotic therapy, but
studies have shown that approximately 6% to 15% of hospitalized patients do not achieve
clinical improvement after early treatment [5,6]. Patients with clinical improvement have a
mortality rate several times lower than that of patients with clinical failure [7,8]. Therefore,
it is an urgent need for some accurate markers and models that can screen inpatients
with a low probability of cure early in their admission and can help doctors to adjust the
management of CAP patients and improve patient prognosis.
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To date, the clinical application of index-based prognosis remains very limited, with
the CURB-65 score and the Pneumonia Severity Index (PSI) score remaining the most
commonly used indicators to determine the prognosis of CAP patients [9–11]. However,
several studies indicate that these two scores do not perform well in predicting the risk of
ICU admission and death, so new severity scores are needed to predict the prognosis of CAP
patients [12–15]. Over time, machine learning based methods are nowadays increasingly
being used to predict CAP patients [16–19]. For example, machine learning models using
the random forest algorithm have been successfully applied to predict 30-day mortality in
pneumonia patients with higher accuracy than the CURB-65 score [16]. Inspired by those
cases, here we hypothesize that this newly developed method randomized survival forest
(RSF) can be utilized to predict the clinical stability of CAP patients at 30 days.

In addition, the development of some new biological markers can further improve
the prognosis of patients [17–19]. Suppression of Tumorigenicity-2 (ST2) is a member of
Interleukin (IL)-1 superfamily, and 2 major transcription variants have been identified:
the full length of transmembrane form (ST2L) and the soluble form (sST2). sST2 is a
decoy receptor for IL-33 [20]. It can competitively bind IL-33, thus blocking the function
of the IL-33-ST2L signaling pathway, which is an important cardioprotective paracrine
system [21,22]. As early as the 2013 ACC/AHA Heart Failure Guidelines, sST2 was
recommended for predicting the probability of in-hospital and long-term death in patients
with heart failure, and its role as a predictive biomarker of cardiac death has been well
documented [23,24]. In addition to heart failure, the potential use of sST2 in lung diseases is
also of interest as it is significantly elevated in patients with idiopathic pulmonary fibrosis,
asthma, and pulmonary hypertension [25,26]. sST2 has been found to be a predictor of
all-cause in-hospital mortality of CAP patients [27]. In this study, the prognostic value of
sST2 in CAP patients was investigated and evaluated. More importantly, we aim to develop
and validate the RSF model incorporating sST2 to assess patients’ in-hospital prognosis,
assessing its prognostic performance in a cohort study and comparing it with CURB-65
and PSI scores.

2. Materials and Methods
2.1. Experimental Design

A total of 247 CAP patients who were hospitalized at the First Hospital of Guangzhou
Medical University in 2019–2020 were included in this study. Their clinical information
was collected from their electronic medical records with a 30-day in-hospital follow-up.
The diagnostic criteria of patients were current recommendations for the treatment of
community-acquired pneumonia [28]. Patients were diagnosed with CAP when new infil-
trative shadows appeared on chest radiograph and one of the following acute respiratory
signs and symptoms were present: cough, sputum production, dyspnea, the core body
temperature of 38 ◦C or higher, abnormal respiratory response or gong sounds on aus-
cultation, and white blood cell count higher than 10 × 109/L or less than 4 × 109/L. The
exclusion criteria were (1) age < 20 years; (2) lack of clinical information to assess PSI score
and CURB-65 score; (3) patients with severe immunodeficiency: infection with human
immunodeficiency virus or CD4+ cells less than 350 cells/µL; (4) prolonged hospitalization,
hospitalization 90 days before, and wound care 30 days before because it suggested the
diagnosis of medical-associated pneumonia; and (5) refusal to sign an informed consent
form or to follow the physician’s consultation.

2.2. Clinical Information and Outcomes

A trained research assistant extracted and collected chest radiograph reports, demo-
graphic (age, sex), clinical (temperature, pulse, respiratory rate, systolic blood pressure,
state of consciousness, ventilator support or not and complications) and laboratory infor-
mation (Procalcitonin, C-reactive protein, blood counts, coagulation markers, biochemical
markers, and blood gas analysis) from the hospital electronic case system and did PSI and
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CURB-65 scores. When the chest radiograph report of pneumonia was ambiguous, we
sought the opinion of our radiologist.

To assess patients’ ability to recover, we defined the primary clinical outcome event
as clinical stability. We judged the clinical stability of patients according to the current
CAP guidelines of the American Thoracic Society (ATS) and the study of Claudine Angela
Blum et al. [28,29]. Clinical stability was defined when the patient met all of the following
signs: a temperature ≤ 37.8 ◦C, heart rate ≤ 100 beats/min, spontaneous respiratory rate
≤ 24 breaths/min, and systolic blood pressure ≥ 90 mmhg without pressor intervention
(≥100 mmhg in hypertensive patients), normal mental status, spontaneous oral intake, and
partial pressure of oxygen in artery (PaO2) ≥ 60 mm Hg or pulse oximetry ≥ 90%. The
number of days to achieve clinical stability was recorded as the time from the patient’s
admission to clinical stability for at least 24 h. In addition, we defined ICU admission,
30-days in-hospital all-cause death, and in-hospital adverse clinical events as secondary
clinical outcome events (including septicaemia, sepsis, shock, respiratory failure, empyema,
ARDS, ventilator support, and heart disease).

2.3. Detection of sST2

Venous blood was collected within the first day (0–24 h) after the patients were admit-
ted to the hospital. Whole blood was centrifuged at 3000× g for 15 min at room temperature.
Serum was extracted and stored at −80 ◦C. The serum samples were prepared by the sST2
detection kit (ST22101001F) and then the sST2 levels were detected by the Jet-iStar 3000
(Joinstar Biomedical Technology Co., Ltd., Hangzhou, China), according to the manufac-
turer’s instruction. The primary antibody in the kit is an anti-sst2 mouse monoclonal
antibody, and the secondary antibody is a CFSE-labeled anti-sst2 mouse monoclonal anti-
body. The absorbance of the carboxyfluorescein diacetate n-succinimidyl ester (cfse)-labeled
anti-sST2 mouse monoclonal antibody-sst2-anti-sst2 mouse monoclonal antibody complex
was measured at 635 mm. Finally, quantitative sST2 levels were obtained from a standard
curve drawn from standard concentration solutions measured on the same plate.

2.4. Data Analysis

Continuous data were expressed as mean (±standard deviation) and the difference
was assessed by student’s t-test. Categorical variables were expressed as frequency (per-
centage) and the difference was assessed by chi-square test. The missing values were
imputed by multivariate imputation via chained equations [30]. Variables were selected in
two steps. First, correlation analysis (Pearson correlation coefficient) and variance analysis
were applied for the initial screening of continuous and categorical variables, respectively.
Variables that were not correlated with clinical stability were removed. Next, the least
absolute shrinkage and selection operator (LASSO) algorithm was performed to further
select and sort significant variables. LASSO algorithm minimizes the regression coefficients
through a continuous shrinkage algorithm to reduce the possibility of overfitting. The R
package “glmnet” was used in our study to implement the LASSO regression.

Our prognostic models were developed using random survival forest (RSF) with
patients reaching clinical stability as the primary outcome. RSF is a nonparametric machine
learning method that is an extension of Breiman’s random forest for analyzing survival
data. The RSF model is trained by growing a large number of individual trees. Since it does
not require restrictive parameters or proportional survival assumptions, the RSF model is
more applicable than some traditional survival models. The method was implemented in
the R package “randomForestSRC”, and the RSF model was trained using 500 trees and a
terminal node size of 15 [31].

We evaluated the performance of our models in future populations through internal
bootstrap validation. The training set was obtained by repeated sampling among patients
using the bootstrap method, and the test set is all patients. Internal discrimination of
our models was assessed by the time-dependence receiver operating characteristic (time-
dependent ROC) curve and concordance index (C-index). The area under the curve (AUC)
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was calculated and compared. We further applied the RSF model to the entire dataset and
calculated the RSF score for each patient. The X-title was used to find the optimal threshold
to classify patients into high-risk and low-risk subgroups. The log-rank test was used to
compare the Kaplan–Meier survival curves for each subgroup. The significant difference
was set to 0.05. Analyses were performed in the R language environment (version 4.0.2,
R Foundation for Statistical Computing, Vienna, Austria).

3. Results
3.1. Patient Characteristics

The basic information of the 247 eligible CAP patients is shown in Table 1. In total, 208 of
them (84.21%) reached clinical stability within 30 days of follow-up. The age of patients who
reached clinical stability was significantly younger than those who did not (p < 0.05), and
fewer of the patients who reached clinical stability had a pulse >125 beats/min, respiratory
rate > 30 breaths/min, and systolic blood pressure (SBP) < 90 mmhg (p < 0.001). In addition,
D-dimer, Procalcitonin (PCT), C-reactive protein (CRP), and sST2 were significantly lower
in patients who reached clinical stability than in those who did not (p < 0.05), while Lym-
phocyte and Eosinophils were higher in patients who reached clinical stability (p < 0.001).

Table 1. Basic information of the CAP patients. Continuous variables were expressed as mean
(±standard deviation) and categorical variables were expressed as frequency (percentage).

Variables
Clinical Stability

p
No (n = 39) Yes (n = 208)

Age 66.38 (±12.91) 57.46 (±16.74) 0.002
Male 24 (61.54) 123(59.13) 0.918

Clinical assessment
Temperature ≤ 35 ◦C or ≥40 ◦C 39 (100.0) 208 (100.0)

Pulse ≥ 125 beats/min 5 (12.8) 8 (3.8) 0.056
Breaths > 30 breaths/min 29 (74.4) 71 (34.1) <0.001

SBP < 90 mmhg 6 (15.4) 5 (2.4) 0.001
Ventilator support 38 (97.4) 48 (23.2) <0.001

State of consciousness 17 (43.6) 8 (3.8) <0.001
Laboratory tests

HBP (ng/mL) 76.83 (±84.72) 41.58 (±49.43) <0.001
PCT (ng/mL) 1.94 (±3.46) 0.63 (±2.39) 0.004
sST2 (ng/mL) 120.24 (±68.37) 34.20 (±45.84) <0.001
CRP (ng/mL) 6.86 (±5.72) 2.62 (±4.42) <0.001

Leukocyte (×09/L) 11.04 (±5.43) 8.33 (±3.23) <0.001
Neutrophils (×109/L) 9.53 (±4.85) 5.83 (±3.30) <0.001
Lymphocyte (×109/L) 0.79 (±0.57) 1.61 (±0.83) <0.001

Monocyte (×109/L) 0.63 (±0.46) 0.66 (±0.28) 0.599
Eosinophils (×109/L) 0.75 (±1.13) 2.67 (±3.04) <0.001
Basophils (×109/L) 0.25 (±0.26) 0.53 (±0.38) <0.001
Platelets (×109/L) 221.74 (±142.89) 247.56 (±103.57) 0.186

Hematocrit (×109/L) 0.28 (±0.07) 1.16 (±11.39) 0.633
Total bilirubin (µmol) 23.28 (±33.43) 12.59 (±9.79) <0.001

Direct bilirubin (µmol) 10.24 (±19.57) 3.11 (±5.03) <0.001
D-dimer (ng/mL) 3584.75 (±3354.47) 1008.30 (±1673.25) <0.001

Prothrombin time (s) 16.50 (±5.10) 13.97 (±1.59) <0.001
Prothrombin activity (%) 76.56 (±22.28) 93.31 (±16.39) <0.001

Fibrinogen (g/L) 3.87 (±1.64) 4.13 (±1.37) 0.306
APTT (s) 44.82 (±13.14) 39.91 (±6.13) <0.001
FiO2 (%) 48.46 (±19.64) 27.31 (±27.70) <0.001

PaCO2 (mmHg) 48.05 (±10.70) 44.47 (±7.70) 0.022
SpO2 (%) 95.75 (±5.24) 96.49 (±4.00) 0.356

PA-aO2 (mm Hg) 206.02 (±141.19) 44.67 (±61.59) <0.001
PaO2 (mm Hg) 100.54 (±35.87) 100.06 (±31.81) 0.936
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Table 1. Cont.

Variables
Clinical Stability

p
No (n = 39) Yes (n = 208)

Creatinine (µmol/L) 92.03 (±45.66) 75.84 (±22.40) 0.001
PH 7.39 (±0.07) 7.38 (±0.04) 0.57

Na(mmol/L) 144.67 (±6.89) 139.84 (±4.29) <0.001
Glucose(mmol/L) 8.45 (±3.74) 5.96 (±2.36) <0.001

BUN (mmol/L) 13.29 (±8.56) 6.40 (±4.83) <0.001
PSI score (%) <0.001

1 0 (0.0) 42 (20.2) 0.010
2 1 (2.6) 69 (33.2) 0.002
3 2 (5.1) 48 (23.1) 0.030
4 16 (41.0) 41 (19.7) 0.080
5 20 (51.3) 8 (3.8) <0.001

CURB 65 score (%) <0.001
0 0 (0.0) 70 (33.7) <0.001
1 6 (15.4) 74 (35.6) 0.060
2 8 (20.5) 43 (20.7) 1.000
3 16 (41.0) 19 (9.1) <0.001
4 6 (15.4) 2 (1.0) <0.001
5 3 (7.7) 0 (0.0) 0.003

Complications and adverse clinical events
Heart disease (%) 17 (43.6) 38 (18.3) 0.001

ARDS (%) 12 (30.8) 1 (0.5) <0.001
Empyema (%) 5 (12.8) 13 (6.2) 0.266

Respiratory failure (%) 30 (76.9) 35 (16.8) <0.001
Septicemia (%) 4 (10.3) 2 (1.0) 0.004

Shock (%) 18 (46.2) 8 (3.8) <0.001
Pleural effusion (%) 18 (46.2) 58 (27.9) 0.038

Sepsis (%) 2 (5.1) 5 (2.4) 0.678
Death (%) 17 (43.6) 0 (0.0) <0.001
ICU (%) 27 (69.2) 18 (8.7) <0.001

CAP: Community-acquired pneumonia; SBP: Systolic blood pressure; HBP: Heparin-Binding Protein; PCT:
Procalcitonin; CRP: C-reactive protein; APTT: Activated partial thromboplastin time; BUN: Blood urea nitrogen;
ARDS: Acute respiratory distress syndrome; ICU: Intensive care unit; PSI: Pneumonia Severity Index.

3.2. Variable Selection

A total of 60 indicators were collected from patients, including demographic infor-
mation, clinical assessment, and laboratory tests. After removing those with high missing
values (more than 5%) and redundant variables, 39 variables were left for follow-up analy-
sis. A total of 11 continuous indicators were selected as the variables correlated with clinical
stability using a correlation network analysis (Figure S1A). For the categorical variables, pa-
tients presenting with pleural effusion, mental confusion, SBP < 90 mmhg and respirations
> 30 breaths/min took more time to reach clinical stability (p < 0.001) (Figure S1B). The
LASSO regression was conducted in these 15 variables to reduce overfitting. The model
performs best when the number of variables was 10 (Figure S1C,D), namely, Age, D-dimer,
sST2, Neutrophils, Lymphocyte, Prothrombin activity (PTA), glucose, Blood urea nitrogen
(BUN), SBP < 90 mmhg and respirations > 30 breaths/min. Univariate regression analysis
proved that all indicators were significant predictors of clinical stability (p < 0.05) (Table 2).
Lymphocyte and PTA are favorable factors for clinical stability (HR > 1), that is, patients
with high Lymphocyte and PTA were more likely to reach clinical stability, while other
predictors were unfavorable factors for clinical stability (HR < 1).

3.3. Prognostic Value of sST2

The potential use of sST2 in different lung diseases is also gaining attention. Multivari-
ate regression analysis found that sST2 was an independent predictor of clinical stability
(p < 0.001). We compare the sST2 values in patients with different prognoses, such as
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clinical stability, ICU admission, and survival status. The significant differences of sST2 in
patients with different prognoses were found (Figure 1A). The ST2 could predict clinical
stability, ICU admission, and 30-day mortality, with AUCs of 0.8826 (95% CI: 0.8345–0.9306),
0.9218 (95% CI: 0.8837–0.96), and 0.9018 (95% CI: 0.8402–0.9634), respectively (Figure 1B).
The optimal threshold for sST2 was found to be 28.2 ng/mL using X-title and patients were
divided into high- and low-sST2 groups. The Kaplan–Meier curves for patients to reach
clinical stability were compared, and log-rank showed a significant difference between
the high- and low-sST2 groups (Figure 1C). Patients with low-sST2 took less time to reach
clinical stability than patient with high-sST2, and 97.4% (38 of 39 patients) with high-sST2
did not reach clinical stability.

3.4. Model Development and Comparison

The cox regression model and RSF models to predict the clinical stability of CAP
patients were developed based on the selected 10 variables. To validate the additive
effect of sST2 in the model, we developed and compared two models, i.e., the RSF model
without sST2 and the RSF model with sST2. The models were trained using the training set
obtained from bootstrap, and then the entire dataset was used as a test set to evaluate the
performance of the model. The performance metrics of CURB 65, PSI score, cox regression
model, and two RSF models were compared (Table 3) with the C-index of 0.7181, 0.8025,
0.8214, 0.8336, and 0.8595, respectively. The 10-days AUC, 20-days AUC, and 30-days AUC
of RSF score were 0.9740 (95% CI, 0.9574–0.9907), 0.9573 (95% CI, 0.9284–0.9863), and 0.9428
(95% CI, 0.9113–0.9744), respectively. The AUC and C-index of the two RSF models were
higher than those of CURB 65, PSI score and cox regression model, and the C-index of the
RSF model with sST2 was higher than that of the RSF model without sST2.

The RSF scores were calculated for each patient in the entire data set to evaluate the
predictive performance of the RSF model. The optimal threshold of RSF score was found to
be 0.297 using X-title, so the patients could divide into the high-score (RSF score ≥ 0.297)
group and low-score (RSF score < 0.297) group. The Kaplan–Meier curves for those two
groups showed significant differences assessed by log-rank test (p < 0.001) (Figure 2A).
Patients with low-score took less time to reach clinical stability than those with high score
(Figure 2B). The RSF score performed well in predicting clinical stability of patients, with
the 30-days AUC as high as 0.9428 (95% CI:0.9113–0.9744) (Figure 2C). In addition, the RSF
scores were positively correlated with PA-aO2 and CRP (Figure 2D) (R = 0.5808 and 0.6649,
p < 0.001), and RSF scores were significantly higher in patients with higher CURB 65 and
PSI scores (Figure 2E,F).

Table 2. Cox regression analysis of the selected variables.

Variables
Univariate Regression Multivariate Regression

HR (95% CI) p HR (95% CI) p

Age 0.9830 (0.9753–0.9908) <0.001 0.9934 (0.9831–1.0039) 0.216
D-dimer 0.9997 (0.9996–0.9998) <0.001 0.9998 (0.9997–1.0000) 0.012

sST2 0.9853 (0.9913–0.9874) <0.001 0.9905 (0.9853–0.9956) <0.001
Neutrophils 0.8734 (0.8371–0.9113) <0.001 0.9400 (0.8898–0.9930) 0.027
Lymphocyte 1.6889 (1.4820–1.9247) <0.001 1.1254 (0.8871–1.4277) 0.331

PTA 1.0322 (1.0242–1.0403) <0.001 1.0171 (1.0065–1.0279) 0.002
Glucose 0.8237 (0.7715–0.8794) <0.001 0.9665 (0.8995–1.0358) 0.352

BUN 0.8777 (0.8415–0.9154) <0.001 0.9974 (0.9605–1.0358) 0.893
SBP 0.2931 (0.1206–0.7126) 0.007 0.7072 (0.2728–1.8331) 0.475

Breaths 0.3843 (0.2867–0.5151) <0.001 0.5340 (0.3776–0.7751) <0.001
HR: Hazard ratio; sST2: Soluble Form of Suppression of Tumorigenicity-2; PTA: Prothrombin activity; BUN: Blood
urea nitrogen; SBP: Systolic blood pressure.
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Table 3. Performance metrics of CURB 65, PSI score, cox regression model, and two RSF models in
test set.

Model
AUC

C-Index
10 Days 20 Days 30 Days

Curb 65 0.8438(0.7914–0.8961) 0.8454 (0.7823–0.9085) 0.8553 (0.8028–0.9172) 0.7181(0.6933–0.7429)
PSI Score 0.9212(0.8853–0.9585) 0.8989(0.8545–0.9433) 0.8810(0.8554–0.9441) 0.8025(0.7776–0.8274)

Cox regression 0.9379(0.9044–0.9714) 0.9179(0.8718–0.9640) 0.8900(0.8421–0.9380) 0.8214(0.8080–0.8348)
RSF without sST2 0.9653(0.9485–0.9822) 0.9558(0.9274–0.9842) 0.9450(0.9141–0.9760) 0.8336(0.8214–0.8458)

RSF with sST2 0.9740(0.9574–0.9907) 0.9573(0.9284–0.9863) 0.9428(0.9113–0.9744) 0.8595(0.8445–0.8745)

CURB 65: Confusion, Urea level, Respiratory rate, Blood pressure, and Age > 65 years; PSI: Pneumonia Severity
Index; sST2: Soluble Form of Suppression of Tumorigenicity-2; AUC: Area under curve.
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Figure 1. The potential prognostic value of sST2. (A). The significant differences of sST2 in patients
with different prognoses. The sST2 of patients who reached clinical stability (34.20 ± 45.84) was
significantly lower than that of patients who did not (120.24 ± 68.37) (p < 0.001). sST2 was significantly
higher in patients admitted to the ICU (129.59 ± 64.43) than in patients not admitted to the ICU
(29.54 ± 38.90) (p < 0.001). Survival patients (150.72 ± 68.36) had significantly higher sST2 than
patients who died in hospital (41.63 ± 52.45) (p < 0.001). (B). The ROC curves of sST2 in predicting
clinical stability, ICU admission and 30 days in-hospital mortality. (C). The Kaplan–Meier curve
of patients with low-sST2 (sST2 < 28.2 ng/mL) and high-sST2 (sST2 > 28.2 ng/mL). The optimal
threshold of sST2 was 28.2 ng/mL obtained with X-title. sST2: Soluble Form of Suppression of
Tumorigenicity-2; ICU: Intensive care unit; Low: low-sST2; High: high-sST2; AUC: Area under
the curve.
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Figure 2. The prognostic value of RSF model. (A). The Kaplan–Meier curve of clinical stability
for patients with different RSF scores. The patients were divided into the high-score (≥0.297) and
low-score (<0.297) based on their RSF score, and the optimal threshold was 0.297 obtained with X-title.
(B). The correlation between RSF score and the time to clinical stability. (C). The time-dependence
ROC curve of RSF scores. (D). The RSF scores were positively correlated with the PA-aO2 and
CRP. (E). Patients with high CURB-65 scores (3–5 points) had higher RSF scores than patients with
intermediate CURB-65 scores (2 points) and further higher than those with low CURB-65 scores
(0–1 points) (p < 0.001). (F). Patients with high PSI scores (grades 3–5) had higher RSF scores than
patients with intermediate PSI scores (grades 2–3) and further higher than those with low PSI scores
(grades 0–1) (p < 0.001). RSF: Random survival forest, CPR: C-reactive protein; PA-aO2: Alveolar-
arterial PO2 difference; CURB 65: Confusion, Urea level, Respiratory rate, Blood pressure, and
Age > 65 years; PSI: Pneumonia Severity Index; Low: RSF scores < 0.297; High: RSF score ≥ 0.297;
AUC: Area under the curve.

3.5. Potential of RSF Score to Predict Adverse Clinical Events

We also documented several adverse clinical events that occurred during the patient’s
hospitalization, such as septicemia, sepsis, shock, respiratory failure, empyema, ARDS,
ventilator support, and heart disease. The results show that patients who experienced these
adverse events had higher RSF scores than those who did not (p < 0.05) (Figure 3A). It
suggests that patients with high RSF scores are more prone to adverse clinical events. For
patients in the low-score group, no patient died within 30 days of follow-up, and no patient
was admitted to the intensive care unit (ICU) within 30 days of hospitalization (Figure 3B).
The AUCs of sST2, CURB-65, PSI score, and RSF score in predicting adverse clinical events
were evaluated and compared (Table 4). The AUCs of RSF scores appears to be higher than
others except for septicemia, where PSI has a higher performance.
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Figure 3. The evaluation of RSF score to predict adverse clinical events. (A). Patients who experi-
enced the following adverse clinical events, including septicemia, sepsis, shock, respiratory failure,
empyema, ARDS, ventilator support and heart disease, had significantly higher RSF scores than
patients who did not experience these adverse clinical events (p < 0.05). (B). Kaplan–Meier curve of
in-hospital death and ICU admission for patients in different risk groups. ARDS: Acute respiratory
distress syndrome; RSF: Random survival forest; ICU: Intensive care unit; Low: RSF scores < 0.297;
High: RSF score ≥ 0.297.

Table 4. The AUCs of ST2, CURB-65, PSI score and RSF score in predicting adverse clinical events
of patients.

sST2 CURB 65 PSI Score RSF Score

Septicemia 0.7576(0.6074–0.9078) 0.7894(0.6434–0.9354) 0.8292(0.7037–0.9546) 0.8154(0.6705–0.9602)
Sepsis 0.7711(0.6817–0.8605) 0.6247(0.4491–0.8003) 0.7726(0.6825–0.8627) 0.8006(0.7004–0.9008)
Shock 0.8708(0.8221–0.9195) 0.8307(0.7493–0.9120) 0.8807(0.8328–0.9286) 0.9210(0.8782–0.9637)

Respiratory failure 0.8561(0.7992–0.9131) 0.8009(0.7438–0.8580) 0.8737(0.8315–0.9159) 0.8990(0.8574–0.9406)
Empyema 0.6417(0.5238–0.7596) 0.5528(0.4118–0.6937) 0.6887(0.5711–0.8063) 0.7086(0.6188–0.7985)

ARDS 0.8490(0.7568–0.9411) 0.8665(0.7608–0.9723) 0.9121(0.8657–0.9584) 0.9287(0.8699–0.9874)
Ventilator support 0.8876(0.8396–0.9356) 0.8552(0.8119–0.8985) 0.9185(0.8838–0.9532) 0.9222(0.8863–0.9581)

Heart disease 0.7411(0.6639–0.8183) 0.7644(0.7006–0.8282) 0.8049(0.7475–0.8622) 0.7721(0.7017–0.8425)
ICU admission 0.9018(0.8637–0.9400) 0.8506(0.7952–0.9060) 0.8958(0.8574–0.9341) 0.9516(0.9255–0.9777)

Death 0.8818(0.8202–0.9434) 0.8758(0.7811–0.9706) 0.9109(0.8713–0.9504) 0.9207(0.8691–0.9722)

AUC: area under curve; CURB 65: Confusion, Urea level, Respiratory rate, Blood pressure, and Age > 65 years; PSI:
Pneumonia Severity Index; RSF: Random survival forest; sST2: Soluble Form of Suppression of Tumorigenicity-2;
ARDS: Acute respiratory distress syndrome; ICU: Intensive care unit.

4. Discussion

Our study demonstrated that sST2 was an independent predictor of clinical stability
by cox regression analysis and sST2 could predict clinical stability, with AUCs of 0.8826
(95% CI: 0.8345–0.9306). Further, an RSF model was derived and internally validated
to evaluate the prognostic risk of adult CAP patients by cleverly embedding sST2 into
routine. This model can accurately assess the probability to achieve clinical stability of
adult CAP patients during hospitalization with a C-index of 0.8595 (0.8445–0.8745). With
the incorporating of sST2, the ability of the RSF model to stratify risk and assess prognosis
in CAP patients was significantly higher than that of CURB-65 and PSI scores. In addition,
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the RSF model had potential in assessing the risk of adverse clinical events, ICU admissions,
and short-term mortality during hospitalization.

Our study illuminated that patients with a younger age, lower D-dimer, lower sST2,
270 lower Neutrophils, lower glucose, higher PTA, higher Lymphocyte, no SBP <90 mmHg
271, and no breathing rate >30 breaths/min were more likely to achieve clinical stabil-
ity. Previous studies have confirmed that cardiovascular complications remain a heavy
burden of poor course and prognosis in CAP patients in which coagulation factors play
an important role [32]. It also has been found that D-dimer levels were significantly el-
evated in patients with clinical failure or severe CAP [33]. Our findings are consistent
with them that low levels of D-dimer and high levels of PTA are favorable factors for
reaching in-hospital clinical stability in CAP patients. The possible mechanism is that
acute infection in CAP leads to an increase in myocardial metabolic demand, while pre-
existing heart-related diseases make myocardial ischemia, which would prolong hospital
stay and increase mortality in patients [34]. In addition, the endotoxin of the Gram-negative
pathogen that triggers CAP would make an imbalance in the coagulation-fibrinolytic sys-
tem in the body, resulting in abnormal levels of coagulation factors, such as D-dimer [35].
Inflammatory cells are also important factors affecting the prognosis of CAP patients. The
neutrophil-to-lymphocyte ratio (NLR) is a simple, rapid, and inexpensive biomarker of
systemic inflammation. As reported, it has been widely used for prognosis in different
pathological conditions (pathology) [36]. This further confirms that the model proposed in
this study adequately considers the impact of the host systemic inflammatory response in
CAP patients on their prognosis and can be better adapted to the clinical reality. The model
also demonstrated that admission hyperglycemia is an unfavorable factor for patients to
reach clinical stability, consistent with the fact that admission fasting hyperglycemia is an
independent risk factor for complications and death in CAP patients [37]. This may be due
to the acute stress response of the body to infection.

Consistent with previous study [26], sST2 still had a good predictive performance
for CAP patient prognosis in cohort studies with larger numbers of patients and more
clinical variables. IL-33-ST2L plays an important regulatory role in pulmonary infections.
In a mouse model of sepsis, administration of IL-33 treatment improved inflammation
and reduced mortality [38]. In addition, in a mouse model of COPD exacerbation caused
by an influenza virus infection, IL-33 treatment increased neutrophil infiltration in the
lung, whereas sST2 treatment decreased this infiltration [39]. The expression of IL-33 is
high in bronchial epithelial cells and pulmonary vascular endothelial cells. When the
body is under damage and stimulation, IL-33 rapidly positively release from damaged
cells or is secreted by immune cells [40,41]. Among a variety of inflammatory respiratory
diseases, including CAP, injured cells secreted and released IL-33. IL-33 bound to ST2L in
immunocyte and activated ST2L/IL-1RacP, recruiting MyD88 to its intracellular domain.
MyD88 binding recruits IL-1R-associated kinase (IRAK-1 and IRAK-4) and TRAF6, leading
to the NF-κB pathway being activated. NF-κB activations induce pro-inflammatory gene
transcription and promote inflammatory cytokine expressions [42,43]. Lin et al., reported
that, in human corneal epithelial cells, IL-33—ST2L signaling was enhanced after exposure
to IL-33, which promoted the expression of proinflammatory cytokines and chemokines in
both mRNA and protein levels [44,45]. IL-33 and proinflammatory cytokines can induce
chemotactic migration of neutrophils to the lung and enhance the pulmonary inflammatory
response [46]. However, the NF-κB signaling pathway not only induced inflammation but
promoted the expression of sST2 [47]. When IL-33-ST2L promotes inflammation and kills
pathogens, sST2 may be secreted in increased amounts in lung tissues and competitively
bound to IL-33 due to a negative feedback mechanism, blocking the IL-33-ST2L signaling
pathway (Figure 4). Therefore, sST2 is expected to serve as a biomarker of poor prognosis
in CAP patients.
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lidity, and safety, the PSI score has become the reference standard for CAP risk stratifica-
tion [48]. However, the practical value of PSI in clinical practice has been controversial 
due to the number of variables required (including demographics, clinical characteristics, 
laboratory data, and chest radiographs) and the long calculation time. In contrast, the 
CURB-65 score requires only five clinical variables and is much simpler to calculate. In 
practice, the CURB-65 score is easier to administer than the PSI, but it is less sensitive in 
predicting mortality in CAP patients. In addition, the specificity of both scores is weak 
[49]. Several studies have demonstrated that the prognostic performance of machine 
learning models was better than PSI and CURB-65 [9,12,13,16,50–52]. In our study, the 30-
day AUC and C-index of the RSF model were 0.9428 (95% CI, 0.9113–0.9744) and 0.8595 
(95% CI, 0.8445–0.8745), respectively, both higher than those of PSI score and the CURB-
65 score. The inflammatory response has been recognized as a key aspect of prognosis in 
CAP patients [53]. Importantly, our RSF model includes factors, such as neutrophil count, 
lymphocyte count, and sST2, that reflect systemic or local inflammatory response in CAP 
patients, whereas neither PSI score nor CURB-65 score can assess host inflammatory re-
sponse. This may be responsible for the apparent superiority of our new model over PSI 
and CURB-65 scores. 

Our model divided the patients into the high-score and low-score groups based on 
their normalized RSF scores. The optimal threshold was found to be 0.297 using X-title. 
When the patient’s RSF score was less than the threshold, the patient was able to reach 
clinical stability rapidly in a short period. Additionally, according to the analysis of sec-
ondary outcomes, patients in the low-risk group were found to be at little risk of ICU 
admission and death in the short term. When the patient’s RSF score was greater than the 
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MyD88: myeloid differentiation factor 88; IRAK-1: interleukin-1 receptor associated kinase 1; IRAK-
4: interleukin-4 receptor associated kinase 1; TRAF6: TNF receptor associated factor 6; NEUT:
neutrophils; IL-33: Interleukin-33; sST2: Soluble Form of Suppression of Tumorigenicity-2; sST2L:
Full-length Transmembrane Form Suppression of Tumorigenicity-2.

The PSI is a scoring tool jointly developed by the American Thoracic Society (ATS)
and Infectious Diseases Society of America (IDSA) that can predict short-term mortality in
patients with CAP by classifying them into five classes. Due to its accuracy, rigor, validity,
and safety, the PSI score has become the reference standard for CAP risk stratification [48].
However, the practical value of PSI in clinical practice has been controversial due to the
number of variables required (including demographics, clinical characteristics, laboratory
data, and chest radiographs) and the long calculation time. In contrast, the CURB-65 score
requires only five clinical variables and is much simpler to calculate. In practice, the CURB-
65 score is easier to administer than the PSI, but it is less sensitive in predicting mortality in
CAP patients. In addition, the specificity of both scores is weak [49]. Several studies have
demonstrated that the prognostic performance of machine learning models was better than
PSI and CURB-65 [9,12,13,16,50–52]. In our study, the 30-day AUC and C-index of the RSF
model were 0.9428 (95% CI, 0.9113–0.9744) and 0.8595 (95% CI, 0.8445–0.8745), respectively,
both higher than those of PSI score and the CURB-65 score. The inflammatory response
has been recognized as a key aspect of prognosis in CAP patients [53]. Importantly, our
RSF model includes factors, such as neutrophil count, lymphocyte count, and sST2, that
reflect systemic or local inflammatory response in CAP patients, whereas neither PSI score
nor CURB-65 score can assess host inflammatory response. This may be responsible for the
apparent superiority of our new model over PSI and CURB-65 scores.

Our model divided the patients into the high-score and low-score groups based on
their normalized RSF scores. The optimal threshold was found to be 0.297 using X-title.
When the patient’s RSF score was less than the threshold, the patient was able to reach
clinical stability rapidly in a short period. Additionally, according to the analysis of
secondary outcomes, patients in the low-risk group were found to be at little risk of ICU
admission and death in the short term. When the patient’s RSF score was greater than
the threshold, it took longer for the patient to reach clinical stabilization and there was a
possibility of ICU admission and death. In addition, the higher the patient’s RSF score, the
higher the likelihood of adverse clinical events.



J. Clin. Med. 2022, 11, 6015 12 of 15

Our study still has several limitations. We only included samples from the First Affili-
ated Hospital of Guangzhou Medical University. Although the Department of Respiratory
Medicine of the First Affiliated Hospital of Guangzhou Medical University enjoys a national
reputation, external validation of the new cohort is needed. Second, although previous
studies and our study have demonstrated that is sST2 can be used as an early monitoring
indicator for CAP patients, sST2 is not yet a routine screening test in most hospital. The cost
of sST2 testing is not affordable for all patients and hospitals. In addition, only short-term
hospitalization information was available for this study, and further studies need to be im-
plemented to collect long-term follow-up information on patients to re-validate our results.
Finally, the construction of the model is complex and requires a large amount of data for
validation. There is still a lot of work to be done to apply the model to daily practice.

5. Conclusions

We prospectively developed a well-calibrated RSF model that can evaluate the prognostic
risk of adult CAP patients and predict whether the patients can reach clinical stability. The
RSF model in prognostic evaluation seems to have a better performance than pre-existing
CURB 65 and PSI score. After further validation and modification, this model could assist
clinical management decisions to improve the care of hospitalized CAP patients.
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//www.mdpi.com/article/10.3390/jcm11206015/s1, Figure S1: Feature selection of the predic-
tion model.
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