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Simple Summary: Microsatellite instability (MSI) has been detected in multiple types of gynecologic
cancers. MSI is linked to mutations in mismatch repair (MMR) genes that cause mismatch repair deficit
(dMMR) in human cells. Discovery of new therapeutic approaches are needed especially for treatment
of advanced endometrial and other gynecological cancers with dMMR/MSI. In addition, there is a
need to identify markers for reliable detection of dMMR/MSI gynecological cancers. Determination of
the mechanism leading to these malignancies would help in diagnosis and therapeutic intervention.
In this review, we summarize the MMR defects and MSI observed in gynecological cancers, and new
therapeutic strategies to treat these cancers.

Abstract: Mutations in mismatch repair genes leading to mismatch repair (MMR) deficiency (dMMR)
and microsatellite instability (MSI) have been implicated in multiple types of gynecologic malignancies.
Endometrial carcinoma represents the largest group, with approximately 30% of these cancers caused
by dMMR/MSI. Thus, testing for dMMR is now routine for endometrial cancer. Somatic mutations
leading to dMMR account for approximately 90% of these cancers. However, in 5–10% of cases, MMR
protein deficiency is due to a germline mutation in the mismatch repair genes MLH1, MSH2, MSH6,
PMS2, or EPCAM. These germline mutations, known as Lynch syndrome, are associated with an
increased risk of both endometrial and ovarian cancer, in addition to colorectal, gastric, urinary tract,
and brain malignancies. So far, gynecological cancers with dMMR/MSI are not well characterized
and markers for detection of MSI in gynecological cancers are not well defined. In addition, currently
advanced endometrial cancers have a poor prognosis and are treated without regard to MSI status.
Elucidation of the mechanism causing dMMR/MSI gynecological cancers would aid in diagnosis and
therapeutic intervention. Recently, a new immunotherapy was approved for the treatment of solid
tumors with MSI that have recurred or progressed after failing traditional treatment strategies. In this
review, we summarize the MMR defects and MSI observed in gynecological cancers, their prognostic
value, and advances in therapeutic strategies to treat these cancers.
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1. Introduction

Mismatch repair (MMR) deficiency leading to microsatellite instability (MSI) and malignancy
have been identified in over 20 cancer types, including gynecological cancers [1]. Bonneville and
colleagues found that over 30% of patients with endometrial cancer have high MSI. Other gynecologic
malignancies in which MSI has been identified include uterine carcinosarcoma (3.5%), cervical
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squamous cell carcinoma and endocervical adenocarcinoma (2.6%), and ovarian high-grade serous
carcinoma (1.4%) [1]. Endometrial cancer is the most common cancer type amongst the gynecological
malignancies and the fifth leading cause of death among cancer patients in the world. Early stage
endometrial cancer has an excellent prognosis. However, advanced and recurrent endometrial cancer
have a poor survival prognosis making it imperative to better understand the disease etiology of
endometrial cancer and other gynecological cancer types.

Microsatellites are DNA sequences composed of short nucleotide segments (~1–10 nucleotides,
also known as short tandem repeats (STRs)) which repeat sequentially. Due to their repetitive nature,
these DNA segments are prone to DNA polymerase pausing and slippage during DNA replication,
which can result in mutations [2]. Microsatellites are susceptible to mutations, with a high range of
10−6 to 10−2 per generation [3]. DNA repair systems, such as MMR, exists to proofread the newly
replicated DNA and to repair DNA mutations [4]. When these mutations occur within microsatellite
regions causing deletion or expansions of the repetitive DNA sequences, this is referred to as MSI.

MSI is the consequence of an impaired MMR due to mutations in the MMR gene. MMR deficiencies
can occur through either germline or somatic mutations. A germline mutation of one of the inherited
MMR genes (MLH1, MSH2, MSH6, or PMS2) or deletion of the stop codon of the EPCAM gene causes
the autosomal dominant condition, Lynch syndrome (also called hereditary nonpolyposis colorectal
cancer) [5]. In addition, epigenetic alterations, such as DNA methylation in the gene promotor region
can suppress transcription and interfere with the expression of MMR genes [6,7]. This includes
hypermethylation of the MLH1 promoter, epigenetic inactivation of MSH2 [8], or downregulation of
MMR genes by microRNAs [9]. Sporadic MMR deficiency (dMMR)/MSI is most commonly due to
hypermethylation of the MLH1 promoter region [10].

Cancer development due to dMMR/MSI is triggered by mutations in genes that contain
microsatellites and are important for tumor suppression, such as TGFbeta RII, IGFIIR, BAX, hMSH6,
and hMSH3 genes. These genes contain short tracts of mononucleotide repeats in their coding sequences
which makes them prone to mutations. It has been demonstrated that MMR deficient gynecological
cancer cells also accumulate mutations in repeat sequences of cell growth, pro-apoptotic, cell regulatory,
DNA repair, and oncogenes.

2. Why Microsatellites Are Hot-Spots for Genomic Instability?

Microsatellites are highly polymorphic and have high mutation rates (up to 10−3 mutations per
locus per generation) [11]. Several mechanisms have been suggested as causes for the high mutation
rate of microsatellites, including errors during DNA recombination, DNA repair, as well as DNA
polymerase slippage during DNA replication [12–15]. However, recombination events have been
shown to be a minor source of microsatellite variability [16,17]. It was reported that most short insertion
mutations derive from a slippage-like process during DNA replication [18]. This indicates that these
repeats are very much vulnerable to replication stress and error-prone replication which would explain
the high mutation rate [19].

Several models propose how mispairing and slippage occur at microsatellites during DNA
replication. It is known that repetitive DNA sequences like microsatellites are a challenge to the
replication machinery, because these DNA sequences, when single-stranded, are able to form secondary
non-B DNA structures like hairpins, triplexes, and cruciform structures, that can hinder DNA replication
fork progression [11,20–25]. The consequences of replication fork stalling and interrupted polymerase
activity depend upon the location where the secondary structures are formed. For example, it was
found that the stability of tandem repeats depended on their orientation relative to the nearest
replication initiation site [20]. Secondary DNA structures are more likely to form during lagging
strand synthesis in the single strand Okazaki initiation zone. Indeed, several plasmid-based and
ectopic studies in bacteria, yeast, and mammalian cells using repeat-containing constructs show that
formation of secondary structures and subsequent DNA polymerase slippage during lagging-strand
synthesis leads to repeat expansion [21–27]. If DNA polymerase stalling causes synthesis of additional
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repeats in the nascent strand, then misalignment results in an increase in repeat length and expansions.
While formation of secondary repeat structures on the template strand can cause the polymerase to
skip these repeats leading to repeat contractions [11,28–30].

Microsatellite repeats are able to form several different secondary non-canonical DNA structures.
For example, poly(A)/poly(T) mononucleotide repeats are reported to form hairpin structures and are
also able to undergo a stoichiometric transition into triple-stranded DNA structures (DNA triplexes,
H-DNA) [31]. A genome-wide analysis of microsatellites has shown that poly(A) or poly(T) repeats are
more abundant than poly(C) or poly(G) in all chromosomes [32]. Dinucleotide repeats that are inverted
(e.g., (AT)n and (CG)n) are able to form cruciform and hairpin structures [33]. Trinucleotide repeats
are observed to adopt hairpin, triplex, or quadruplex structures, depending upon the type of DNA
sequence [34]. In addition, repeat sequences containing at least four stretches of two or more adjacent
guanine nucleotides are able to form structures termed G-quadruplexes [15]. Dinucleotide repeats
are the second most common repeats, though there is no bias in occurrence of any particular repeat.
Trinucleotide alleles are approximately three-fold less abundant than di- and tetranucleotide repeats [35].

All these repeats can form secondary DNA structures that can pause DNA polymerase and hinder
DNA synthesis. DNA replication was observed to stall within mono-, di-, tri-, and tetranucleotide
microsatellites and the severity was dependent upon the sequence composition of the microsatellites [35].
Besides the DNA sequence, the type of DNA polymerase seems to play a very important role in
replication fork stalling. For instance, Hile and Eckert reported that DNA polymerase kappa was
stalled due to triplex DNA formation, which led to interrupted mutations within mononucleotide
microsatellites [36]. Similarly, GA or GAA repeats (capable of adopting triplexes such as H-DNA) can
cause stalling of DNA replication [37–39]. The degree of the sequence-specific replication fork stalling
and the impact on the correct replication of various common microsatellites has to be determined.
For example, Baptiste and colleagues compared the effects of several mammalian DNA polymerases
on mononucleotide mutagenesis. They reported that there was a bias towards mononucleotide
deletions [40].

Some tumor suppressors, pro-apoptotic genes, and oncogenes contain microsatellites and MSI
at these genomic regions is associated with several types of cancers (Tables 1 and 2). For example,
mutations in short palindromic sequences were observed in the p53 gene in 21% of patients with ovarian
cancer [41]. DNA deletions and insertions in the p53 genes were attributable to each of the following
mechanisms: Mononucleotide runs, repeats of short tandem sequences, palindromes (inverted repeats
of dyad symmetry), and runs of four or more purines or pyrimidines. Almost all deletions and
insertions can be explained by one or more of these DNA sequences. The most common DNA sequence
motifs seen at the site of deletions or insertions were runs of two to five consecutive mononucleotides.

It was also reported that in the c-myc gene, the P1 promoter and 3’ downstream breakpoint
region contains multiple mixed GT and GC repeats [42] that are potentially able to form a Z-DNA.
Z-DNA-forming CG repeats can cause small deletions within the repeats, likely due to slippage events
during replication and can induce DSBs within or surrounding the repeats in mammalian cells, resulting
in large-scale deletions. Alterations in the DNA sequence at the c-myc gene are reported to be associated
with the development of uterine cervical cancer [43]. Similarly, Toyama and colleagues’ studies have put
forth the relationship between MSI and c-myc amplification in human breast cancers [44]. In addition,
the presence of CAG repeats in the androgen receptor (AR) gene was observed to increase the risk of
ovarian cancer in the African American group [45]. Another example is the pro-apoptotic Bax gene
that contains a tract of eight consecutive (G)8, and frameshift mutations in the (G)8 mononucleotide
repeat are common in endometrial carcinomas with MSI [46]. It was suggested that BAX frameshift
mutations play a key role in the process of tumor progression. TGFbeta RII is reported to harbor a
poly(A) tract at codons 125–128 of its open reading frame, which is prone to slippage-related frameshift
mutations [47]. Gain or loss of the TGFbeta pathway and its components are known to lead to a variety
of diseases, including cancer.
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Similarly, a study on endometrial cancer with MSI reported a higher frequency of mutations in
the PTEN gene [46,48]. It has been shown that PTEN gene inactivation, mainly due to mutations, plays
a pivotal role in tumor progression. This inactivation occurred in 24% of cases through frameshift
mutations in polyA/T repeats. The frameshift and nonsense mutations, cause expression of proteins
that have been reported to have null activity or less protein stability. In addition, Bilbao et al. studied
mononucleotide microsatellites in genes involved in DSB repair and their role in endometrial cancer
with MSI. They found mutations in several DSB repair genes, such as RAD50, MRE11, ATR, BRCA1,
CtIP, and MCPH1 suggesting that mutations in multiple genes of the DSB repair pathway are mutated
in endometrial cancer with MSI [49].

3. The MMR Repair Pathway and Its Kryptonite

The high number of repeats in microsatellites make them vulnerable to mutations due to the
increased probability of defects during DNA replication and repair. However, microsatellite stability
is regulated, and mutations are kept in check through the MMR repair pathway [2,50]. MMR repair
consists of three steps: Recognition, excision, and re-synthesis (Figure 1). In brief, MMR corrects
DNA mismatches generated during DNA replication, thereby preventing mutations from becoming
permanent. Thus, MMR reduces replication-associated defects. This pathway is conserved from
bacteria to humans and targets base substitution mismatches and insertion-deletion mismatches
(IDLs) [51]. The MMR pathway has been extensively studied and the key players in this pathway are
MLH1, MLH3, MSH2, MSH3, MSH6, PMS1, and PMS2 (MutL and MutS homologs) and proliferating
cell nuclear antigen (PCNA). The supporting factors include exonuclease I (ExoI), replication protein A
(RPA), replication factor C (RFC), DNA polymerase delta, and epsilon as well as DNA ligase I.

Figure 1. The mismatch repair (MMR) pathway that functions to correct errors in microsatellites.
Schematic of the MMR pathway describing the three vital steps.
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(i) recognition of the mismatch by MutS complex, followed by recruitment of proliferating cell nuclear
antigen and replication factor C, (ii) excision of the mismatched base(s) by MutL, and, finally, (iii)
re-synthesis of the strand. The MMR system functions to correct errors introduced in microsatellites.
Proliferating cell nuclear antigen (PCNA), replication protein A (RPA), replication factor C (RFC),
and exonuclease I (ExoI).

The first step in repair is the recognition of the mismatch by MutS homodimer complex.
The MutS-alpha is formed by MSH2/MSH6 which recognizes single base mismatches and short
insertion-deletion loops, while MutS-beta is formed by MSH2/MSH3 which recognizes IDLs greater
than two bases. The MutS recruits PCNA and RFC proteins. RFC loads PCNA, which has an essential
role in the excision repair and DNA synthesis process. MutL formed by MLH1 and PMS2 are recruited
and they mediate the activation of downstream processes. MutS, MutL, and mismatched DNA form a
ternary complex. The ExoI is activated and removes the mismatched base(s). The RPA displaces the
mismatch base and also protects the DNA. Subsequently DNA polymerase and ligase complete the
resynthesis of the DNA strand [4,52,53].

Impaired MMR repair due to inherited or spontaneous mutations can give rise to mutations,
in particular at microsatellite repeat sequences, causing MSI (Figure 2). MSI is associated with
the hypermutator phenotype that is observed in tumors with defective MMR repair system [4].
Defective MMR can be caused by both genetic and epigenetic mechanisms. Individuals with a germline
mutation in the MMR genes have an increased risk of carcinogenesis, for example such as patients
with Lynch syndrome. The loss of the second allele (loss of heterozygosity (LOH)) due to somatic
mutation or epigenetic events further exacerbates the cell dysfunction and leads to tumorigenesis [54].
However, it was reported that in some instances, MMR genes may exhibit haploinsufficiency within a
single allele that is sufficient enough to initiate tumorigenesis depending on mutation and affected
MMR gene. Epigenetic alterations such as DNA methylation of the MLH1 is also reported to cause
inactivation of MMR system and trigger cancer development [55].

Figure 2. Steps in MMR deficiency (dMMR)/MSI cancer development leading to tumorigenesis.
Evidence propose that MSI and the initial mutations cause a cascade of additional mutation in secondary
genes in onco-, regulatory, tumor-suppressor, and repair genes. Genes affected are cancer-specific and
examples are indicated in the diagram. A cascade etiology would also explain the high mutation rate
in dMMR/MSI gynecological cancers. In addition, identifying the genes affected in each specific cancer
types will help in understanding better cancer progression and developing markers for effective and
timely screening.
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It was reported that 77% of sporadic endometrial cancers had MSI due to methylated MLH1
promoter [10]. In addition, mutations in MMR genes are the second highest cause of hereditary ovarian
cancer, accounting for 10–15% of hereditary ovarian cancer cases [5]. This includes mutation in the
MLH1 or MSH2 gene. A 2006 study reported that Lynch syndrome patients with MSH6 mutation
had a 33% lifetime risk of ovarian cancer [56]. However, these studies are limited by the sample size,
population studied, and the methods of investigation, making the exact magnitude of risk still not
known [57]. A recent study of Lynch syndrome patients, using multigene panel observed that out of
the 528 patients with MMR mutations, 11.9% had breast cancer and 27.3% had colorectal cancer, with
MSH6 and PMS2 mutations more frequent than MLH1 and MSH2 mutations [58]. Though clinical
studies evaluating breast cancer risk in patients with Lynch syndrome are not conclusive. It has been
suggested that breast cancer risk may vary depending upon the gene affected [59]. It has been observed
that mutation in MSH6 and PMS2 increases the risk of breast cancer by 30% and 35%, respectively,
irrespective of other personal cancer history [59].

4. Microsatellites Used as Markers for MSI/dMMR Cancer Diagnosis

MSI is a manifestation of dMMR that results in increased mutation rates throughout the genome,
leading to tumorigenesis. Currently, MSI are mainly detected by PCR of microsatellite regions [60].
This MSI typing is used to identify tumors caused by dMMR/MSI by comparing the number of repeats
in a panel of microsatellite markers in normal tissue versus tumor tissue from the same individual
(Table 1). Alterations in the repeat length of each marker are evidences of MSI. The selection of markers
that is used as the gold standard for MSI detection was recommended in 1997 by the National Cancer
Institute (NCI) consensus workshop. This marker panel, also known as Bethesda panel, consists of two
mononucleotide markers (BAT25 and BAT26) and three dinucleotide markers (D2S123, D5S346 and
D17S250) [60,61]. Instability in two or more markers indicates high frequency MSI (MSI-H) tumors
while instability in any one marker is suggestive of low frequency MSI (MSI-L) tumors. In addition,
MSI markers located in relevant cancer genes have been evaluated for the assessment of MSI status.
Since there are evidences for tumor-type specific MSI, separate panels of markers have been now
established for some cancer types, for example for prostate cancer [62].



Cancers 2020, 12, 3319 7 of 24

Table 1. Details of the markers used for detection of microsatellite instability (MSI) gynecological cancers.

Repeat Type Marker Repeat Sequence Gene Studied for Detection of MSI Reference

M
O
N
O
N
U
C
L
E
O
T
I
D
E

BAT26 (T)25 MSH2 gene (MMR) Ovarian cancer, Cervical cancer,
Endometrial cancer [63–72]

BAT25 (A)26 c-kit gene (oncogene) Ovarian cancer, Endometrial cancer [63,65–71]

BAT34C4 (T)3C(T)6C(T)17C(T)5C(T)3 p53 Endometrial cancer [68]

BAT40 (A)40 3-beta-hydroxysteroid dehydrogenase gene Endometrial cancer [63,68]

NR-21 (A)21 SLC7A8 Ovarian cancer, Endometrial cancer [63]

NR-22 (A)22 Trans-membrane precursor B5 Ovarian cancer, Endometrial cancer [63,70]

NR-24 (T)24 Zinc finger 2 Endometrial cancer [70]

NR-27 (T)27 Inhibitor of apoptosis-Protein 1 Ovarian cancer, Endometrial cancer [63,70]

TGFBR-II (A)10 TGF-beta receptor Ovarian cancer
Endometrial cancer [73,74]

D
I
N
U
C
L
E
O
T
I
D
E

D2S123 (CA)13(TA)(CA)15 hMSH2 Cervical cancer, Endometrial cancer,
Ovarian cancer [65,69–71]

D3S1260 (AGAT)11 XYLB gene Cervical cancer, Endometrial cancer [63]

D3S1611 (CA)11 hMLH1 gene Breast cancer [71,75]

D5S346 (CA)26 APC Cervical cancer, Endometrial cancer,
Ovarian cancer [65,68–71]

D10S197 (CA)7 . . . (CA)17 GAD2 gene Endometrial cancer, Ovarian cancer [68,71]

D11S1318 (CA)15 . . . (CA)5 eIF3f gene Ovarian cancer [76]

D11S904 (CA)14(TA)5 - Ovarian cancer [71,77]

D17S807 (CA)n P53 gene Breast cancer [75]

D17S796 GT)n P53 gene Breast cancer [75]

D17S250 (Mfd15) (TA)7 . . . .(CA)24 BRCA1 gene Cervical cancer, Endometrial cancer [65,68–71]

D18S55 (GC)5GA(CA)17 - Endometrial cancer [68]

NME1 Nucleoside diphosphate kinase1 Ovarian cancer [71]
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Table 1. Cont.

Repeat Type Marker Repeat Sequence Gene Studied for Detection of MSI Reference

T
R
I
N
U
C
L
E
O
T
I
D
E

AR CAG Androgen receptor Breast cancer [75]

DM1 CAG Myotonic dystrophy protein kinase Ovarian cancer, Breast cancer [78]

T
E
T
R
A
N
U
C
L
E
O
T
I
D
E

D2S443 (AAAG)n - Ovarian cancer [72]

D8S321 (AAAG)12 - Ovarian cancer [72]

D20S82 (AAAG)10 RM267 Ovarian cancer [72]

DXS981 TATC Breast cancer, Ovarian cancer [79]

DXS6800 (TAGA)x-CA-(GATA)1-GAT-(GATA)y-
GG-(TAGA)3-TC-(GATA)3 X-chromosomal short tandem repeats Ovarian cancer [71]

MYCL1 (AAAG)21 MYCL1 Endometrial cancer [68]

UT5037 (AAAG)19 - Ovarian cancer [72]

UT5320 (AAAG)21
(AAAG)10 241A/241B Ovarian cancer [72]

vWF-a TCTA Von Willebrand factor-alpha Ovarian cancer, Breast cancer [78]

PENTA-NUCLEOTIDE
FMR2 (CCAAA)6(CCAGA)2 X chromosome

TP53Alu (AAAAT)8 p53 Ovarian cancer [80]
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Whether the markers of the Bethesda panel are sensitive enough to detect MSI in gynecological
cancer is still not conclusive. Murphy and Wentzensen compared relative proportion of instability of
Bethesda panel markers in colorectal cancer and ovarian cancer [61]. They observed that instability of
mononucleotide markers was less frequent than dinucleotide markers in ovarian cancer, which was
reverse in comparison to colorectal cancer. Another study concluded that BAT26 is not a suitable
marker to detect MSI in cervical cancer patients [81]. Similarly, Ozer et al. reported no MSI in breast
cancer patients using the Bethesda microsatellite loci [75]. Depending upon which MSI markers are
used, 6–37% of ovarian cancer showed MSI-H phenotype [82]. In these previous reports it is unclear
whether the differences in MSI rate in ovarian cancer is due to the choice of loci, or small study sizes.
Such findings make it critical to have correct defined panel for each cancer type as it is not clear if the
results are biased due to the choice of markers, inadequate number of markers, and/or studied DNA
samples. One research group compared concordance between immunohistochemistry and MSI testing
(Bethesda panel) for identifying MMR deficiency in epithelial ovarian tumors. They reported poor
concordance rates in ovarian cancer (about 68%) as compared to the higher concordance rates (>96%)
in colorectal cancer (CRC) [4]. Thus, due to the paucity of studies and data, it is not clear whether the
markers in the Bethesda panel are sensitive enough to detect comprehensively MSI in gynecological
cancers [61].

Some alternative MSI markers are panels of pentaplex/hexaplex repeats that also contain
mononucleotide markers [63,83–85]. However, these panels overlook tetranucleotide repeats.
Elevated microsatellite alterations at selected tetranucleotides (EMAST) has been reported in various
types of cancer including ovarian cancer (0–19%) and endometrial cancer (39%) [79]. Thus, these reports
highlight the limitations of these panels for assessing MSI. Wong et al. observed that the NCI
recommended panel of markers were not useful for analysis of MSI status in cervical cancer and
suggested that using more than five markers can improves the MSI detection [64]. Similarly, it was
reported that a MSI pentaplex marker panel was not sensitive and specific in screening gynecological
dMMR/MSI cancers [86]. With the advent of next-generation sequencing (NGS), several computational
tools for MSI detection were established, however, there is an urgent need to develop MSI panels
which are specific and sensitive for each gynecological cancer types.

Recently, framework marker panels have been developed for cervical cancer [87] and ovarian
cancer [88]. Some MSI markers used in assessment of gynecological cancer are summarized in
Table 1. It seems that markers containing mono- and dinucleotide repeats are more frequently used for
gynecological cancers. In addition, target genes with poly(A) and poly(T) repeats are more frequently
affected in gynecological cancers (Tables 1 and 2). Altogether, it is evident from the literature that the
sensitivity of MSI detection in cancer is dependent on the choice of the markers, thus, new marker
panels for gynecological cancers have to be established. In addition, recent studies have shown
that depending upon cancer type MSI tumors are more prone to exhibit mutations in specific genes
(Figure 2). Thus, study to identify target genes for MSI will not only help to better understand
tumorigenesis but also can be used to develop new markers that can aid in screening cancers for MSI.

5. Sequential Steps Leading to MSI/dMMR Cancer Development

To identify disease markers, it is important to understand the disease etiology and the events that
lead to MSI/dMMR cancer development. As described before repeat sequences, such as microsatellites,
face higher frequency of replication defects that if unrepaired can lead to mutations and alterations in
the number of repeats. Postreplication MMR works to maintain genome stability by repairing these
errors. A defective MMR system leaves replication defects behind causing MSI. Nevertheless, the link
between MSI and cancer development is not well-defined.

Due to MSI, a cascade of events leads to a 100- to 1000-fold increase in the mutation rate, called
the hypermutator phenotype [3]. Various genes with microsatellites are observed to have mutations as
a result of dMMR/MSI and are believed to be the cancer drivers (Figure 2). For example, microsatellites
are present in many regulatory genes, tumor suppressor, pro-apoptotic, and oncogenes, which makes
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these genes vulnerable to mutations (Table 2). Kawaguchi and colleagues proposed, upon analysis
of mutations in 22 patients with sporadic MSI-H endometrial cancer, a novel cascade etiology of
carcinogenesis wherein genes affected by MSI could increase in genomic instability and trigger
mutagenesis of additional target genes. This causes an accumulation of mutations and deficiencies
of other cancer-related genes [73]. Identifying these genes would be very helpful for detection and
treatment of gynecological dMMR/MSI cancers.

Mutational characteristic and target genes differ between various dMMR/MSI cancer types.
Affected genes previously reported in colon and gastric cancers have been observed to have a low
mutation rate in gynecological cancers. For example, it was shown that frameshift MSI in BRAF,
TGFbeta RII, and BCL-10 genes are common in colorectal and gastric cancers, but occur infrequently in
endometrial or ovarian cancers [54,74,89–91]. On the other hand, 40% of endometrial cancers patients
show mutations in JAKI gene as compared colorectal cancer patients (less than 10%) [92]. Furthermore,
recently Wang et al. observed that the RPL22 gene was frequently mutated in MSI endometroid cases
(50%) in contrast to TP53 gene, which was mutated in 40% of microsatellite stable (MSS) endometroid
tumors [93]. Hence there is a need to identify specific genes that are affected in each cancer types.
This will aid in understanding cancer progression as well as in developing markers for effective
cancer screening.

In cases of endometrial cancer, the ACVR2A gene is shown to have strong predictive specificity
for MSI-H tumors. The same study found also that JAK1, TFAM, and SMC6 genes are affected in
endometrial cancer cells [54]. In addition, genes reported to be frequently mutated in MSI endometroid
cases include RPL22, PTEN, KRAS, ATR, CHK1, CDC5, Caspase5, and BAX gene [92–96]. JAK1 mutations
are also observed in cervical cancer cases caused by MSI [94]. Furthermore, the authors uncovered
new genes affected by frameshift MSI events, including FAM129A, GMIP, and NEK3 genes in breast
cancer and DPYSL2 and ALPK2 genes in ovarian cancer [54]. These genes can be potentially used as
markers for MSI detection (Table 2).

In summary, carcinogenesis in dMMR/MSI tumors can be explained as a cascade wherein
mutations in MMR and subsequent MSI leads to mutagenesis of other regulatory genes, oncogenes,
tumor-suppressor genes, and pro-apoptotic genes that can trigger oncogenesis (Figure 2). It is important
to highlight that many but not all target genes affected by MSI harbor microsatellites. In Table 2
are listed target genes that are affected in gynecological MSI cancers. Between studies differences
in percentage of prevalence of some target genes were reported. This could be attributed to lower
sample size and other characteristics such as ethnicity of the patients. Further analysis of dMMR/MSI
gynecological cancers and identification of new target genes will give a better idea about the cancer
development and aid in better screening of dMMR/MSI gynecological cancers.
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Table 2. Target genes that harbor MSI in gynecological cancer.

Functional Group Gene Role Repeat Sequence
if Present

% Frequency of Mutation in MSI-H

Endometrial
Cancers Ovarian Cancers Breast Cancer Non-Gynecological

Cancers

C
el

lr
eg

ul
at

io
n/

si
gn

al
in

g

ACVR2A Member of TGF-beta signaling pathway. Role in cell growth and
tumor metastasis 2(A)8 19% [97] CRC 80%

Stomach 75% [97]

CHK1 DNA damage response (A)9 29% [98]

c-MYC Cell division (GT)n–(GC)n 20% [44]

DPYSL2 Microtubule function. May play role in endocytosis (CT)11 59% [54]

ESRP1 Protein-splicing regulator. May contribute to mesenchymal
transition (GGT)n 20% [97]

GMIP Cell growth and survival. Ras pathway 10% [54]

HDAC2 Histone deacetylase (A)n 11% [73]

IGFRIIR (G)8 14% [98]

MBD4 Methyl CpG (A)10) 31.8% [73]

NEK3 Mitotic regulator (A)8 6% [54]

PDS5B DNA damage repair (A)9 15% [69] CRC 28% [69]

PTEN DNA damage response (A)6 15.8% [73],
88% [54] CRC 28% [99]

RNF43 Involved in controlling cell proliferation Negative regulator of
WNT pathway. (G)7 23% [97] CRC 40%

Stomach 35% [97]

RPL22 Protein synthesis (A)8
37% [54]
50% [93]

52% [100]
CRC 80% [100]

TGFBR TGF-beta receptor (A)10 36.3% [73]
5% [54] CRC 90% [73]

O
nc

og
en

es

ARID1A Tumor suppressor gene. Regulates transcription of certain genes
by altering the chromatin structure around those genes (AT)n 37% [101]

JAK1
Oncogene. Modulates IFN-gamma signaling pathway and

enables tumor immune evasion
Promotes tumor survival

(T)7, (T)8, (G)7 21% [97]
35% [102]

KRAS Oncogene 35% [54] CRC 31% [99]

TP53 Tumor suppressor
TP53 ALU

(A)n
(AAAAT)8

40% [93] 21% CRC 31% [99]

W
N

T
pa

th
w

ay CTNNB1 Member of WNT pathway (A)n 30% [97] CRC 6% [69]

DOCK3 Protein dedicator of cytokinesis 3
Inhibits WNT pathway 23% [97] Stomach 40% [97]

EPHB2 Member of WNT pathway (A)9 9% [73]
14% [103] Gastric 39% [103]
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Table 2. Cont.

Functional Group Gene Role Repeat Sequence
if Present

% Frequency of Mutation in MSI-H

Endometrial
Cancers Ovarian Cancers Breast Cancer Non-Gynecological

Cancers

A
po

pt
os

is
pa

th
w

ay

ALPK2 Apoptosis and DNA Repair (T)3 17% [54]

BAX Pro-apoptotic factor (G)8
22.7% [73],
16% [96]
43% [98]

CRC 45% [73]

Caspase 5 Pro-apoptotic factor (A)10
4.5% [73],
5% [96]

EC- 28% [104]

Stomach 44%
CRC 62% [104]

FAM129A Apoptosis regulator, Anti-apoptotic - 12% [54]

TFAM Apoptosis regulator, DNA damage repair (A)10 20% [69]

M
M

R
ge

ne
s hMSH6 Repair genes (C)8 30% [73]

hMSH3 Repair genes (A)8 9% [73]

D
N

A
re

pa
ir

ATR DNA damage checkpoint (A)10 15% [49]

BRCA1 Tumor suppressor gene, DNA repair

(TA)7
(CA)24

Flanking
sequences

15% [49]

CtIP Promotes the resection of DNA double-strand breaks (T)9 12% [49]

MCPH1 DNA damage response protein (A)9 12% [49] CRC 9.7% [105]

MRE11 Double Strand Break Repair Nuclease (T)11 15% [49]
50% [106] CRC 83% [106]

RAD50 Double Strand Break Repair Protein (A)9 17% [49] CRC 46% [107]

O
th

er PIK13CA Role in protein kinase B signaling - 54% [101]

PIK3RI Role in the metabolic actions of insulin - 40% [101]

CRC: Colorectal cancer.
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6. Sporadic Malignancies Caused by MSI/dMMR

In tissues with a high cell proliferation, there are more opportunities for DNA mutations to be
inserted due to frequent DNA replication. Thus, it is the tissues with the highest cell turnover which
are the most susceptible to MMR proteins deficiency. Cell turnover in the gastrointestinal mucosa and
endometrial tissue are among the highest in the body, which would be one explanation for why these two
organs are particularly susceptible to develop MSI that results in malignancy [1,108]. Deficient MMR
function and MSI is observed in 20% to 30% of patients with endometrial cancer [73,93,109–111].
In about 90% of those cases, carcinogenesis was due to a sporadic gene mutation [112,113].

The primary risk factor for type 1 endometrial cancer that are estrogen dependent is an increased
level of estrogen [114]. Women with this exposure who are at increased risk for endometrial cancer
include women with early menarche, late menopause, obesity, chronic anovulation, tamoxifen use,
and estrogen-secreting tumors. However, the relationship between estrogen exposure and endometrial
cancers with MSI is less clear [115,116]. Estrogen binding to the estrogen receptor-β has been shown
to upregulate MMR protein activity through enhanced MLH1 and MLH2 expression in vitro and
in vivo [116,117]. However, the risk factors identified for the development of endometrial cancer
persist whether MMR proteins are deficient or not [118]. One explanation could be that estrogen
encourages the growth of endometrial cells in the uterus, thus causing higher cell proliferation and
higher risk for replication errors.

The Society of Gynecologic Oncology recommends screening all endometrial cancers for MMR
deficiency [119]. Other gynecologic malignancies in which MSI has been identified include uterine
carcinosarcoma, cervical carcinoma, and ovarian carcinoma. In these cancers, the overall uncommon
occurrence of MSI means that testing for MSI is not routinely performed and does not guide therapeutic
management at this time [1]. Tumor testing for defective MMR is performed using MSI typing or
immunohistochemistry. Immunohistochemistry is performed using antibodies that bind to MMR
proteins (MLH1, MSH2, MSH6, and PMS2) to stain for the expression level of these MMR proteins [120].
A mutation which results in a deficient or absent MMR protein will appear as a lack of staining for that
particular protein. When deficient MLH1 is identified, testing for MLH1 promoter hypermethylation is
performed to determine the quantity of DNA which is methylated in the promoter region of the MLH1
gene. MSI testing can be performed alone or in combination with immunostaining to evaluate for genetic
mutations [113,121]. A positive result for immunohistochemistry, with negative hypermethylation
testing, or a positive result for MSI will then trigger evaluation for germline mutations in MMR genes
to rule out Lynch syndrome.

Among all patients who present with endometrial cancer, the presence of MSI due to a somatic
mutation does not appear to affect overall survival with the use of conventional treatment modalities.
Yet, there is evidence that survival is improved in early stage tumors with high levels of MSI
that are treated with adjuvant radiotherapy [122,123]. However, emerging immunotherapies are
being developed which may provide additional pharmacologic treatment options for patients with
MSI malignancies.

7. Inherited Malignancies Caused by MSI/dMMR-Lynch Syndrome

There is a great importance to identify MMR deficient tumors due to germline mutations, rather
than somatic mutations alone. Patients with a germline mutation of a MMR gene have an increased
lifetime risk of several malignancies due to MSI. Additionally, the identification of patients with
Lynch syndrome allows for genetic testing and cancer prevention strategies in the patient’s family
members who may have inherited the same mutation. The overall risk varies significantly depending
on which gene is mutated. There is a cumulative risk for any cancer at age 70 as low as 18% for
patients with PMS2 mutations and as high as 72% for both patients with a MLH1 mutation or MSH2
mutation [124]. Endometrial and colon cancers are among the most common cancers in patients with
Lynch syndrome [125]. The incidence for endometrial cancer by age 40 is 2 to 3%. However, by age 70,
the cumulative risk increases significantly, but varies depending on the affected gene (Table 3) [124–126].
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The incidence of cervical carcinoma and uterine sarcoma is not well described in Lynch syndrome and
therefore it is not clear if the risk is increased compared to the general population.

Table 3. Cumulative gynecologic cancer risk at age 70 by MMR gene germline mutation type.

Gene Mutation Endometrial Cancer Ovarian Cancer

MLH1 34–54% 11%

MSH2 * 21–51% 15%

MSH6 16–49% 0–1%

PMS2 13–24% 0–1%

* +/− EPCAM mutation.

Patients with Lynch syndrome are usually identified after genetic screening and MSI-H diagnosis,
or because of a family history of Lynch syndrome-associated cancers. Once Lynch syndrome has been
identified, patients are recommended to receive counseling about their increased risk for multiple
cancers including endometrial, colorectal, ovarian, gastric, hepatobiliary, urinary tract, brain, and skin
cancers. They should additionally be made aware of the recommended screening guidelines for cancers
in which an effective method exists. For gynecologic cancers, the American College of Obstetricians
and Gynecologists (ACOG) recommend screening for endometrial cancer with an endometrial biopsy
every 1 to 2 years, beginning at age 30 to 35 years, indefinitely or until a risk-reducing hysterectomy is
performed. They should also keep a menstrual calendar and report any abnormal bleeding to their
physician [127]. To date, no effective screening method to detect ovarian cancer has been demonstrated
for patients with Lynch syndrome and therefore it is not currently recommended by ACOG [128]. Thus,
as mentioned before underlining the importance for identification of MSI markers for gynecological
dMMR/MSI cancers.

In addition, the option of risk-reducing surgery by prophylactic total hysterectomy, bilateral
salpingectomy with or without bilateral oophorectomy should be discussed. This effective strategy
was shown to decrease the risk of endometrial cancer to 0% compared to 33% in Lynch syndrome
control patients after a 7 years follow-up [129]. This option should be considered once childbearing is
complete or by age 40 given the increased endometrial and ovarian cancer incidence that occurs in
these patients between ages 40 to 70. However, although risk-reducing surgery is the most effective
way to avoid cancer development, this is an invasive procedure which holds the risk of complications
and could lead to adverse outcomes. A bilateral oophorectomy, particularly in pre- or peri-menopausal
women can result in additional health problems like a higher risk of cardiovascular disease and a
decrease in bone mineral density [130,131].

8. Immunotherapy for MSI/dMMR Gynecological Cancers

Cancer immunotherapy is a new rapidly advancing field of cancer therapy, joining surgery,
cytotoxic chemotherapy, radiation, and targeted therapy. The concept behind immunotherapy is to
take advantage of the immune response to tumor cells in order to better target the malignant tissue.
One component of the normal immune response to malignancy is T-cell activation against tumor cells.
This mechanism has several checkpoints that are put in place by the immune system in an attempt to
keep this response balanced and prevent over-activation and self-induced harm. One such a checkpoint
is programmed immune cell death. There is a receptor on the surface of T-cells, the programmed
cell death-1 (PD-1) receptor, which becomes activated by PD-1 ligand on the surface of tumor cells
(Figure 3) or by adjacent immune cells. Binding of this ligand to the PD-1 receptor signals the cell to
undergo apoptosis. Anti-PD-1 immunotherapy is a pharmacologic antibody which has been developed
to target this checkpoint and promote continued T-cell activity to prevent apoptosis of these cells.
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Figure 3. Illustration of effect of the anti-programmed cell death-1 (anti-PD-1) antibody used for
treatment of MSI/MMR gynecological cancer: In human cells the DNA polymerase can slip and insert
or delete nucleotides at the repetitive DNA sequences, such as microsatellites. If these replication errors
are not repaired by the repair machinery due to a defective MMR, it can lead to MSI. Translation of such
genes with MSI can result in creation of novel peptide sequences, such as neoantigens (e.g., PD-ligands).
Thus, these ligands on the tumor cell can trigger cell death of T cells and so evade an immune response.
The anti-PD-1 antibodies bind programmed cell death-1 (PD-1) receptor and can prevent activation of
programmed cell death by the PD-1 ligand.

Anti-PD-1 immunotherapy has been shown to be effective across a wide range of cancers.
Biomarkers have been identified for better prediction which cancers might respond to anti-programmed
cell death-1 (anti-PD-1) immunotherapy [132]. These biomarkers include analysis of the expression of
PD-1 receptors and their ligands, high tumor mutational burden, and the presence of MSI [133–136].
The sequence of events which leads to the presence of these biomarkers in MMR deficiency cancers is
caused by the uncorrected mutations that occur when MMR proteins are deficient, which can lead
a high tumor mutational burden. DNA mutations can then lead to the expression of novel proteins
(neoantigens), which can cause an immune response and upregulation of PD-1 ligand [137] (Figure 3).
In the anti-PD-1 immunotherapy the antibody prevents binding of the PD-1 receptor on the surface
of T-cells to the tumor cells and thus apoptosis of the T-cells. This therapy is unique, in that it is not
specific for a tissue-type, but instead is specific for a biomarker which can be present in almost all
tissue types.

While MMR deficiency can lead to malignancies in many different types of tissue, among
gynecologic malignancies that are known to occur due to this mutation, endometrial cancer is the most
common and the most likely to be tested for MSI [1,108]. In addition, the presence of tumor-infiltrating
lymphocytes (CD8+) and PD-L1 expression are observed to be significantly higher in the MSI
group compared to the microsatellite-stable group. These results suggest that immune checkpoint
inhibitors (anti-PD-L1 antibody) could be effective in endometrial cancers with MSI. The presence of
MSI may be a biomarker for good response to PD-L1 immunotherapy in endometrial cancer [138].
Initial studies in MMR deficient gynecologic cancers have shown that these tumors do respond to
anti-PD-1 immunotherapy, however these initial studies were designed to include any cancer type
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with known MMR deficiency, and therefore the overall numbers of gynecologic cancers included were
low [139,140].

In the largest of these two studies, patients with non-colorectal MMR deficient cancers which
previously failed conventional treatment and had evidence of disease progression were enrolled to
receive an anti-PD-1 immunotherapy. The cohort included 27 tumor types and included 49 cases
of endometrial cancer, 15 cases of ovarian cancer, 6 cases of cervical cancer, 1 vaginal cancer case,
and 1 vulvar cancer case. Among the entire cohort, an objective response was observed in 36.3% of
patients with a median overall survival of 23.5 months. The tumor types with the highest enrollment
were also individually analyzed. Among endometrial cancers, the median progression free survival
was 25.7 months and among ovarian cancers a median progression free survival of 2.3 months was
observed (Table 4). Importantly, while the number of patients with a complete response to treatment
was low, even when a partial response was observed, it was often prolonged and durable. These results
suggest that immune checkpoint inhibitors are useful as an adjunctive treatment for patients with
MMR deficient gynecologic tumors, yet their exact role in treatment must be further explored.

Table 4. Response to pembrolizumab among gynecologic cancer subtypes from the phase II
KEYNOTE-158 study.

Cancer Type Number
Enrolled (n)

Complete
Response (n) (%)

Partial Response
(n) (%)

Objective
Response Rate,

Months (95% CI)

Median
Progression Free
Survival, Months

(95% CI)

Endometrial 49 8 (16.3%) 20 (40.8%) 57.1 (42.2–71.2) 25.7 (4.9–DNR)

Ovarian 15 3 (20%) 2 (13.3%) 33.3 (11.8–61.6) 2.3 (1.9–6.2)

Cervical 6 NR NR NR NR

Vaginal 1 NR NR NR NR

Vulvar 1 NR NR NR NR

KEYNOTE-158 [140] was a nonrandomized, open-label, multisite phase II study that enrolled patients with advanced
high frequency MSI (MSI-H)/dMMR non-colorectal cancer. DNR: Did not reach; NR: Not reported. Complete and
Partial Response: Per RECIST version 1.1 and determined by an independent radiologist.

Additional prospective data assessing the effect of anti-PD-1 immunotherapy in gynecologic
malignancies with dMMR is needed in order to confirm which gynecologic cancer types respond to
this treatment and at which point in treatment this immunotherapy is most effective. There is currently
one anti-PD-1 monoclonal antibody, pembrolizumab, that is approved by the US Food and Drug
Administration (www.fda.gov). This immunotherapy is approved for use with all solid tumors that are
MMR deficient or have MSI-H which have progressed following prior treatment and no satisfactory
alternate treatment options are available.

9. Conclusions

MMR deficiency leading to MSI and subsequent malignancy has been identified in various
cancer types, however it is most prevalent among gynecologic cancers, particularly endometrial
cancer and colorectal cancer. DNA replication of microsatellites is prone to hindrance due to the
inherent nature of the repeats and their ability to form secondary DNA structures. This makes
genes containing microsatellites susceptible for genomic instability and has been proposed as an
early step in carcinogenesis. Defective MMR can lead to mismatch-induced frameshift mutations
in genes containing microsatellites and influence their expression level in the cell. In patients with
Lynch syndrome inherited genetic and/or epigenetic mechanisms are responsible for the loss of MMR
gene expression and MSI. Microsatellites are present in many regulatory, pro-apoptotic, and tumor
suppressor genes. Thus, MSI can lead to genomic instability and mutations for example in genes
important for DNA damage repair and regulation of cell growth.

www.fda.gov
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Various MSI markers are routinely used for testing to identify MSI-H cancers, to help to treat
patients. However, literature indicates that most of the MSI testing is limited to certain types
of cancer such as endometrial and colorectal cancer. In endometrial cancer, the identification of
dMMR/MSI tumors is helpful to identify patients with Lynch syndrome who will benefit from cancer
screening strategies for other cancers associated with this syndrome. However, from a treatment
perspective, dMMR/MSI gynecologic cancers are managed with the same first line treatment protocol
like gynecologic cancers without dMMR/MSI. The recent development of an immunotherapy, which
targets PD-1 receptors to prolong the immune response against the tumor cells, adds a new tool
to use against dMMR/MSI cancers. Anti-PD-1 antibody immunotherapy is currently approved for
use in dMMR/MSI cancers which have failed traditional treatment strategies. It is not currently
known whether immunotherapy would add survival benefit when used earlier in the treatment of
gynecologic dMMR/MSI cancers. Studies are needed to better understand the optimal time point to
use immunotherapy for treatment of dMMR/MSI gynecologic cancers.

Compared with colorectal cancer, survival and treatment response in MMR defective gynecological
cancer are hugely under-investigated. There is a need to develop MSI marker panels which are
specific to gynecological cancers for effective screening and treatment. In addition, investigating
the role of dMMR/MSI will not only provide insight into the pathogenesis of gynecological cancers,
it could also influence treatment and survival. Elucidation of the pathways leading to dMMR/MSI
gynecological cancers will help develop better predictive models of cancer progression and novel
therapeutic approaches.
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