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Abstract

Increasing attention is now being given to the epigenetic regulation of animal and human behaviors including the stress
response and drug addiction. Epigenetic factors also influence feeding behavior and metabolic phenotypes, such as obesity
and insulin sensitivity. In response to fasting and high-fat diets, the medial hypothalamus changes the expression of
neuropeptides regulating feeding, metabolism, and reproductive behaviors. Histone deacetylases (HDACs) are involved in
the epigenetic control of gene expression and alter behavior in response to a variety of environmental factors. Here, we
examined the expression of HDAC family members in the medial hypothalamus of mice in response to either fasting or a
high-fat diet. In response to fasting, HDAC3 and 24 expression levels increased while HDAC10 and 211 levels decreased.
Four weeks on a high-fat diet resulted in the increased expression of HDAC5 and 28. Moreover, fasting decreased the
number of acetylated histone H3- and acetylated histone H4-positive cells in the ventrolateral subdivision of the
ventromedial hypothalamus. Therefore, HDACs may be implicated in altered gene expression profiles in the medial
hypothalamus under different metabolic states.
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Introduction

A growing number of studies have shown that environmental

factors including stress, maternal care, and exposure to psycho-

stimulants epigenetically modulate gene expression through

chromosomal modification, resulting in altered behavior [1–3].

Consistent with the role of epigenetic control in a variety of

behaviors, the time-scale of epigenetic regulation varies widely,

from circadian changes of histone acetylation in the promoter

regions of clock genes [4] to long-term memory formation [5].

Epigenetic factors also regulate feeding behavior and metabolic

phenotypes such as obesity and insulin sensitivity. Many human

and animal studies have shown that maternal metabolic

abnormalities have long-term effects on the metabolic character-

istics of offspring [6,7]. In addition to maternal factors, it has been

reported recently that paternal epigenetics influence pancreatic

islet growth and glucose metabolism in female offspring [8].

Feeding behavior and body-weight homeostasis are regulated by

a neural network within the hypothalamus and brain stem [9,10].

The hypothalamic arcuate nucleus (ARH) contains two popula-

tions of neurons crucial for feeding behavior regulation. One of

these populations expresses anorexigenic, a-melanocyte stimulat-

ing hormone processed from pro-opiomelanocortin (POMC),

whereas the second population expresses orexigenic neuropep-

tides, including neuropeptide Y (NPY) and agouti-related peptide

(AgRP). Both POMC neurons and NPY/AgRP-expressing

neurons receive direct and indirect inputs from orexin neurons

located in the lateral hypothalamic area (LHA) and send their

fibers to the paraventricular hypothalamic nucleus (PVH) to

regulate feeding behavior [11]. The ventromedial hypothalamic

nucleus (VMH) has close fiber connections with the ARH, and is

involved in body weight regulation [12,13] as well as aggression

and sexual behaviors [14]. In response to fasting and a high-fat

diet, the expression levels of genes regulating feeding and

reproductive behaviors in the hypothalamus are modified so that

animals behave according to different energy needs [15–19].

The mechanisms by which gene expressions are modulated in

the hypothalamus under different metabolic conditions have

recently attracted considerable attention [20–22]. The histone

deacetylase (HDAC) family is comprised of the following protein

classes: class I (HDAC1, HDAC2, HDAC3, and HDAC8), class

IIa (HDAC4, HDAC5, HDAC7, and HDAC9), class IIb (HDAC6

and HDAC10) and class IV (HDAC11)[23–25]. HDACs regulate

histone acetylation in a sequence-specific and more global manner

to repress, and in some cases enhance, gene transcription.

Recently, HDACs have received increased attention due to the

fact that they have been shown to play important roles in altered

behavior in response to stress, chronic cocaine exposure, and

energy metabolism [26,27]. These findings suggest that the HDAC

family may be involved in the changes in hypothalamic gene

expression that occur under different metabolic conditions.

In the present study, we examined the expression levels of

HDAC family members in the medial hypothalamus in

response to fasting or a high-fat diet. We further performed
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immunohistochemical examination of histone acetylation with-

in the medial hypothalamus.

Results

We first examined the expression of HDAC in the medial

hypothalamus of fed adult mice. All HDAC transcripts, from HDAC1

to HDAC11, were detected in the medial hypothalamus with

differing levels of expression. The expressions of HDAC10 and -11

were significantly higher than those of other HDACs (Figure 1).

We next examined whether fasting alters the expression of HDAC

family members in the medial hypothalamus. After 16-hours of

fasting, HDAC3 and 24 expression levels were significantly

increased compared to those of normally-fed mice, whereas

HDAC10 and 211 expressions were decreased (Figure 2). Fasting

did not alter the expression of HDAC1, 22, 25, 26, 27, 28 or, 29.

Fasting also increased the expression of the orexigenic peptide Agrp

as previously reported [19].

To further examine whether metabolic status affects the

expression of HDAC genes in the medial hypothalamus, we

determined HDAC expression levels in mice with high-fat diet-

induced obesity. After 4-weeks of high-fat feeding, mice displayed

a significantly larger body weight than mice fed a low-fat diet

(high-fat diet n = 8, 7.2 g60.7; low-fat diet n = 10, 2.2 g60.8;

p,0.01). Among all HDACs examined, a high-fat diet significantly

increased the expression of HDAC5 and 28 (p,0.05; Figure 3).

HDAC4 tended to decrease, but did not reach significance

(p = 0.10).

We next performed immunohistochemical analyses of HDAC

proteins in the hypothalamus using antibodies against HDAC3,

24, 25, 28, 210, and 211. HDAC3-immunostaining showed

weak and diffuse immunoreactivity throughout the gray mater.

HDAC4-immunoreactive cells were found throughout the hypo-

thalamus including the ARH, dorsomedial subdivision of VMH

(VMHdm), ventrolateral subdivision of the VMH (VMHvl), and

dorsomedial hypothalamic nucleus (DMH) of fed mice (Figure 4A).

The numbers of HDAC4-immunoreactive cells in the ARH,

VMHdm, VMHvl, and DMH of fed mice were similar to those of

fasting or high-fat feeding mice (Figure 4G). The PVH of fed mice

were weakly immunoreactive for HDAC5 (Figure 4B). The extent

and intensity of HDAC5-immunoreactivity in the PVH of mice

fed normal chow was similar to those of mice under fasting and

high-fat diet feeding. Weakly HDAC5-immunoreactive cells were

also found in the ARH and DMH. Small numbers of HDAC8-

positive cells were found in the anterior parvicellular and

periventricular subdivisions of the PVH (Figure 4C, D), VMHdm,

and LHA. The cytoplasmic localization of HDAC8 is consistent

with a previous report on HDAC8 in muscular cells [28]. No

HDAC8-positive cells were found in the ARH or VMH. Both

fasting and a high fat-diet increased the number of HDAC8-

positive cells in the PVH (Figure 4C, D, G) but not in the

VMHdm and LHA. A small number of HDAC10-immunoreac-

tive cells were seen in the DMH and LHA (Figure 4E, F), but not

in the PVH, VMH, or ARH of mice fed normal chow. HDAC10-

immunoreactivities were observed in the cytoplasm and proximal

portion of the dendrites (Figure 4E, F). The numbers of HDAC10-

positive cells in the DMH and LHA of mice fed normal chow was

similar to those of mice under fasting or a high-fat diet (Figure 4G).

HDAC11-immunostaining showed weak cytoplasmic and nuclear

Figure 1. Expression of HDACs in the medial hypothalamus of
fed mice. The medial hypothalamus of fed mice showed similar
expression levels of HDAC1, 22, 23, 24, 25, 26, 27, 28, and 29. The
expressions of HDAC10 and 211 were significantly higher than those of
other HDACs. HDAC expression levels (n = 10) were normalized using
GAPDH (gray bars) orb-actin expression levels (black bars). Reference
gene selection did not affect the measurements of normalized HDAC
levels. HDAC expression was also normalized based on the average of all
HDAC levels. *P,0.05.
doi:10.1371/journal.pone.0018950.g001

Figure 2. Fasting affects the expression of certain HDAC
members family in the medial hypothalamus. After 16-hours of
fasting, the expression levels of HDAC3, 24, and Agrp in the medial
hypothalamus were increased, and HDAC10 and 211 levels decreased
when compared with levels measured under fed conditions (8–10 mice
per group). Data are presented as the expression level relative to the
fed condition. *P,0.05.
doi:10.1371/journal.pone.0018950.g002

Figure 3. A high-fat diet affects the expression of certain HDAC
family members in the medial hypothalamus. After 4-weeks on a
high-fat diet, the expression levels of HDAC5 and 28 increased when
compared to those measured from mice fed a low-fat diet (8–10 mice
per group). Data are presented as an expression level relative to the
low-fat diet condition. *P,0.05.
doi:10.1371/journal.pone.0018950.g003

HDACs Expression in Medial Hypothalamus
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staining with moderate staining in the ARH. However, it was not

possible to examine differential expression levels or to count the

number of positive cells.

Next, we performed histological examination of histone

acetylation using antibodies for histone H3 acetylated on lysine

14 (AcH3) and histone H4 acetylated on lysine 12 (AcH4). For

both AcH3 and AcH4 immunostaining, large numbers of strongly

positive cells were observed throughout the brain, including in the

medial hypothalamus (Figure 5B, E). After 16 hours of fasting, a

reduced number of cells positive for AcH3 and AcH4 were found

in the VMHvl and in the adjacent lateral region of the VMHvl,

whearas the number of AcH3- and AcH4-positive cells did not

change in the VMHdm (Figure 5C, F, H) and the anterior

subdivision of VMH (105614, 101611, and110 615 for fed,

fasting, and high-fat fed mice, respectively). A high-fat diet did not

alter the number of AcH3- and AcH4-positive cells in any of the

hypothalamic nuclei (Figure 5D, G).

To examine whether a specific cell group in the ARH changes

the expression of HDACs or histone acetylation under different

metabolic status, we performed double immunofluorescence of

POMC with HDAC4, 25, AcH3, and AcH4, which were

immunoreactive in the ARH as described above. Confocal

microscopy showed that all POMC neurons were positive for

HDAC4 (Figure 6A,B,C; 100 out of 100 POMC-positive cells),

AcH3 (Figure 6G,H,I; 100/100), and AcH4 (Figure 6J,K,L; 100/

100) under fed condition as well as fasting or high-fat feeding

condition. HDAC5-immunoreactivities were detected in most

POMC neurons of fed mice (Figure 6D,E,F; 9564/100).

Similarly, HDAC5-immunoreactivites in most POMC neurons

were found in fasting mice (9468/100) and mice on a high-fat diet

(9564/100).

Discussion

The present study shows that the expression profile of HDAC

family members is altered in response to fasting and high-fat diet-

induced obesity. Fasting increased HDAC3 and 24 levels and

decreased HDAC10 and 211 levels in the medial hypothalamus,

whereas a high-fat diet increased HDAC5 and 28 levels.

Furthermore, fasting decreased the number of AcH3- and

AcH4-positive cells in the VMHvl.

It is well established that fasting modifies the expression of a

variety of proteins, including POMC, AgRP and thyrotropin-

releasing hormone (TRH) to result in altered behavior [19,29].

Behavioral changes include increased locomotor activity, de-

creased anxiety behaviors, and suppressed sexual and reproductive

behaviors [16,30]. These behavioral changes encourage animals to

explore for food and to utilize the appropriate amount of energy

necessary to survive and to keep body weight stable [31]. Although

fasting alters the gene expression profile of the hypothalamus via

several signal transduction pathways [20–22], the role of HDACs

in the gene expression of the hypothalamus has not been clarified.

Increased HDAC3 and 24 expression in response to fasting

suggests that HDAC3 and 24 are involved in the modulation of

gene expression in the medial hypothalamus. HDAC3 and 24

form a complex with the transcriptional corepressors N-CoR/

SMART in the cell nucleus to suppress gene expression [25,32].

The deacetylase activity of HDAC3 and the nucleo-cytoplasmic

localization of HDAC4 are regulated by both phosphorylation and

dephosphorylation, processes which involve proteins such as

Ca2+/calmodulin-dependent kinases (CaMKs) and protein phos-

phatases [25,33]. HDAC10 and 211 levels are high in the medial

hypothalamus and decrease after fasting. Previous work has found

that HDAC10 associates with HDAC3 and 24 [34–36]. Thus, the

increased expressions of HDAC3 and 24, along with the reduced

expression of HDAC10, may result in altered expression of genes

related to feeding behavior.

HDAC8 was expressed in a subset of neurons in the anterior

parvicellular and periventricular subdivisions of the PVH and the

expression level was decreased upon fasting. Interestingly, the

anterior parvicellular and periventricular subdivisions of the PVH

are rich in neurons expressing TRH [37] whose expression was

decreased upon fasting [29], and a recently identified satiety

neuropeptide, nesfatin21 [38]. This suggests the possibility that

HDAC8 may link energy condition to gene expression change of a

subset of PVN neurons. Future studies will be required to

characterize HDAC8-high expressing cells and to elucidate the

role of HDAC8 in animal behavior.

We did not find any change in HDACs- or acetylated histone-

immunoreactivities of the whole ARH as well as POMC neurons

in response to fasting or a high-fat diet. However, it is important to

note that our findings do not exclude altered histone acetylation of

the promoter region of the POMC gene in POMC neurons,

because an antibody for acetylated histone detects general histone

acetylation status, not that of a specific gene.

Our immunohistochemical study also determined that fasting

decreased the histone acetylation status in the VMHvl, which

plays a crucial role in aggression and reproductive behaviors

[14,39–42]. Increased expressions of HDAC3, and 24 in the

medial hypothalamus during fasting suggest the role of HDAC3

and 24 in promoting deacetylated status in the VMHvl, resulting

in altered gene expression and function.

Materials and Methods

Animals
C57BL/6J male mice were used in this study. Mice were

provided food and water ad libitum, maintained on a 12-hour light/

dark cycle and housed under controlled temperature and humidity

conditions. All procedures were approved by the Institutional

Animal Care and Use Committee of Toho University (Approved

protocol ID #10-51-81). To examine the effects of fasting, mice

were removed from food at Zeitgeber time 20 (ZT20) and

sacrificed at ZT12. Another group of mice was fed a high-fat diet

(D12451; Research Diet) starting at 8 weeks of age. A low-fat diet,

or normal chow, (MF; Oriental Yeast) provided 3.6 kcal/g of

energy (61% carbohydrate, 26% protein, and 13% fat), whereas a

high-fat diet provided 4.7 kcal/g of energy (35% carbohydrate,

20% protein, and 45% fat). After 4-week of high-fat feeding, mice

were sacrificed at ZT12.

Figure 4. HDAC immunoreactivities in the medial hypothalamus. A) HDAC4-immunoreactive cells were found throughout the hypothalamus
including the ARH, VMHdm, VMHvl, and DMH of fed mice. B) The PVH of fed mice was immunoreactive for HDAC5. C, D) HDAC8-positive cells were
found in the anterior parvicellular and periventricular subdivisions of the PVH of fed (C) and fasting mice (D). E, F) A small number of HDAC10-
immunoreactive cells were seen in the DMH (E) and LHA (F). G) Graphs showing the number of HDAC4, 28, and 210 positive cells in the nuclei of the
medial hypothalamus. The number of HDAC8-positive cells in the PVH of fasting or high-fat fed mice was significantly larger than that of mice fed a
low-fat diet (n = 5). Scale bars: 250 mm (A, B); 100 mm (C); 50 mm (E). *P,0.05. ARH: arcuate nucleus, dm: dorsomedial subdivision, DMH: dorsomedial
hypothalamic nucleus, LHA: lateral hypothalamic area, PVH: paraventricular nucleus, PVHap: anterior parvicellular subdivion of PVH, PVHpv:
periventricular subdivision of PVH, vl: ventrolateral subdivision, VMH: ventromedial hypothalamic nucleus, III: the third ventricle.
doi:10.1371/journal.pone.0018950.g004
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Quantitative PCR
Mice were sacrificed by cervical dislocation while deeply

anesthetized using sodium pentobarbital. Then, the brain was

rapidly removed and the medial hypothalamus was dissected on

ice, rostrally at the optic chiasm, caudally at the mammillary

bodies, 1 mm bilateral from the midline and 1.5 mm dorsal of the

ventral surface. This dissected tissue included the ARH, VMH,

DMH, PVH, anterior hypothalamic area, and a part of the LHA.

Total RNA was isolated using the RNeasy Lipid Tissue Mini kit

(Qiagen, Chatsworth, CA) and used for cDNA synthesis with oligo

dT primers and a PrimeScript reverse transcriptase kit (TaKaRa

Bio, Otsu, Japan). Real-time quantitative PCR reactions were

performed on cDNA with ABI Prism 7000 Sequence Detection

System using SYBR GREEN PreMix Ex Taq (TaKaRa)

according to the manufacturer’s manual. The number of cycles

required to reach a threshold fluorescence level was scored and

used for generating standard curves and interpolating mRNA

concentration levels. A relative quantification method was

employed for quantification of target molecules by calculating

the ratio between the amount of the target molecule and a

reference molecule within the same sample, according to the

manufacturer’s protocol. Amplification of a single PCR product

was confirmed by monitoring the dissociation curve. The averages

of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA

Figure 5. Fasting decreases the number of acetylated histone-positive cells in the VMHvl. A) Schematic illustration of the ARH, VMHdm,
VMHvl, and DMH (right) and Nissl-stained section (left) of the coronal section of the medial hypothalamus. The third ventricle is in the midline. B–G)
Immunoreactive cells for acetylated histone H3 on lysine 14 (AcH3; B, C, D) and acetylated histone H4 on lysine 12 (AcH4; E, F, G) under fed (B, E),
fasting (C, F), and high-fat feeing (D, G), were visualized using DAB. The third ventricle is to the left. In mice fed a low-fat diet (B, E) or a high-fat diet
(D, G), most cells in the ARH, VMH, and DMH were positive for AcH3 (B, D) and AcH4 (E, G). In fasting mice, a small numbers of cells in the VMHvl were
positive for AcH3 (C) and AcH4 (F). H) A graph showing the number of AcH3- and AcH4-positive cells in the ARH, VMHdm, VMHvl, DMH, and LHA. The
numbers of AcH3- and AcH4-positive cells in the VMHvl of fasting mice were significantly smaller than those of fed mice (n = 6). Scale bar: 250 mm.
*P,0.05.
doi:10.1371/journal.pone.0018950.g005
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Figure 6. Expressions of HDAC4, 25, AcH3, and AcH4s in POMC neurons in the ARH. A, B, C) HDAC4-positive nuclei were found in POMC-
positive cells (arrow in B) and POMC-negative cells (arrowhead in B) in the ARH of a high-fat fed mouse. D, E, F) HDAC5-immunoreactivities were
found in the cytoplasm of POMC-positive cells (arrows in E) of a fed mouse. G, H, I) AcH3-positive nuclei were found in POMC-positive cells (arrows in
H) of a fed mouse. J, K, L) AcH4-immunoreactivities were found in the nuclei of strongly POMC-positive cells (arrows in K), scattered moderate POMC-
positive cells (open arrow in K), and POMC-negative cells (arrowhead in K) of a high-fat fed mouse. Scale bars: 50 mm.
doi:10.1371/journal.pone.0018950.g006
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and b-actin mRNA levels were used for normalization. Primer sets

used included 5-tgcgtggaaagaaaacaacc-3 and 5-aagcctgaaa-

aggggtccta-3 for HDAC1, 5-taccacatgcacctggtgtt-3 and 5-

tttgtctgatgctcgaatgg-3 for HDAC2, 5-cccgaggagaactacagcag-3 and 5-

actcttggggacacagcatc-3 for HDAC3, 5-tctgccaaatgttttgggta-3 and 5-

tcacagatggctgtcaggtc-3 for HDAC4, 5-gggatattcaccatggcaac-3 and 5-

ctccaccaacctcttcagga-3 for HDAC5, 5-agcctcgcatacaaacaagc-3 and 5-

tcagaatcatgggcttcctc-3 for HDAC6, 5-tgtccagactcctggctacc-3 and 5-

catgggttcttcctcttcca-3 for HDAC7, 5-ggctcgttgctggacatact-3 and 5-

ccagcacataatcaggacca-3 for HDAC8, 5-gcagcagatccacatgaaca-3 and

5-agaggctgctctgtcttcca-3 for HDAC9, 5-tgcttacctcctggagtgct-3 and 5-

gtgtggcaagatcctcatcc-3 for HDAC10, 5-ggagaggaatgtcaggaggtc-3 and

5-ccacttcatccctcttcacaa-3 for HDAC11, 5-ggcctcaagaagacaactgc-3

and 5-gactcgtgcagccttacaca-3 for Agrp, 5-gacggccaggtcatcactat-3

and 5-cggatgtcaacgtcacactt-3 for b-actin, and 5-agaacatcatccctgcatcc-

3 and 5-cacattgggggtaggaacac-3 for GAPDH.

Immunohistochemistry
Animals were deeply anesthetized with sodium pentobarbital

and perfused transcardially with phosphate-buffered saline (PBS)

followed by phosphate-buffered 4% paraformaldehyde (PFA).

Brains were removed, post-fixed overnight in phosphate-buffered

4% PFA and equilibrated in 30% sucrose for two days. Brains

were sectioned on a cryostat at 35 mm. Sections were stored in a

cryoprotective tissue collection solution (25% glycerol, 30%

ethylene glycol, 0.05 M phosphate buffer) at -20uC until use.

Immunohistochemistry using immunoperoxidase was performed

using a free-floating method. After pretreated with 0.3% hydrogen

peroxide in PBS for 15 minutes, sections were preincubated for

1 hour in blocking solution (0.1 M phosphate buffer, 0.25%

Triton X-100, and 5% normal goat serum). Brain sections were

incubated with primary antibodies for histone H3 acetylation on

lysine 14 (AcH3, 1:3000, rabbit monoclonal, 04-1044, Millipore,

Billerica, MA), histone H4 acetylation on lysine 12 (AcH4,

1:10,000, rabbit monoclonal, 04-119, Millipore), HDAC3 (1:100,

rabbit monoclonal, ab32369, Abcam, Cambridge, MA), HDAC4

(1:100, rabbit polyclonal, ab79521, Abcam), HDAC5 (1:100,

rabbit polyclonal, ab55403, Abcam), HDAC8 (1:250, rabbit

polyclonal, ab39664, Abcam), HDAC10 (1:50, rabbit polyclonal,

ab53096, Abcam), and HDAC11 (1:100, rabbit polyclonal,

ab18973, Abcam) followed by incubation with biotinylated anti-

rabbit IgG (1:400, BA1000, Vector Laboratories, Burlingame,

CA). Sections were then incubated in avidin-biotin-horseradish

peroxidase conjugate (Elite ABC kit, Vector). Immunoreactivity

was visualized using 3,3’-diaminobenzidine (DAB). Images were

captured by a CCD camera (DP70, Olympus, Tokyo, Japan) at a

40 x and 100 x magnification using DP controller software

(Olympus). Immunofluorescence was also performed using a free-

floating method. After preincubated for 1 hour in blocking

solution (0.1 M phosphate buffer, 0.25% Triton X-100, and 5%

normal donkey serum), brain sections were incubated with

primary antibodies for POMC (1:150, goat polyclonal, ab32893,

Abcam),and with antibodies for AcH3 (1:3000), AcH4 (1:10,000),

HDAC4, (1:100), or HDAC5 (1:100) in 3% normal donkey serum

and 0.25% Triton X-100 overnight at 4uC. After washing in PBS,

sections were incubated with Alexa 555-conjugated anti-goat IgG

(1:400, A21432, Invitrogen, Carlsbad, CA), Alexa 488-conjugated

anti-rabbit IgG (1:400, A21206, Invitrogen), and Hoechst33342

(2 mg/ml, H21492, Invitrogen) for 1 hour at room temperature.

After several washes, sections were mounted on a glass slide with

Gel/Mount (Biomeda, Foster city, CA). Immunofluorescence

images were captured by using a scanning confocal microscope

(LSM510 META, Zeiss, Oberkochen, Germany), with C-Apoc-

hromat 40/1.2 water immersion lens. The images were obtained

at 1 mm optical thickness with the frame size of 1,02461,024

pixels. For each double-label immunohistochemical image, each

channel was collected separately with single wavelength excitation

and then merged to produce the composite image. Experimental

controls were prepared in which one or both of the primary

antibodies were omitted from the reaction solution. Confocal laser

scanning microscopy showed no immunolabeling of omitted

antibodies in the control sections. Photoshop CS3 (Adobe Systems,

Mountain View, CA) was used to combine drawings and digital

images into plates. The contrast and brightness of images were

adjusted. Red-green fluorescence images were converted to

magenta-green for the readers who are color blind. Areas of

overlap will appear white.

Image analysis
To count the number of cells positive for immunoperoxidase

reaction, we captured areas of 1.8 mm61.35 mm (136061024

pixels) from coronal hypothalamic sections by a CCD camera

(DP70, Olympus) using 10x objective lens and DP controller

software. Microscopic images were captured at the focal plane in

which the maximum number of immunoreactive cells was

recognized. The captured images were processed using Image J

software (National Institutes of Health). After running threshold

and watershed tools, particles with the size between 100–1000

pixels were counted. The area for positive cell count was 250 mm x

250 mm, except for ARH, for which the count area was 150 mm x

150 mm. Immunoreactive cells from two sections per animal (5–6

mice per group) were counted by observers blinded to the animal’s

group. The average number of cells counted in each mouse was

taken for statistical comparisons.

To assess the double immunofluorescence data of the ARH, we

randomly selected 100 of POMC-positive cells in the ARH from

3–5 optical views per animal (5 mice per group). The percentage of

double-labeled cells was determined.

Data Analysis
Data are presented as means 6 standard error of the mean

(SEM). mRNA expression levels were determined by quantitative

PCR, and the number of positive cells on the immunohistochem-

ical examination was assessed using one-way analysis of variance

followed by a Tukey’s post hoc test.

Acknowledgments

We thank H. Arai and A. Iijima for excellent technical support.

Author Contributions

Conceived and designed the experiments: HF. Performed the experiments:

HF SO JY HI. Analyzed the data: HF SO HI. Contributed reagents/

materials/analysis tools: HF JY. Wrote the paper: HF MK.

References

1. Dulac C (2010) Brain function and chromatin plasticity. Nature 465:
728–735. Available: http://www.nature.com/doifinder/10.1038/na

ture09231.

2. Meaney MJ, Ferguson-smith AC (2010) Epigenetic regulation of the neural

transcriptome: the meaning of the marks. Nature Publishing Group 13:

1313–1318. Available: http://dx.doi.org/10.1038/nn.2678.

3. Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in
psychiatric disorders. Nature reviews. Neuroscience 8: 355–67. Available:

http://www.ncbi.nlm.nih.gov/pubmed/17453016.

4. Etchegaray J-pierre, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone

acetylation underlies transcription in the mammalian circadian clock. Nature

421: 177–182. doi:10.1038/nature01282.1.

HDACs Expression in Medial Hypothalamus

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e18950



5. Korzus E, Rosenfeld MG, Mayford M (2004) CBP histone acetyltransferase

activity is a critical component of memory consolidation. Neuron 42: 961–72.

Available: http://www.ncbi.nlm.nih.gov/pubmed/15207240.

6. Gallou-Kabani C, Junien C (2005) Nutritional epigenomics of metabolic

syndrome: new perspective against the epidemic. Diabetes 54: 1899–906.

Available: http://www.ncbi.nlm.nih.gov/pubmed/15983188.

7. Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. British medical

bulletin 60: 5–20. Available: http://www.ncbi.nlm.nih.gov/pubmed/11809615.

8. Ng S-F, Lin RCY, Laybutt DR, Barres R, Owens Ja, et al. (2010) Chronic high-

fat diet in fathers programs b-cell dysfunction in female rat offspring. Nature

467: 963–966. Available: http://www.nature.com/doifinder/10.1038/na

ture09491.

9. Horvath TL (2005) The hardship of obesity: a soft-wired hypothalamus. Nature

neuroscience 8: 561–5. Available: http://www.ncbi.nlm.nih.gov/pubmed/

15856063.

10. Myers MG, Cowley MA (2008) Mechanisms of Leptin Action and Leptin

Resistance. Annual Review of Physiology. pp 1–20. doi:10.1146/annurev.phy

siol.70.113006.100707.

11. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, et al. (2005) Divergence

of melanocortin pathways in the control of food intake and energy expenditure.

Cell 123: 493–505. Available: http://www.ncbi.nlm.nih.gov/pubmed/

16269339.

12. Sternson SM, Shepherd GMG, Friedman JM (2005) Topographic mapping of

VMH –. arcuate nucleus microcircuits and their reorganization by fasting.

Nature neuroscience 8: 1356–63. Available: http://www.ncbi.nlm.nih.gov/

pubmed/16172601.

13. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern Ra, et al. (2006) Leptin

directly activates SF1 neurons in the VMH, and this action by leptin is required

for normal body-weight homeostasis. Neuron 49: 191–203. Available: http://

www.ncbi.nlm.nih.gov/pubmed/16423694.

14. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, et al. (2011) Functional

identification of an aggression locus in the mouse hypothalamus. Nature 470:

221–226. Available: http://www.nature.com/doifinder/10.1038/nature09736.

15. Crown A, Clifton DK, Steiner R (2007) Neuropeptide signaling in the

integration of metabolism and reproduction. Neuroendocrinology 86: 175–82.

Available: http://www.ncbi.nlm.nih.gov/pubmed/17898535.

16. Schneider JE (2004) Energy balance and reproduction. Physiology & behavior

81: 289–317. Available: http://www.ncbi.nlm.nih.gov/pubmed/15159173.

17. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, et al. (2007) Diet-

induced obesity causes severe but reversible leptin resistance in arcuate

melanocortin neurons. Cell metabolism 5: 181–94. Available: http://www.

ncbi.nlm.nih.gov/pubmed/17339026.

18. Funato H, Tsai AL, Willie JT, Kisanuki Y, Williams SC, et al. (2009) Enhanced

orexin receptor-2 signaling prevents diet-induced obesity and improves leptin

sensitivity. Cell metabolism 9: 64–76. Available: http://www.pubmedcentral.nih.

gov/articlerender.fcgi?artid=2630400&tool=pmcentrez&rendertype=abstract.

19. Swart I, Jahng JW, Overton JM, Houpt Ta (2002) Hypothalamic NPY, AGRP,

and POMC mRNA responses to leptin and refeeding in mice. American journal

of physiology. Regulatory, integrative and comparative physiology 283:

R1020–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/12376393.

20. Kaelin CB, Gong L, Xu AW, Yao F, Hockman K, et al. (2006) Signal transducer

and activator of transcription (stat) binding sites but not stat3 are required for

fasting-induced transcription of agouti-related protein messenger ribonucleic

acid. Molecular endocrinology (Baltimore, Md.) 20: 2591–602. Available:

http://www.ncbi.nlm.nih.gov/pubmed/16709597.

21. Harris M, Aschkenasi C, Elias CF, Chandrankunnel a, Nillni Ea, et al. (2001)

Transcriptional regulation of the thyrotropin-releasing hormone gene by

leptin and melanocortin signaling. The Journal of clinical investigation 107:

111–20. Available: http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=198547&tool=pmcentrez&rendertype=abstract.

22. Silva JP, von Meyenn F, Howell J, Thorens B, Wolfrum C, et al. (2009)

Regulation of adaptive behaviour during fasting by hypothalamic Foxa2. Nature

462: 646–50. Available: http://www.ncbi.nlm.nih.gov/pubmed/19956259.

23. de Ruijter AJM, van Gennip AH, Caron HN, Kemp S, van Kuilenburg ABP

(2003) Histone deacetylases (HDACs): characterization of the classical HDAC

family. The Biochemical journal 370: 737–49. Available: http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=1223209&tool=pmcentrez&

rendertype=abstract.

24. Shahbazian MD, Grunstein M (2007) Functions of site-specific histone

acetylation and deacetylation. Annual review of biochemistry 76: 75–100.
Available: http://www.ncbi.nlm.nih.gov/pubmed/17362198.

25. Yang X-J, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from

bacteria and yeast to mice and men. Nature reviews. Molecular cell biology 9:
206–18. Available: http://www.ncbi.nlm.nih.gov/pubmed/18292778.

26. Renthal W, Maze I, Krishnan V, Covington HE, Xiao G, et al. (2007) Histone
deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional

stimuli. Neuron 56: 517–29. Available: http://www.ncbi.nlm.nih.gov/pubmed/

17988634.
27. Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A, et al. (2008)

Nuclear receptor corepressor and histone deacetylase 3 govern circadian
metabolic physiology. Nature 456: 997–1000. Available: http://www.

pubmedcentral.nih.gov/articlerender.fcgi?artid=2742159&tool=pmcentrez&
rendertype = abstract.

28. Waltregny D, De Leval L, Glénisson W, Ly Tran S, North BJ, et al. (2004)

Expression of histone deacetylase 8, a class I histone deacetylase, is restricted to
cells showing smooth muscle differentiation in normal human tissues. The

American journal of pathology 165: 553–64. Available: http://www.
pubmedcentral.nih.gov/articlerender.fcgi?artid=1618574&tool=pmcentrez&

rendertype=abstract.

29. Lechan RM, Fekete C (2006) The TRH neuron: a hypothalamic integrator of
energy metabolism. Progress in brain research 153: 209–35. Available: http://

www.ncbi.nlm.nih.gov/pubmed/16876577.
30. Lutter M, Sakata I, Osborne-lawrence S, Rovinsky SA, Anderson JG, et al.

(2008) The orexigenic hormone ghrelin defends against depressive symptoms of
chronic stress. Nature Neuroscience: 10–11. doi:10.1038/nn.2139.

31. Woods SC (2009) The control of food intake: behavioral versus molecular

perspectives. Cell metabolism 9: 489–98. Available: http://www.ncbi.nlm.nih.
gov/pubmed/19490904.

32. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar Ma, et al. (2002)
Enzymatic activity associated with class II HDACs is dependent on a

multiprotein complex containing HDAC3 and SMRT/N-CoR. Molecular cell

9: 45–57. Available: http://www.ncbi.nlm.nih.gov/pubmed/11804585.
33. McKinsey Ta, Zhang CL, Lu J, Olson EN (2000) Signal-dependent nuclear

export of a histone deacetylase regulates muscle differentiation. Nature 408:
106–11. Available: http://www.ncbi.nlm.nih.gov/pubmed/11081517.

34. Fischer DD, Cai R, Bhatia U, Asselbergs FaM, Song C, et al. (2002) Isolation
and characterization of a novel class II histone deacetylase, HDAC10. The

Journal of biological chemistry 277: 6656–66. Available: http://www.ncbi.nlm.

nih.gov/pubmed/11739383.
35. Guardiola AR, Yao T-P (2002) Molecular cloning and characterization of a

novel histone deacetylase HDAC10. The Journal of biological chemistry 277:
3350–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/11726666.

36. Kao H-Y, Lee C-H, Komarov A, Han CC, Evans RM (2002) Isolation and

characterization of mammalian HDAC10, a novel histone deacetylase. The
Journal of biological chemistry 277: 187–93. Available: http://www.ncbi.nlm.

nih.gov/pubmed/11677242.
37. Simmons DM, Swanson LW (2009) Comparison of the spatial distribution of

seven types of neuroendocrine neurons in the rat paraventricular nucleus:
toward a global 3D model. The Journal of comparative neurology 516: 423–41.

Available: http://www.ncbi.nlm.nih.gov/pubmed/19655400.

38. Foo KS, Brismar H, Broberger C (2008) Distribution and neuropeptide
coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat

CNS. Neuroscience 156: 563–79. Available: http://www.ncbi.nlm.nih.gov/
pubmed/18761059.

39. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, et al. (2011) Functional

identification of an aggression locus in the mouse hypothalamus. Nature 470:
221–226. Available: http://www.nature.com/doifinder/10.1038/nature09736.

40. Siegel A, Roeling TA, Gregg TR, Kruk MR (1999) Neuropharmacology of
brain-stimulation-evoked aggression. Neuroscience and biobehavioral reviews

23: 359–89. Available: http://www.ncbi.nlm.nih.gov/pubmed/9989425.

41. Jones J, Wade G (2002) Acute fasting decreases sexual receptivity and neural
estrogen receptor-a in female rats. Physiology & Behavior 77: 19–25. Available:

http://linkinghub.elsevier.com/retrieve/pii/S0031938402007801.
42. Northrop LE, Erskine MS (2008) Selective oxytocin receptor activation in

the ventrolateral portion of the ventromedial hypothalamus is required for
mating-induced pseudopregnancy in the female rat. Endocrinology 149:

836–42. Available: http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=2234970&tool=pmcentrez&rendertype=abstract.

HDACs Expression in Medial Hypothalamus

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e18950


